SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van de Wal R. S. W.) "

Sökning: WFRF:(van de Wal R. S. W.)

  • Resultat 1-25 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2011
  • swepub:Mat__t (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Achberger, Christine, 1968, et al. (författare)
  • State of the Climate in 2011
  • 2012
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 93:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Nina at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Nina. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1 degrees C from 2010 to 2011, associated with cooling influences of La Nina. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Nino to La Nina, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr(-1), almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was well-below average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced above-normal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and above-average surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmer-than-normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3 degrees C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3 degrees C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter.
  •  
12.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
13.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
14.
  • van Haarlem, M. P., et al. (författare)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
15.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
16.
  • Dahl-Jensen, D., et al. (författare)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
17.
  •  
18.
  • Smeets, C. J. P. P., et al. (författare)
  • A wireless subglacial probe for deep ice applications
  • 2012
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 58:211, s. 841-848
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design and first results from two experiments using a wireless subglacial sensor system (WiSe) that is able to transmit data through 2500 m thick ice. Energy consumption of the probes is minimized, enabling the transmission of data for at least 10 years. In July 2010 the first prototype of the system was used to measure subglacial pressure at the base and a temperature profile consisting of 23 probes in two 600 m deep holes at Russell Glacier, a land-terminating part of the West Greenland ice sheet near Kangerlussuaq. The time series of subglacial pressure show very good agreement between data from the WiSe system and the wired reference system. The wireless-measured temperature data were validated by comparison with the theoretical decrease of melting point with water pressure inside the water-filled hole directly after installation. To test the depth range of the WiSe system a second experiment using three different probe types and two different surface antennas was performed inside the 2537 m deep hole at NEEM. It is demonstrated that, with the proper combination of transmission power and surface antenna type, the WiSe system transmits data through 2500 m thick ice.
  •  
19.
  • Isaksson, E, et al. (författare)
  • Ice cores from Svalbard :useful archives of past climate and pollution history.
  • 2003
  • Ingår i: Physics and chemistry of the earth. Part A. - : Elsevier BV. - 1464-1895 .- 1873-4642 .- 1474-7065. ; 28:28-32, s. 1217-1228
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice cores from the relatively low-lying ice caps in Svalbard have not been widely exploited in climatic and environmental studies due to uncertainties about the effect of melt water percolation. However, results from two recent Svalbard ice cores, at Lomonosovfonna (1250 m asl) and Austfonna (750 m asl), have shown that with careful site selection, high-resolution sampling and multiple chemical analyses, it is possible to recover ice cores with partly preserved annual signals. These cores are estimated to cover at least the past 600 years and have been dated using a combination of known reference horizons and glacial modeling. The δ18O data from both Lomonosovfonna and Austfonna ice cores suggest that the 20th century was the warmest during the past 600 years. A comparison of the ice core and sea ice records from this period suggests that sea ice extent and Austfonna δ18O are linked over the past 400 years. This may reflect the position of the storm tracks and their direct influence on the relatively low altitude Austfonna. Lomonosovfonna may be less sensitive to such changes and primarily record atmospheric changes due to its higher elevation. The anthropogenic influence on Svalbard environment is illustrated by increased levels of non-sea-salt sulphate, nitrate, acidity, fly-ash and organic contaminants particularly during the second half of 1900s. Decreased concentrations of some components in recent decades most likely reflect emission and use restrictions. However, some current-use organic pesticide compounds show growing concentrations in near surface layers.
  •  
20.
  • Den Ouden, M. A. G., et al. (författare)
  • Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard
  • 2010
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 4:4, s. 593-604
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise measurements of ice-flow velocities are necessary for a proper understanding of the dynamics of glaciers and their response to climate change. We use stand-alone single-frequency GPS receivers for this purpose. They are designed to operate unattended for 1–3 years, allowing uninterrupted measurements for long periods with hourly temporal resolution. We present the system and illustrate its functioning using data from 9 GPS receivers deployed on Nordenskiöldbreen, Svalbard, for the period 2006–2009. The accuracy of the receivers is 1.62 m based on the standard deviation in the average location of a stationary reference station (NBRef). Both the location of NBRef and the observed flow velocities agree within one standard deviation with DGPS measurements. Periodicity (6, 8, 12, 24 h) in the NBRef data is largely explained by the atmospheric, mainly ionospheric, influence on the GPS signal. A (weighed) running-average on the observed locations significantly reduces the standard deviation and removes high frequency periodicities, but also reduces the temporal resolution. Results show annual average velocities varying between 40 and 55 m yr−1 at stations on the central flow-line. On weekly to monthly time-scales we observe a peak in the flow velocities (from 60 to 90 m yr−1) at the beginning of July related to increased melt-rates. No significant lag is observed between the timing of the maximum speed between different stations. This is likely due to the limited temporal resolution after averaging in combination with the relatively small distance (max. ±13 km) between the stations.
  •  
21.
  • Graversen, Rune, et al. (författare)
  • Greenland’s contribution to global sea-level rise by the end of the 21st century
  • 2011
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 37, s. 1427-1442
  • Tidskriftsartikel (refereegranskat)abstract
    • The Greenland ice sheet holds enough water to raise the global sea level with *7 m. Over the last few decades, observations manifest a substantial increase of the mass loss of this ice sheet. Both enhanced melting and increase of the dynamical discharge, associated with calving at the outlet-glacier fronts, are contributing to the mass imbalance. Using a dynamical and thermodynamical ice-sheet model, and taking into account speed up of outlet glaciers, we estimate Greenland’s contribution to the 21stcentury global sea-level rise and the uncertainty of this estimate. Boundary fields of temperature and precipitation extracted from coupled climate-model projections used for the IPCC Fourth Assessment Report, are applied to the icesheet model. We implement a simple parameterization for increased flow of outlet glaciers, which decreases the bias of the modeled present-day surface height. It also allows for taking into account the observed recent increase in dynamical discharge, and it can be used for future projections associated with outlet-glacier speed up. Greenland contributes 0–17 cm to global sea-level rise by the end of the 21st century. This range includes the uncertainties in climate-model projections, the uncertainty associated with scenarios of greenhouse-gas emissions, as well as the uncertainties in future outlet-glacier discharge. In addition, the range takes into account the uncertainty of the ice-sheet model and its boundary fields.
  •  
22.
  •  
23.
  • Pohjola, V, et al. (författare)
  • Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard
  • 2002
  • Ingår i: J.Geophys.Res.. ; 107:D4, s. ACL 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we examine the quality of the atmospherically deposited signals in an ice core taken from a periodically melting ice field, Lomonosovfonna on central Spitsbergen, Svalbard. The aim is to investigate how much the atmospheric deposited signals in the stratigraphy of ice pack are changed by periodic melting of the ice. To determine the impact of this melting on the stratigraphy found in the ice core, we use three diagnostics: 1) Association between peak values in the ice chemical and isotopic record and ice facies type; 2) Number of “annual” cycles in these records compared with independently-determined number of years represented in the ice core; 3) Statistical comparison between the isotopic record in the ice core and the isotope records from coastal stations from the same region. We find that during warm summers as much as 50% of the annual accumulation may melt and percolate into the firn, and in a median year this decreases to ca. 25 %. As a consequence of percolation the most mobile acids show upto 50 % higher concentrations in bubble poor ice facies compared with facies that are less affected by melt. Most of the other chemical species are less affected than the strong acids, and the stable water isotopes show little evidence of mobility Annual, or bi-annual cycles are detected in most parameters, and the water isotope record has a comparable statistical distribution to isotopic records from coastal stations. We conclude that ice cores from sites like Lomonosovfonna preserve an useful environmental record despite melt events and percolation, where most parameters displays an annual, or in poor cases a bi-annual atmospheric signal.
  •  
24.
  • Pohjola, V, et al. (författare)
  • Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard
  • 2002
  • Ingår i: Annals of glaciology. ; 35, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the upper 81 m of the record of stable isotopes of water from a 122 m long ice core from Lomonosovfonna, central Spitsbergen, to construct an ice core chronology and the annual accumulation rates over the ice field. The isotope cycles are counted in the ice core record using a model that neglects short wavelength and low amplitude cycles. We find approximately the same number of ä18O cycles as years between known reference horizons, and assume these cycles represent annual cycles. Testing the validity of this assumption using cycles in äD shows that both records give similar numbers of cycles. Using the ä18O chronology, and de-compressing the accumulation records using the Nye flow model, we calculate the annual accumulation for the ice core site back to 1715 AD. We find that the average accumulation rate from 1715 to 1950 o was on average 0.30 m w.e. Accumulation rates increased ca. 25% during the later part of the 20th century to an average of 0.41 m w.e. for the period 1950 – 1997. The accumulation rates show highly significant 2.1 and 21 year periodicities, which gives credibility to our time scale.
  •  
25.
  • van der Wel, Gerko, et al. (författare)
  • Using high-resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores
  • 2011
  • Ingår i: Journal of Glaciology. - : International Glaciological Society. - 0022-1430 .- 1727-5652. ; 57:206, s. 1087-1097
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice cores from small ice caps provide valuable climatic information, additional to that of Greenland and Antarctica. However, their integrity is usually compromised by summer meltwater percolation. To determine to what extent this can affect such ice cores, we performed high-resolution tritium measurements on samples from two ice cores from Spitsbergen covering the period AD1955-75. The very sharp and distinct peaks in the tritium precipitation record are subject to several post-depositional processes. We developed a model that uses the precipitation record as input and incorporates the three most important processes (radioactive decay, isotope diffusion and meltwater percolation). Results are compared with measured tritium and density profiles. Both ice-core records contain sharp bomb peaks in the pre-1963 period. It is shown that these peaks would be much smoother in the absence of melt. In this case the main effect of melt and the refreezing of percolation water is the formation of ice layers that form barriers for firn diffusion; thus melt paradoxically results in better preservation of the annual isotope signals. Conversely, for the period after 1963 the main effect of melt is a stronger smoothing of the tritium profiles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy