SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Sark Wilfried) "

Sökning: WFRF:(van Sark Wilfried)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anctil, Annick, et al. (författare)
  • Status report on emerging photovoltaics
  • 2023
  • Ingår i: JOURNAL OF PHOTONICS FOR ENERGY. - : SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. - 1947-7988. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV.(c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
  •  
2.
  • Killinger, Sven, et al. (författare)
  • On the search for representative characteristics of PV systems: Data collection and analysis of PV system azimuth, tilt, capacity, yield and shading
  • 2018
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 173, s. 1087-1106
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of PV system characteristics is needed in different regional PV modelling approaches. It is the aim of this paper to provide that knowledge by a twofold method that focuses on (1) metadata (tilt and azimuth of modules, installed capacity and specific annual yield) as well as (2) the impact of shading. Metadata from 2,802,797 PV systems located in Europe, USA, Japan and Australia, representing a total ca-pacity of 59 GWp (14.8% of installed capacity worldwide), is analysed. Visually striking interdependencies of the installed capacity and the geographic location to the other parameters tilt, azimuth and specific annual yield motivated a clustering on a country level and between systems sizes. For an eased future utilisation of the analysed metadata, each parameter in a cluster was approximated by a distribution function. Results show strong characteristics unique to each cluster, however, there are some commonalities across all clusters. Mean tilt values were reported in a range between 16.1° (Australia) and 35.6° (Belgium), average specific annual yield values occur between 786 kWh/kWp (Denmark) and 1426 kWh/kWp (USA South). The region with smallest median capacity was the UK (2.94 kWp) and the largest was Germany (8.96 kWp). Almost all countries had a mean azimuth angle facing the equator. PV system shading was considered by deriving viewsheds for ≈48,000 buildings in Uppsala, Sweden (allranges of solar angles were explored). From these viewsheds, two empirical equations were derived related to irradiance losses on roofs due to shading. The first expresses the loss of beam irradiance as a function of the solar elevation angle. The second determines the view factor as a function of the roof tilt including the impact from shading and can be used to estimate the losses of diffuse and reflected irradiance.
  •  
3.
  • Shepero, Mahmoud, 1992- (författare)
  • Modeling and Forecasting of Electric Vehicle Charging, Solar Power Production, and Residential Load : Perspectives into the Future Urban and Rural Energy Systems
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The urban and rural energy systems are undergoing modernization. This modernization is motivated by the need to increase sustainability in both systems. Some characteristics of this modernization include electrification of industries, transports, and heating and cooling loads. Additionally, there has been an increase in building-applied photovoltaic (PV) systems, and in the flexibility of customer loads. This thesis aims to progress the knowledge regarding the electric power production and consumption in the future urban and rural energy systems. In total, three models were developed and applied to case studies: a spatial electric vehicle (EV) charging model, a residential load forecasting model, and a clear-sky index (CSI) generative model. The results of the EV spatial model showed that there is an aggregation effect for the charging of the EVs. If all EVs charge opportunistically upon arrival using 3.7 kW, at most 19% of the EVs in a large area will charge simultaneously. Delaying the charging to after 22:00 will result in a significant increase in the simultaneity factor — to 59%. Two forecasting models were compared for the residential load. Both models achieved a root mean square error (RMSE) smaller than 4%. One model had a slightly sharper forecast than the other model — by 2.6% — and a variable prediction interval (PI) which decreased at night. As regards the spatiotemporal matching between PV power production and EV charging in rural and urban areas, the results showed that there were no correlations between the building type in each part of the city and the temporal matching. Both residential and workplace areas had similar temporal matching. This is because of the orientations of the roofs in the cities and the sizes of the parking lots. Considering the impacts of EV charging on the distribution grid of a Swedish municipality (Herrljunga), it is shown that 3.7 kW chargers will result in at most a 1% decrease in the voltage of the grid. No under-voltages were witnessed. In conclusion, the urban and rural energy systems can withstand the penetration of PV and EVs in the nearby coming years. Extreme scenarios might, however, require increasing the flexibility or performing upgrades to the systems.  
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy