SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Vere Natasha) "

Sökning: WFRF:(de Vere Natasha)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kurganskiy, Alexander, et al. (författare)
  • Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? How will the season's severity develop over the years? No country yet provides clear guidance addressing these questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the season severity by up to 60%, in line with experimental chamber studies. These models can be used as forecasting tools for advising individuals with hay fever and health care professionals how to prepare for the grass pollen season.
  •  
2.
  • Ovaskainen, Otso, et al. (författare)
  • Global Spore Sampling Project: A global, standardized dataset of airborne fungal DNA
  • 2024
  • Ingår i: Scientific Data. - 2052-4463. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.
  •  
3.
  • Bell, Karen L., et al. (författare)
  • Plants, pollinators and their interactions under global ecological change : The role of pollen DNA metabarcoding
  • 2023
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 32:23, s. 6345-6362
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.
  •  
4.
  • Jones, Laura, et al. (författare)
  • Shifts in honeybee foraging reveal historical changes in floral resources
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreasing floral resources as a result of habitat loss is one of the key factors in the decline of pollinating insects worldwide. Understanding which plants pollinators use is vital to inform the provision of appropriate floral resources to help prevent pollinator loss. Using a globally important pollinator, the honeybee, we show how changes in agricultural intensification, crop use and the spread of invasive species, have altered the nectar and pollen sources available in the UK. Using DNA metabarcoding, we analysed 441 honey samples from 2017 and compared these to a nationwide survey of honey samples from 1952. We reveal that shifts in major plants foraged by honeybees are driven by changes in the availability of these plants within the landscape. Improved grasslands are the most widespread habitat type in the UK, and management changes within this habitat have the greatest potential to increase floral resource availability.
  •  
5.
  • Rowney, Francis M, et al. (författare)
  • Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health
  • 2021
  • Ingår i: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 31:9, s. 4-2003
  • Tidskriftsartikel (refereegranskat)abstract
    • Grass (Poaceae) pollen is the most important outdoor aeroallergen,1 exacerbating a range of respiratory conditions, including allergic asthma and rhinitis ("hay fever").2-5 Understanding the relationships between respiratory diseases and airborne grass pollen with a view to improving forecasting has broad public health and socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis6 and over 300 million with asthma, globally,7 often comorbidly.8 In the UK, allergic asthma has an annual cost of around US$ 2.8 billion (2017).9 The relative contributions of the >11,000 (worldwide) grass species (C. Osborne et al., 2011, Botany Conference, abstract) to respiratory health have been unresolved,10 as grass pollen cannot be readily discriminated using standard microscopy.11 Instead, here we used novel environmental DNA (eDNA) sampling and qPCR12-15 to measure the relative abundances of airborne pollen from common grass species during two grass pollen seasons (2016 and 2017) across the UK. We quantitatively demonstrate discrete spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalized additive models (GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerbations (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a subset of grass species may have disproportionate influence on these population-scale respiratory health responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy