SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Medical Engineering) hsv:(Medical Laboratory and Measurements Technologies) "

Sökning: hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Medical Engineering) hsv:(Medical Laboratory and Measurements Technologies)

  • Resultat 1-25 av 1218
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brown, Shannon, et al. (författare)
  • Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition
  • 2016
  • Ingår i: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. - : Institute of Electrical and Electronics Engineers (IEEE). - 1557-170X. - 9781457702204 ; , s. 6074-6077
  • Konferensbidrag (refereegranskat)abstract
    • Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.
  •  
2.
  • Hafid, Abdelakram, et al. (författare)
  • Full Impedance Cardiography Measurement Device Using Raspberry PI3 and System-on-Chip Biomedical Instrumentation Solutions
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 22:6, s. 1883-1894
  • Tidskriftsartikel (refereegranskat)abstract
    • Impedance cardiography (ICG) is a noninvasive method for monitoring cardiac dynamics using electrical bioimpedance (EBI) measurements. Since its appearance more than 40 years ago, ICG has been used for assessing hemodynamic parameters. This paper presents a measurement system based on two System on Chip (SoC) solutions and Raspberry PI, implementing both a full three-lead ECG recorder and an impedance cardiographer, for educational and research development purposes. Raspberry PI is a platform supporting Do-I t-Yourself project and education applications across the world. The development is part of Biosignal PI, an open hardware platform focusing in quick prototyping of physiological measurement instrumentation. The SoC used for sensing cardiac biopotential is the ADAS1000, and for the EBI measurement is the AD5933. The recordings were wirelessly transmitted through Bluetooth to a PC, where the waveforms were displayed, and hemodynamic parameters such as heart rate, stroke volume, ejection time and cardiac output were extracted from the ICG and ECG recordings. These results show how Raspberry PI can be used for quick prototyping using relatively widely available and affordable components, for supporting developers in research and engineering education. The design and development documents will be available on www.BiosignalPl.com, for open access under a Non Commercial-Share A like 4.0 International License.
  •  
3.
  • Seoane, Fernando, 1976-, et al. (författare)
  • Textile-Friendly Interconnection between Wearable Measurement Instrumentation and Sensorized Garments-Initial Performance Evaluation for Electrocardiogram Recordings.
  • 2019
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 19:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The interconnection between hard electronics and soft textiles remains a noteworthy challenge in regard to the mass production of textile-electronic integrated products such as sensorized garments. The current solutions for this challenge usually have problems with size, flexibility, cost, or complexity of assembly. In this paper, we present a solution with a stretchable and conductive carbon nanotube (CNT)-based paste for screen printing on a textile substrate to produce interconnectors between electronic instrumentation and a sensorized garment. The prototype connectors were evaluated via electrocardiogram (ECG) recordings using a sensorized textile with integrated textile electrodes. The ECG recordings obtained using the connectors were evaluated for signal quality and heart rate detection performance in comparison to ECG recordings obtained with standard pre-gelled Ag/AgCl electrodes and direct cable connection to the ECG amplifier. The results suggest that the ECG recordings obtained with the CNT paste connector are of equivalent quality to those recorded using a silver paste connector or a direct cable and are suitable for the purpose of heart rate detection.
  •  
4.
  • Capece, Sabrina, et al. (författare)
  • A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices
  • 2013
  • Ingår i: Chemical Communications. - 1359-7345 .- 1364-548X. ; 49:51, s. 5763-5765
  • Tidskriftsartikel (refereegranskat)abstract
    • Fabrication of multifunctional ultrasound contrast agents (UCAs) has been recently addressed by several research groups. A versatile strategy for the synthesis of UCA precursors in the form of biodegradable vesicles with a biocompatible crosslinked polymer shell is described. Upon ultrasound irradiation, acoustic droplet vaporization transforms such particles into microbubbles behaving as UCAs. This proof of concept entails the features of a potential theranostic microdevice.
  •  
5.
  • Lui, Hoi-Shun, et al. (författare)
  • On the matching medium for microwave stroke diagnosis
  • 2019
  • Ingår i: Biomedical Physics and Engineering Express. - : IOP Publishing. - 2057-1976. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The choice of matching medium can directly affect the amount of power transmitted into and through human bodies, which impacts on the quality of the reconstructed images in microwave-based medical imaging, and thus the diagnosis accuracies. In this paper, the amount of the transmitted and reflected power of multi-layer planar healthy and hemorrhagic stroke brain models under different choices of matching medium are determined. These multi-layer planar brain tissue models are made up of at least 17 tissue layers with realistic dielectric properties. A layer of blood with different thickness is introduced to model the case of hemorrhagic stroke. Our results show that matching medium with low relative permittivity provides better intrinsic contrast between healthy brain and hemorrhagic brain. Analysis on how the reflection coefficient and transmittance vary under different matching medium are included to provide better insights to the findings.
  •  
6.
  • Rezaei Aghdam, Sina, 1989, et al. (författare)
  • Reducing Motion Artifacts in Microwave-Based Hemorrhagic Stroke Detection
  • 2019
  • Ingår i: 13th European Conference on Antennas and Propagation, EuCAP 2019.
  • Konferensbidrag (refereegranskat)abstract
    • The use of microwave technology for brain stroke detection opens up the opportunity for developing low-cost transportable devices which can be employed for rapid and prehospital detection of bleeding in patients with traumatic brain injury. Since the detection relies on changes in the scattering parameters of the tissues during pathological conditions, the movements in head or the antennas can deteriorate the detection accuracy. As a countermeasure to this problem, we introduce a technique for reducing the sensitivity of the detection system to motion artifacts. Via analyzing the scattering from an anatomically accurate model of human brain, we evidence that the channels between different pairs of antennas exhibit significantly different levels of sensitivity to the movement. Using this as a ground truth, we develop a generalized singular value decomposition (GSVD)-based approach for assigning appropriate weights to the channels between different antennas such that the probability of correct bleeding detection is maximized.
  •  
7.
  • Rowa, Per, et al. (författare)
  • Automated Malaria Parasite Detection
  • 1977
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • A system for malaria parasite detection in thin blood-smears is presented. Sample slides prepared with standard methods are accepted. A low-cost TV-camera mounted on an ordinary microscope with a computer controlled stage is used as a picture sensor. Frames, digitized in windows of 64 x 64 pixels are fed into a special purpose picture processor at normal frame rate (25 frames/sec). In the picture processor measurements are made on the images at high speed. The classification problem is split into different levels each having different characteristics such as different sampling density. Four classes, three of which are different types of malaria parasites, are recognized. As a whole the classification is best labelled as a sequential pattern recognition procedure.In its preliminary version the system has been run at a speed comparable to that of a human operator, that is l 500 cells per minute. A test on 80 000 cells gave 25 false negatives out of 283 parasites (9%) and 41 false positives (0.05%).
  •  
8.
  • Tomasic, Ivan, et al. (författare)
  • Comparison of publicly available beat detection algorithms performances on the ECGs obtained by a patch ECG device
  • 2019
  • Ingår i: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019 - Proceedings. - : Institute of Electrical and Electronics Engineers Inc.. - 9789532330984 ; , s. 275-278
  • Konferensbidrag (refereegranskat)abstract
    • Eight ECG beat detection algorithms, from the PhysioNet's WFDB and Cardiovascular Signal toolboxes, were tested on twenty measurements, obtained by the Savvy patch ECG device, for their accuracy in beat detection. On each subject, one measurement is obtained while sitting and one while running. Each measurement lasted from thirty seconds to one minute. The measurements obtained while running were more challenging for all the algorithms, as most of them almost perfectly detected all the beats on the measurements obtained in sitting position. However, when applied on the measurements obtained while running, all the algorithms have performed with decreased accuracy. Considering overall percentage of the faulty detected peaks, the four best algorithms were jqrs, from the Cardiovascular Signal Toolbox, and ecgpuwave, gqrs, and wqrs, from the WFDB Toolbox, with percentages of faulty detected beats 1.7, 2.3, 2.9, and 3, respectively. 
  •  
9.
  • Zanoli, Massimiliano, 1989 (författare)
  • Ultra wideband microwave hyperthermia for brain cancer treatment
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Despite numerous clinical trials demonstrating that microwave hyperthermia is a powerful adjuvant modality in the treatment of cancers, there have been few instances where this method has been applied to brain tumors. The reason is a combination of anatomical and physiological factors in this site that require an extra degree of accuracy and precision in the thermal dose delivery. Current clinical applicators are not able to provide such control, partly because they are designed to operate at a single fixed frequency. In terms of treatment planning, the use of a single frequency is limiting as the size of the focal spot cannot be modified to accommodate the specific tumor volume and location. The introduction of ultra wide-band (UWB) systems opens up an opportunity to overcome these limitations, as they convey the possibility of adapting the focal spot and obtaining different power deposition patterns to reduce the heating of healthy tissues. In this thesis, we explore whether the current SAR-based treatment planning methods can be meaningfully translated to the UWB setting and propose new solutions for deep UWB microwave hyperthermia. We analyze the most commonly used cost functions for treatment planning optimization and discuss their suitability for use with UWB systems. Then, we propose a novel SAR-based cost function (HCQ) for UWB optimization that exhibits a high correlation with the resulting tumor temperature. To solve for the HCQ, we describe a novel, time-reversal-based, iterative scheme for a rapid and efficient optimization of UWB treatment plans. Next, we investigate the design possibilities of UWB brain applicators and introduce a fast E-field approximation scheme to quickly explore a large number of array configurations. The method determines the best antenna arrangement around the head with respect to the multiple objectives and requirements of clinical hyperthermia. Together, the proposed solutions manage to achieve the level of tumor coverage and hot-spot suppression that is necessary for a successful treatment. Finally, we investigate the benefit of integrating hyperthermia delivered by an optimized UWB applicator into the radiation therapy plan for a pediatric medulloblastoma patient. The results suggest that UWB microwave hyperthermia for brain cancer treatment is feasible and motivate efforts for further development of UWB applicators and systems.
  •  
10.
  • Zeng, Xuezhi, 1980, et al. (författare)
  • Investigation of an ultra wideband noise sensor for health monitoring
  • 2020
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Quick on-scene assessment and early intervention is the key to reduce the mortality of stroke and trauma patients, and it is highly desirable to develop ambulance-based diagnostic and monitoring devices in order to provide additional support to the medical personnel. We developed a compact and low cost ultra wideband noise sensor for medical diagnostics and vital sign monitoring in pre-hospital settings. In this work, we demonstrated the functionality of the sensor for respiration and heartbeat monitoring. In the test, metronome was used to manipulate the breathing pattern and the heartbeat rate reference was obtained with a commercial electrocardiogram (ECG) device. With seventeen tests performed for respiration rate detection, sixteen of them were successfully detected. The results also show that it is possible to detect the heartbeat rate accurately with the developed sensor.
  •  
11.
  • Enejder, Annika, 1969, et al. (författare)
  • SHG Imaging for Tissue Engineering Applications
  • 2016
  • Ingår i: Second Harmonic Generation Imaging. - : CRC Press. - 9781439849156 - 9781439849149 ; , s. 409-426
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Treatment of lost tissue oen relies on transplantations, either of donor or of autologous tissue. Both alternatives have limitations; there is for example a limited supply of donor transplants, which also require immunosuppression therapy with possible side eects. Transplanted autologous tissue may lack some of the functions of the original tissue and the procedure may also introduce complications at the donor site. In some cases, articial substitutes manufactured from nonbiological materials can be used, for example, synthetic polymer blood vessels or joint replacement prostheses. However, these replacements have drawbacks such as risk for infections, limited material durability, and lack of mechanisms for repair, growth, and remodeling. For these reasons, development of advanced articial tissue constructs with adaptive capabilities is desirable.
  •  
12.
  • Y Banaem, Hossein, et al. (författare)
  • Brain tumor modeling : glioma growth and interaction with chemotherapy
  • 2011
  • Ingår i: International Conference on Graphic and Image Processing (ICGIP 2011). - : SPIE. ; 8285
  • Konferensbidrag (refereegranskat)abstract
    • In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.
  •  
13.
  • Abayazid, Fady, et al. (författare)
  • A New Assessment of Bicycle Helmets: The Brain Injury Mitigation Effects of New Technologies in Oblique Impacts
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 49:10, s. 2716-2733
  • Tidskriftsartikel (refereegranskat)abstract
    • New helmet technologies have been developed to improve the mitigation of traumatic brain injury (TBI) in bicycle accidents. However, their effectiveness under oblique impacts, which produce more strains in the brain in comparison with vertical impacts adopted by helmet standards, is still unclear. Here we used a new method to assess the brain injury prevention effects of 27 bicycle helmets in oblique impacts, including helmets fitted with a friction-reducing layer (MIPS), a shearing pad (SPIN), a wavy cellular liner (WaveCel), an airbag helmet (Hövding) and a number of conventional helmets. We tested whether helmets fitted with the new technologies can provide better brain protection than conventional helmets. Each helmeted headform was dropped onto a 45° inclined anvil at 6.3 m/s at three locations, with each impact location producing a dominant head rotation about one anatomical axes of the head. A detailed computational model of TBI was used to determine strain distribution across the brain and in key anatomical regions, the corpus callosum and sulci. Our results show that, in comparison with conventional helmets, the majority of helmets incorporating new technologies significantly reduced peak rotational acceleration and velocity and maximal strain in corpus callosum and sulci. Only one helmet with MIPS significantly increased strain in the corpus collosum. The helmets fitted with MIPS and WaveCel were more effective in reducing strain in impacts producing sagittal rotations and a helmet fitted with SPIN in coronal rotations. The airbag helmet was effective in reducing brain strain in all impacts, however, peak rotational velocity and brain strain heavily depended on the analysis time. These results suggest that incorporating different impact locations in future oblique impact test methods and designing helmet technologies for the mitigation of head rotation in different planes are key to reducing brain injuries in bicycle accidents.
  •  
14.
  • Andersen, L. M., et al. (författare)
  • On-scalp MEG SQUIDs are sensitive to early somatosensory activity unseen by conventional MEG
  • 2020
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 221
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20–40 mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system. We compared the spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges. We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (10–20 ms). This corresponded to the electroencephalographic (EEG) component P16/N16 and was an unexpected observation as this component is usually not observed in conventional MEG. This finding shows that on-scalp MEG enables a richer registration of the cortical signal, indicating a sensitivity to what are potentially sources in the thalamo-cortical radiation. We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60–75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We suggest that this absence of differences is due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We show how the current sensor coverage may have limited our chances to register the necessary between-phalange source field dissimilarities for fair hypothesis testing, an approach we otherwise believe to be useful for future benchmarking measurements. © 2020 The Authors
  •  
15.
  • Bado, Mattia Francesco, et al. (författare)
  • Distributed optical fiber sensing bonding techniques performance for embedment inside reinforced concrete structures
  • 2020
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 20:20, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Distributed optical fiber sensors (DOFS) are modern-day cutting-edge monitoring tools that are quickly acquiring relevance in structural health monitoring engineering. Their most ambitious use is embedded inside plain or reinforced concrete (RC) structures with the scope of comprehending their inner-workings and the functioning of the concrete-reinforcement interaction. Yet, multiple studies have shown that the bonding technique with which the DOFS are bonded to the reinforcement bars has a significant role on the quality of the extracted strain data. Whilst this influence has been studied for externally bonded DOFS, it has not been done for embedded ones. The present article is set on performing such study by monitoring the strain measurement quality as sampled by DOFS bonded to multiple rebars with different techniques and adhesives. These instrumented rebars are used to produce differently sized RC ties later tested in tension. The discussion of the test outputs highlights the quasi-optimal performance of a DOFS/rebar bonding technique consisting of incising a groove in the rebar, positioning the DOFS inside it, bonding it with cyanoacrylate and later adding a protective layer of silicone. The resulting data is mostly noisefree and anomalies-free, yet still presents a newly diagnosed hitch that needs addressing in future research.
  •  
16.
  • Campanini, Isabella, et al. (författare)
  • Fundamental Concepts of Bipolar and High-Density Surface EMG Understanding and Teaching for Clinical, Occupational, and Sport Applications: Origin, Detection, and Main Errors
  • 2022
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 22:11
  • Forskningsöversikt (refereegranskat)abstract
    • Surface electromyography (sEMG) has been the subject of thousands of scientific articles, but many barriers limit its clinical applications. Previous work has indicated that the lack of time, competence, training, and teaching is the main barrier to the clinical application of sEMG. This work follows up and presents a number of analogies, metaphors, and simulations using physical and mathematical models that provide tools for teaching sEMG detection by means of electrode pairs (1D signals) and electrode grids (2D and 3D signals). The basic mechanisms of sEMG generation are summarized and the features of the sensing system (electrode location, size, interelectrode distance, crosstalk, etc.) are illustrated (mostly by animations) with examples that teachers can use. The most common, as well as some potential, applications are illustrated in the areas of signal presentation, gait analysis, the optimal injection of botulinum toxin, neurorehabilitation, ergonomics, obstetrics, occupational medicine, and sport sciences. The work is primarily focused on correct sEMG detection and on crosstalk. Issues related to the clinical transfer of innovations are also discussed, as well as the need for training new clinical and/or technical operators in the field of sEMG.
  •  
17.
  • Candefjord, Stefan, 1981, et al. (författare)
  • A wearable microwave instrument can detect and monitor traumatic abdominal injuries in a porcine model
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Abdominal injury is a frequent cause of death for trauma patients, and early recognition is essential to limit fatalities. There is a need for a wearable sensor system for prehospital settings that can detect and monitor bleeding in the abdomen (hemoperitoneum). This study evaluates the potential for microwave technology to fill that gap. A simple prototype of a wearable microwave sensor was constructed using eight antennas. A realistic porcine model of hemoperitoneum was developed using anesthetized pigs. Ten animals were measured at healthy state and at two sizes of bleeding. Statistical tests and a machine learning method were used to evaluate blood detection sensitivity. All subjects presented similar changes due to accumulation of blood, which dampened the microwave signal (p< 0.05). The machine learning analysis yielded an area under the receiver operating characteristic (ROC) curve (AUC) of 0.93, showing 100% sensitivity at 90% specificity. Large inter-individual variability of the healthy state signal complicated differentiation of bleedings from healthy state. A wearable microwave instrument has potential for accurate detection and monitoring of hemoperitoneum, with automated analysis making the instrument easy-to-use. Future hardware development is necessary to suppress measurement system variability and enable detection of smaller bleedings.
  •  
18.
  • Candefjord, Stefan, et al. (författare)
  • Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization
  • 2010
  • Ingår i: Measurement science and technology. - : IOP Publishing Ltd. - 0957-0233 .- 1361-6501. ; 21:125801, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard-–histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization.
  •  
19.
  • Candefjord, Stefan, et al. (författare)
  • Combining scanning haptic microscopy and fibre optic Raman spectroscopy for tissue characterization
  • 2012
  • Ingår i: Journal of Medical Engineering & Technology. - : Taylor & Francis. - 0309-1902 .- 1464-522X. ; 36:6, s. 319-327
  • Tidskriftsartikel (refereegranskat)abstract
    • The tactile resonance method (TRM) and Raman spectroscopy (RS) are promising for tissue characterization in vivo. Our goal is to combine these techniques into one instrument, to use TRM for swift scanning, and RS for increasing the diagnostic power. The aim of this study was to determine the classification accuracy, using support vector machines, for measurements on porcine tissue and also produce preliminary data on human prostate tissue. This was done by developing a new experimental set-up combining micro-scale TRMscanning haptic microscopy (SHM)for assessing stiffness on a micro-scale, with fibre optic RS measurements for assessing biochemical content. We compared the accuracy using SHM alone versus SHM combined with RS, for different degrees of tissue homogeneity. The cross-validation classification accuracy for healthy porcine tissue types using SHM alone was 6581%, and when RS was added it increased to 8187%. The accuracy for healthy and cancerous human tissue was 6770% when only SHM was used, and increased to 7277% for the combined measurements. This shows that the potential for swift and accurate classification of healthy and cancerous prostate tissue is high. This is promising for developing a tool for probing the surgical margins during prostate cancer surgery. 
  •  
20.
  • Candefjord, Stefan (författare)
  • Combining the tactile resonance method and Raman spectroscopy for tissue characterization towards prostate cancer detection
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Prostate cancer (PCa) is the most common male cancer in Europe and the US, and only lung and colorectal cancer have a higher mortality among European men. In Sweden, PCa is the most common cause of cancer-related death for men.The overall aim of this thesis was to explore the need for new and complementary methods for PCa detection and to take the rst step towards a novel approach: combining the tactile resonance method (TRM) and Raman spectroscopy (RS). First, the main methods for PCa detection were reviewed. Second, to establish a robust protocol for RS experiments in vitro, the eects of snap-freezing and laser illumination on porcine prostate tissue were studied using RS and multivariate statistics. Third, measurements on porcine and human tissue were performed to compare the TRM and RS data via multivariate techniques, and to assess the accuracy of classifying healthy and cancerous tissue using a support vector machine algorithm.It was concluded through the literature review that the gold standard for PCa detection and diagnosis, the prostate specic antigen test and systematic biopsy, have low sensitivity and specicity. Indolent and aggressive tumors cannot be reliably dierentiated, and many men are therefore treated either unnecessarily or too late. Clinical benets of the state-of-the-art in PCa imaging - advanced ultrasound and MR techniques - have still not been convincingly shown. There is a need for complementary and cost-eective detection methods. TRM and RS are promising techniques, but hitherto their potential for PCa detection have only been investigated in vitro.In the RS study no evidence of tissue degradation due to 830 nm laser illumination at an irradiance of ∼3 · 1010 W m-2 were found. Snap-freezing and subsequent storage at -80° C gave rise to subtle but signicant changes in Raman spectra, most likely related to alterations in the protein structure. The major changes due to PCa do not seem to be related to the protein structure, hence snap-freezing may be applied in our experiments.The combined measurements on porcine and human prostate tissue showed that RS provided additional discriminatory power to TRM. The classication accuracy for healthy porcine prostate tissue, and for healthy and cancerous human prostate tissue, was > 73%. This shows the power of the support vector machine applied to the combined data.In summary, this work indicates that an instrument combining TRM and RS is a promising complementary method for PCa detection. Snap-freezing of samples may be used in future RS studies of PCa. A combined instrument could be used for tumor-border demarcation during surgery, and potentially for guiding prostate biopsies towards lesions suspicious for cancer. All of this should provide a more secure diagnosis and consequently more effcient treatment of the patient.
  •  
21.
  • Candefjord, Stefan, et al. (författare)
  • Evaluating the use of a Raman fiberoptic probe in conjunction with a resonance sensor for measuring porcine tissue in vitro
  • 2009
  • Ingår i: IFMBE Proceedings of the World Congress on Medical Physics and Biomedical Engineering. - Heidelberg : Springer. ; , s. 414-417, s. 414-417
  • Konferensbidrag (refereegranskat)abstract
    • Prostate cancer is the most common form of cancer and is the third leading cause of cancer-related death in European men. There is a need for new methods that can accurately localize and diagnose prostate cancer. In this study a new approach is presented: a combination of resonance sensor technology and Raman spectroscopy. Both methods have shown promising results for prostate cancer detection in vitro. The aim of this study was to evaluate the combined information from measurements with a Raman fiberoptic probe and a resonance sensor system. Pork belly tissue was used as a model system. A three-dimensional translation table was equipped with an in-house developed software, allowing measurements to be performed at the same point using two separate instruments. The Raman data was analyzed using principal component analysis and hierarchical clustering analysis. The spectra were divided into 5 distinct groups. The mean stiffness of each group was calculated from the resonance sensor measurements. One of the groups differed significantly (p < 0.05) from the others. A regression analysis, with the stiffness parameter as response variable and the principal component scores of the Raman data as the predictor variables, explained 67% of the total variability. The use of a smaller resonance sensor tip would probably increase the degree of correlation. In conclusion, Raman spectroscopy provides additional discriminatory power to the resonance sensor.
  •  
22.
  • Eklund, Anders, et al. (författare)
  • Evaluation of applanation resonator sensors for intra-ocular pressure measurement : results from clinical and in vitro studies.
  • 2003
  • Ingår i: Medical and Biological Engineering and Computing. - 0140-0118 .- 1741-0444. ; 41:2, s. 190-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Glaucoma is an eye disease that, in its most common form, is characterised by high intra-ocular pressure (IOP), reduced visual field and optic nerve damage. For diagnostic purposes and for follow-up after treatment, it is important to have simple and reliable methods for measuring IOP. Recently, an applanation resonator sensor (ARS) for measuring IOP was introduced and evaluated using an in vitro pig-eye model. In the present study, the first clinical evaluation of the same probe has been carried out, with experiments in vivo on human eyes. There was a low but significant correlation between IOP(ARS) and the IOP measured with a Goldmann applanation tonometer (r = 0.40, p = 0.001, n = 72). However, off-centre positioning of the sensor against the cornea caused a non-negligible source of error. The sensor probe was redesigned to have a spherical, instead of flat, contact surface against the eye and was evaluated in the in vitro model. The new probe showed reduced sensitivity to off-centre positioning, with a decrease in relative deviation from 89% to 11% (1 mm radius). For normalised data, linear regression between IOP(ARS) and direct IOP measurement in the vitreous chamber showed a correlation of r = 0.97 (p < 0.001, n = 108) and a standard deviation for the residuals of SD < or = 2.18 mm Hg (n = 108). It was concluded that a spherical contact surface should be preferred and that further development towards a clinical instrument should focus on probe design and signal analysis.
  •  
23.
  • Fan, Xuelong, et al. (författare)
  • Effects of sensor types and angular velocity computational methods in field measurements of occupational upper arm and trunk postures and movements
  • 2021
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 21:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Accelerometer-based inclinometers have dominated kinematic measurements in previous field studies, while the use of inertial measurement units that additionally include gyroscopes is rapidly increasing. Recent laboratory studies suggest that these two sensor types and the two commonly used angular velocity computational methods may produce substantially different results. The aim of this study was, therefore, to evaluate the effects of sensor types and angular velocity computational methods on the measures of work postures and movements in a real occupational setting. Half-workday recordings of arm and trunk postures, and movements from 38 warehouse workers were compared using two sensor types: accelerometers versus accelerometers with gyroscopes—and using two angular velocity computational methods, i.e., inclination velocity versus generalized velocity. The results showed an overall small difference (<2° and value independent) for posture percentiles between the two sensor types, but substantial differences in movement percentiles both between the sensor types and between the angular computational methods. For example, the group mean of the 50th percentiles were for accelerometers: 71°/s (generalized velocity) and 33°/s (inclination velocity)—and for accelerometers with gyroscopes: 31°/s (generalized velocity) and 16°/s (inclination velocity). The significant effects of sensor types and angular computational methods on angular velocity measures in field work are important in inter-study comparisons and in comparisons to recommended threshold limit values.
  •  
24.
  • Fernandez, Ignasi, 1984, et al. (författare)
  • Long-term performance of distributed optical fiber sensors embedded in reinforced concrete beams under sustained deflection and cyclic loading
  • 2021
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 21:19
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper explores the performance of distributed optical fiber sensors based on Rayleigh backscattering for the monitoring of strains in reinforced concrete elements subjected to different types of long-term external loading. In particular, the reliability and accuracy of robust fiber optic cables with an inner steel tube and an external protective polymeric cladding were investigated through a series of laboratory experiments involving large-scale reinforced concrete beams subjected to either sustained deflection or cyclic loading for 96 days. The unmatched spatial resolution of the strain measurements provided by the sensors allows for a level of detail that leads to new insights in the understanding of the structural behavior of reinforced concrete specimens. Moreover, the accuracy and stability of the sensors enabled the monitoring of subtle strain variations, both in the short-term due to changes of the external load and in the long-term due to time-dependent effects such as creep. Moreover, a comparison with Digital Image Correlation measurements revealed that the strain measurements and the calculation of deflection and crack widths derived thereof remain accurate over time. Therefore, the study concluded that this type of fiber optic has great potential to be used in real long-term monitoring applications in reinforced concrete structures.
  •  
25.
  • Fhager, Andreas, 1976, et al. (författare)
  • 3D Simulations of Intracerebral Hemorrhage Detection Using Broadband Microwave Technology
  • 2019
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 19:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Early, preferably prehospital, detection of intracranial bleeding after trauma or stroke would dramatically improve the acute care of these large patient groups. In this paper, we use simulated microwave transmission data to investigate the performance of a machine learning classification algorithm based on subspace distances for the detection of intracranial bleeding. A computational model, consisting of realistic human head models of patients with bleeding, as well as healthy subjects, was inserted in an antenna array model. The Finite-Difference Time-Domain (FDTD) method was then used to generate simulated transmission coefficients between all possible combinations of antenna pairs. These transmission data were used both to train and evaluate the performance of the classification algorithm and to investigate its ability to distinguish patients with versus without intracranial bleeding. We studied how classification results were affected by the number of healthy subjects and patients used to train the algorithm, and in particular, we were interested in investigating how many samples were needed in the training dataset to obtain classification results better than chance. Our results indicated that at least 200 subjects, i.e., 100 each of the healthy subjects and bleeding patients, were needed to obtain classification results consistently better than chance (p < 0.05 using Student's t-test). The results also showed that classification results improved with the number of subjects in the training data. With a sample size that approached 1000 subjects, classifications results characterized as area under the receiver operating curve (AUC) approached 1.0, indicating very high sensitivity and specificity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 1218
Typ av publikation
tidskriftsartikel (619)
konferensbidrag (396)
doktorsavhandling (87)
forskningsöversikt (35)
bokkapitel (28)
licentiatavhandling (24)
visa fler...
rapport (12)
annan publikation (12)
samlingsverk (redaktörskap) (3)
patent (2)
konstnärligt arbete (1)
visa färre...
Typ av innehåll
refereegranskat (961)
övrigt vetenskapligt/konstnärligt (249)
populärvet., debatt m.m. (8)
Författare/redaktör
Persson, Mikael, 195 ... (45)
Lindecrantz, Kaj, 19 ... (40)
Seoane, Fernando, 19 ... (39)
Wårdell, Karin (38)
Fhager, Andreas, 197 ... (33)
Brodin, Lars-Åke (28)
visa fler...
Strömberg, Tomas (26)
Osvalder, Anna-Lisa, ... (22)
Laurell, Thomas (20)
Larsson, Marcus (19)
Seoane Martinez, Fer ... (19)
Jalkanen, Ville, 197 ... (19)
Fredriksson, Ingemar (18)
Bergh, Anders (17)
Augustine, Robin, 19 ... (17)
Grishenkov, Dmitry, ... (17)
Tenje, Maria (16)
Bligård, Lars-Ola, 1 ... (16)
Thordstein, Magnus (15)
Knutsson, Hans (14)
Lindahl, Olof A. (14)
Dobsicek Trefna, Han ... (14)
Ljungberg, Börje (13)
Ramser, Kerstin (13)
Ask, Per (12)
Kjellmer, Ingemar, 1 ... (12)
Lindahl, Olof (12)
Theodorsson, Elvar (11)
Cinthio, Magnus (11)
Paradossi, Gaio (11)
Danielsson, Mats (11)
Nilsson, Gert (11)
Cederström, Björn (11)
Borga, Magnus (10)
Lindecrantz, Kaj (10)
Janerot-Sjöberg, Bir ... (10)
Olsson, Torsten, 193 ... (10)
Candefjord, Stefan, ... (10)
Seoane, Fernando (9)
Torres Company, Vict ... (9)
Holzapfel, Gerhard A ... (9)
Ebbers, Tino (9)
Löfgren, Nils, 1969 (9)
Buendia, Ruben, 1982 (9)
Andersson-Engels, St ... (8)
Gil-Pita, Roberto (8)
Augustsson, Per (8)
Reinfeldt, Sabine, 1 ... (8)
Winter, Reidar (8)
Nowak, Jacek (8)
visa färre...
Lärosäte
Chalmers tekniska högskola (362)
Kungliga Tekniska Högskolan (278)
Linköpings universitet (251)
Lunds universitet (181)
Göteborgs universitet (95)
Uppsala universitet (87)
visa fler...
Umeå universitet (79)
Karolinska Institutet (76)
Högskolan i Borås (59)
Luleå tekniska universitet (22)
Blekinge Tekniska Högskola (18)
RISE (14)
Örebro universitet (13)
Linnéuniversitetet (13)
Mälardalens universitet (12)
Stockholms universitet (11)
Jönköping University (11)
Malmö universitet (9)
VTI - Statens väg- och transportforskningsinstitut (8)
Gymnastik- och idrottshögskolan (7)
Högskolan i Halmstad (6)
Sveriges Lantbruksuniversitet (6)
Högskolan Kristianstad (5)
Mittuniversitetet (3)
Högskolan i Gävle (1)
Högskolan Väst (1)
Högskolan i Skövde (1)
Karlstads universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (1189)
Svenska (26)
Tyska (2)
Kinesiska (1)
Forskningsämne (UKÄ/SCB)
Teknik (1218)
Medicin och hälsovetenskap (310)
Naturvetenskap (239)
Samhällsvetenskap (28)
Humaniora (9)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy