SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi) "

Search: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi)

  • Result 1-25 of 1290
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Sukhovey, Yurij G., et al. (author)
  • Difference between the biologic and chronologic age as an individualized indicator for the skin care intensity selection : skin topography and immune system state studies, parameter correlations with age difference
  • 2019
  • In: Biomedical Dermatology. - : Springer Nature. - 2398-8460. ; 3
  • Journal article (peer-reviewed)abstract
    • Background: Present research addresses the issue of skin aging and corresponding skin treatment individualization. Particular research question was on the developing of simplified criterion supporting patient-specific decision on the necessity and intensity of skin treatment. Basing on the published results and a wide pool of experimental data, we have formulated a hypothesis that a difference between biologic and chronologic age can be used as an express criterion of skin aging.Methods: In present paper, we report the results of studies with 80 volunteers between 15 and 65 years of age, linking parameters reflecting immune state, skin state, and topography to the difference between biologic and chronologic age. Facial skin topography, skin moisture, sebum level, and skin elasticity were studied using commercial devices. Blood immunology studies were performed using venous blood samples. Correlations between all measured parameters and age difference were calculated. Also, cross correlations between skin cell profile and blood immune profile parameters, and skin roughness parameters were calculated.Results: Age dependencies of the blood immunological parameters on the biologic and chronologic age difference are less pronounced as compared to the changes in skin cell profile parameters. However, the changes in the tendencies when biologic age becomes equal to chronologic one are visible for all studied parameters.All measured skin roughness parameters show correlations with age difference, but average skin roughness and depth of the deepest profile valley have the largest correlation coefficient values. Many of the measured skin cell profile and blood immunology parameters show strong correlations with average skin roughness and deepest profile valley, with some of the coefficients exceeding 0.5–0.6.Conclusions: Basing on own experiments and published research results, it is possible to suggest using the difference between calculated biologic age and chronologic age as an individualized criterion supporting decisions on skin treatment strategy. Further research involving larger numbers of participants and aiming on optimizing the expressions for calculating biologic age could lead to reliable and easily available express criterion supporting the decision making for an individualized skin treatment.
  •  
3.
  • Lind-Halldén, Christina, et al. (author)
  • Genetic variation in the syntaxin-binding protein STXBP5 in type 1 von Willebrand disease patients
  • 2018
  • In: Thrombosis and haemostasis. - 2567-689X. ; 118:8, s. 1382-1389
  • Journal article (peer-reviewed)abstract
    • von Willebrand factor (VWF) levels in healthy individuals and in patients with type 1 von Willebrand disease (VWD) are influenced by genetic variation in several genes, for example, VWF, ABO and STXBP5. Here, we comprehensively screen for STXBP5 variants and investigate their association with type 1 VWD in Swedish patients and controls. The coding region of the STXBP5 gene was re-sequenced in 107 type 1 VWD patients and the detected variants were genotyped in the type 1 VWD population and a Swedish control population (464 individuals). The functional effects of missense alleles were predicted in silico and the pattern of genetic variation in STXBP5 was analysed. Re-sequencing of 107 type 1 VWD patients identified three missense and three synonymous variants in the coding sequence of STXBP5. The low-frequency missense variants rs144099092 (0.005) and rs148830578 (0.029) were predicted to be damaging, but were not accumulated in patients. No other rare candidate mutations were detected. STXBP5 showed a high level of linkage disequilibrium and a low overall nucleotide diversity of π = 3.2 × 10-4 indicating intolerance to variants affecting protein function. Three previously type 1 VWD-associated single nucleotide polymorphisms were located on one haplotype that showed an increased frequency in patients versus controls. No differences in messenger ribonucleic acid abundance among haplotypes could be found using Genotype-Tissue Expression project data. In conclusion, a haplotype containing the STXBP5 Asn436Ser (rs1039084) mutation is associated with type 1 VWD and no rare STXBP5 mutations contribute to type 1 VWD in the Swedish population.
  •  
4.
  • André, Oscar (author)
  • Data-driven microscopy: placing high-fidelity data in a population-wide context
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Mikroskopi är idag ett fundamentalt verktyg inom forskning, där det tillåter oss att skåda in och utforska våra prover i hög detalj. Mycket utav utvecklingen av nya mikroskopimetoder har strävat efter att öka den detaljnivå vi kan uppnå. Samtidigt har utvecklingen inom hårdvara, med tillgång till bättre och mer kraftfulla instrument, lett till utveckligen av metoder där fokuset är att studera en hel population av celler. Till skillnad från när vi studerar ett fåtal celler i hög detalj, tillåter det oss att sätta perspektiv på det vi ser. Det ger oss en förmåga att säga vad det normala beteendet som man kan förvänta sig är, och vilka celler som sticker ut i en population. Med andra ord, vad som är intressant.Samtidigt finns det ett stort intresse av att veta hur varje individuell cell beter sig. Varje cell är, precis som oss människor, unik. De har olika historia, olika ålder och befinner sig i olika tillstånd. Precis som våra celler i kroppen är unika, är även de cellerna som kan orsaka sjukdom unika. För att förstå varför vissa personer är mer känsliga mot sjukdom, och hur en infektion svarar på våra behandlingar behövs en förståelse och an förmåga att studera celler på individuell nivå, samtidigt som vi bibehåller ett perspektiv utifrån populations-nivå.Denna brist på perspektiv har länge varit ett problem inom mikroskopi. Den vanliga lösningen på detta problem är att vi, som människor, kan tolka en bild och peka på vad det är som är intressant eller inte. Vi är, trots allt, extremt duktiga på att tolka visuell information. Men detta är inte en helt felfri lösning. Som människor kan vi vara relativt okonsekventa, vi tolkar oftast utifrån hur vi vill att datan ser ut. Med andra ord, vi saknar förmågan att vara objektiva i vår metodik för att samla in bilder i hög detalj.Min avhandling har till stor del handlat om att utveckla ett verktyg som tillåter oss att sätta perspektiv på det vi studerar med mikroskopi. Detta har lett till Arbete 1, där vi presenterar en allmän strategi (data-styrd mikroskopi) för hur vi kan arbeta med mikroskopi för att samla in data på en hel population, samtidigt som vi kan samla in data med hög detalj på relevanta fynd i populationen. Vi presenterar även här en teknisk lösning, och utför metoden i tre olika scenarion: ett för att studera en population av celler mer allmänt, ett för att fånga det ögonblick som bakterier infekterar mänskliga celler, och ett där vi studerar och fångar in data på relevanta (från ett populations-kontext) cancerceller och följer dem över tid. Denna metod tillåter oss att samla in data i hög detalj på ett objektivt sätt, och att sätta perspektiv på det vi studerar.I Arbete 2 har vi vidare utvecklat på vår metod, där vi försöker lösa problemet att hitta en och samma cell i flera olika mikroskop. Eftersom vi, genom mikroskopi, jobbar på en så ofantligt liten skala, är det oftast väldigt svårt att orientera sig och hitta rätt inom ett prov. Det är lite som att spela På spåret och gissa vart man är, fast utan alla ledtrådar man får på varje nivå. Eftersom vi har tillgång till data på en hel population, så utgick vi från att det borde finnas samband mellan celler och deras grannar i ett prov som är unika för just dem. Genom att använda sig av dessa unika samband kom vi fram med en lösning där vi snabbt kan kalibrera ett prov på ett nytt mikroskop. Det öppnar dörrarna för oss forskare att återanvända prov, att lättare justera provet med nya markörer (för det vi vill visualisera inom cellerna), och att kunna tolka ett prov med data insamlat från flera system.COVID-19 pandemin var en stor omställning för samhället och vården. Likväl var det en stor omställning för många forskningslabb, där en kapplöpning startade för att så snabbt som möjligt förstå sig på hur viruset fungerar och hur vårt immunförsvar svarar på dess infektion. Det var i detta kontext som mitt tredje arbete utfördes. Genom den erfarenhet jag samlat på mig inom mikroskopi och att analysera bilder på stora dataset, bidrog jag med hjälp för att studera hur framtagna antikroppar kan förhindra bindningen av virus-lika partiklar till celler. Antikroppar är ett protein som immunförsvaret producerar i respons mot en patogen. En bättre förståelse kring hur antikroppar verkar, och vad skillnaden mellan en bra och en dålig antikropp är kan leda till framtagningen av bättre vaccin-program och behandlingar inom sjukvården.I Arbete 4 medverkade jag i ett arbete där bakterien Streptococcus pyogenes var i fokus. S. pyogenes enda värd är människor, och ansvarar för över 600 miljoner infektionsfall per år globalt. På bakteriens yta dominerar ett protein, M-proteinet, ett multi-funktionellt protein som bakterien (bland annat) använder sig för att binda till ytor och förhindra immunförsvarets förmåga att göra sig av med bakterien. I arbetet upptäckte vi att fibronektin binder till bakterien (specifikt M-proteinet) olika mycket beroende på mängden antikroppar som finns i miljön. Fibronektin är ett protein som vi människor producerar, och bidrar (bland annat) till att skapa den miljön som celler befinner sig i. Mängden fibronektin varierar beroende på var i kroppen man kollar. Till exempel, i saliv har du en relativt låg mängd fibronektin jämfört med i blodet. Detta ledde till hypotesen att bakterien är special-anpassad för olika miljöer i dess förmåga att undkomma immunförsvaret. En bättre förståelse kring hur bakterien är anpassad till våra olika miljöer och dess infektionsförlopp kan leda till bättre och mer anpassade behandlingar inom sjukvården.
  •  
5.
  • Arfvidsson, Berndt, et al. (author)
  • S100B concentrations increase perioperatively in jugular vein blood despite limited metabolic and inflammatory response to clinically uneventful carotid endarterectomy
  • 2015
  • In: Clinical Chemistry and Laboratory Medicine. - : Walter de Gruyter GmbH. - 1434-6621 .- 1437-4331. ; 53:1, s. 111-117
  • Journal article (peer-reviewed)abstract
    • Background: Our aim was to test the hypothesis that metabolic and inflammatory responses of the brain perioperatively during carotid endarterectomy (CEA) might affect blood brain barrier (BBB) integrity.Methods: Twenty patients with >70% stenosis of internal carotid artery (ICA) were prospectively included. Surgery was performed under general anaesthesia. Blood was sampled from ipsilateral internal jugular vein and radial artery: just before, during, and after ICA clamping S100B protein, glucose, lactate, 20 amino acids, and key cytokines were analysed.Results: Jugular vein S100B increased during clamping and reperfusion, while a marginal systemic increase was recorded, unrelated to stump pressure during clamping. Glucose increased during clamping in jugular vein blood and even more systemically, while jugular lactate values were higher than systemic values initially. Most amino acids did not differ significantly between jugular vein and systemic levels: glutamic acid and aspartic acid decreased during surgery while asparagine increased. Jugular vein interleukin (IL)-6 showed a transient non-significant increase during clamping and decreased systemically. IL-8 and IL-10 increased over time.Conclusions: Rising jugular vein S100B concentrations indicated reduced BBB integrity, and marginal secondary increase of S100B systemically. Limited ischaemic effects on the brain during cross-clamping, unrelated to S100B concentrations, were confirmed by lower brain glucose levels and higher lactate levels than in systemic blood. The lack of increased jugular vein glutamic acid disproves any major ischaemic brain injury following CEA. The inflammatory response was limited, did not differ greatly between jugular and systemic blood, and was unrelated to S100B.
  •  
6.
  • Cavallaro, Sara, 1992- (author)
  • Development of Techniques for Characterization, Detection and Protein Profiling of Extracellular Vesicles
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Nanosized extracellular vesicles (EVs, ∼30-2000 nm) have emerged as important mediators of intercellular communication, offering opportunities for both diagnostics and therapeutics. In particular, small EVs generated from the endolysosomal pathway (∼30-150 nm), referred to as exosomes, have attracted interest as a suitable biomarker for cancer diagnostics and treatment monitoring based on minimally invasive liquid biopsies. This is because exosomes carry valuable biological information (proteins, lipids, genetic material, etc.) reflecting their cells of origin. Using EVs as biomarkers or drug delivery agents in clinical applications requires a full understanding of their cellular origin, functions, and biological relevance. However, due to their small size and very high heterogeneity in molecular and physical features, the analysis of these vesicles is challenged by the limited detection ranges and/or accuracy of the currently available techniques. To overcome some of these challenges, this thesis focuses on developing different techniques for characterization, detection and protein profiling of EVs at both bulk and single particle levels. Specifically, the three methods investigated are scanning electron microscopy, electrokinetic sensing, and combined fluorescence - atomic force microscopy. First, a protocol for scanning electron microscopy imaging of EVs was optimized to improve the throughput and image quality of the method while preserving the shape of the vesicles. Application of the developed protocol for analysis of EVs from human serum showed the possibility to use scanning electron microscopy for morphological analysis and high-resolution size-based profiling of EVs over their entire size range. Comparison with nanoparticle tracking analysis, a commonly used technique for EV size estimation, showed a superior sensitivity of scanning electron microscopy for particles smaller than 70-80 nm. Moreover, the study showed process steps that can generate artifacts resembling sEVs and ways to minimize them. Secondly, a novel label-free electrokinetic sensor based on streaming current was developed, optimized and multiplexed for EV protein analysis at a bulk level. Using multiple microcapillary sensors functionalized with antibodies, the method showed the capacity for multiplexed detection of different surface markers on small EVs from non-small-cell lung cancer cells. The device performance in the multichannel configuration remained similar to the single-channel one in terms of noise, detection sensitivity, and reproducibility. The application of the technique for analysis of EVs isolated from lung cancer patients with different genomic alterations and after different applied treatments demonstrated the prospect of using EVs from liquid biopsies as a source of biomarker for cancer monitoring. Moreover, the results held promise for the application of the developed method in clinical settings. Finally, to increase the understanding of EV subpopulations and heterogeneity, a platform combining fluorescence and atomic force microscopy was developed for multiparametric analysis of EVs at a single particle level. The use of a precise spot identification approach and an efficient vesicle capture protocol allowed to study and correlate for the first time the membrane protein composition, size and mechanical properties (Young modulus) on individual small EVs. The application of the technique to vesicles isolated from different cell lines identified both common and cell line-specific EV subpopulations bearing distinct distributions of the analyzed parameters. For example, a sEV population co-expressing all the three analyzed proteins in relatively high abundance, yet having average diameters of <100 nm and relatively low Young moduli was found in all cell lines. The obtained results highlighted the possibility of using the developed platform to help decipher unsolved questions regarding EV biology. 
  •  
7.
  • Chantzi, Efthymia, et al. (author)
  • COMBSecretomics : a pragmatic methodological framework for higher-order drug combination analysis using secretomics
  • 2020
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:5
  • Journal article (peer-reviewed)abstract
    • Multi drug treatments are increasingly used in the clinic to combat complex and co-occurring diseases. However, most drug combination discovery efforts today are mainly focused on anticancer therapy and rarely examine the potential of using more than two drugs simultaneously. Moreover, there is currently no reported methodology for performing second- and higher-order drug combination analysis of secretomic patterns, meaning protein concentration profiles released by the cells.Here, we introduce COMBSecretomics (https://github.com/EffieChantzi/COMBSecretomics.git), the first pragmatic methodological framework designed to search exhaustively for second- and higher-order mixtures of candidate treatments that can modify, or even reverse malfunctioning secretomic patterns of human cells. This framework comes with two novel model-free combination analysis methods; a tailor-made generalization of the highest single agent principle and a data mining approach based on top-down hierarchical clustering. Quality control procedures to eliminate outliers and non-parametric statistics to quantify uncertainty in the results obtained are also included. COMBSecretomics is based on a standardized reproducible format and could be employed with any experimental platform that provides the required protein release data. Its practical use and functionality are demonstrated by means of a proof-of-principle pharmacological study related to cartilage degradation.COMBSecretomics is the first methodological framework reported to enable secretome-related second- and higher-order drug combination analysis. It could be used in drug discovery and development projects, clinical practice, as well as basic biological understanding of the largely unexplored changes in cell-cell communication that occurs due to disease and/or associated pharmacological treatment conditions.
  •  
8.
  • Chantzi, Efthymia, et al. (author)
  • Exhaustive in vitro evaluation of the 9-drug cocktail CUSP9 for treatment of glioblastoma using COMBImageDL
  • In: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514.
  • Journal article (peer-reviewed)abstract
    • The CUSP9 protocol (aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, quetiapine, sertraline) is currently undergoing a clinical trial as add-on treatment to standard-of-care temozolomide for recurrent glioblastoma. Although the theoretical repurposing rationale of this 9-drug cocktail is well defined, there is no in vitro experimental data yet supporting its superiority over all its plausible subsets. Such an exhaustive in vitro evaluation may provide preliminary evidence of whether only a fraction of all 9 drugs is needed to achieve an equivalent or even higher effect. Such information could be further used to guide and optimize individualized glioblastoma therapy selection both in terms of efficacy and adverse effects.Here, we employed COMBImageDL, a deep learning improved version of our recently developed COMBImage2 framework, to design, perform and analyze an exhaustive in vitro experiment of the CUSP9 protocol. More specifically, all 511 plausible subsets were evaluated as add-on treatment to temozolomide on a drug resistant glioblastoma cell line (M059K), by combining endpoint cell viability analysis and quantitative live-cell imaging. The experiment was performed in quadruplicate (eight 384-well plates, > 100GB of image data). Fixed clinically achievable concentrations were used for all drugs.Our results suggest that only disulfiram from the CUSP9 cocktail is required, together with temozolomide, in order to induce major changes in cell viability, confluence and morphology. Only slightly increased effects were observed by a few unique higher-order subsets of the CUSP9 protocol, which also contained disulfiram. This finding indicates that for the particular glioblastoma cell line used, the whole CUSP9 protocol could in principle be replaced solely with disulfiram. Notably, it may be worth testing in vitro the few slightly more potent higher-order subsets on primary patient derived glioblastoma cells. This work demonstrates the feasibility and potential of performing exhaustive in vitro evaluation of higher-order drug cocktails prior to subsequent assessment for clinical use. Although the experimental in vitro disease models are not optimal, they can still pinpoint which among all plausible subsets should be further considered. From a personalized therapy selection perspective, in vitro sensitivity testing of primary patient derived tumor cells could thereby advance from the current practice based on single drugs and only cytotoxicity readouts to also include higher-order drug cocktails and quantitative live-cell imaging.
  •  
9.
  • Cholujová, Dana, et al. (author)
  • Comparative study of four fluorescent probes for evaluation of natural killer cell cytotoxicity assays
  • 2008
  • In: Immunobiology. - : Elsevier. - 0171-2985 .- 1878-3279. ; 213:8, s. 629-640
  • Journal article (peer-reviewed)abstract
    • Cytotoxicity is one of the major defence mechanisms against both virus-infected and tumor cells. Radioactive 51chromium (51Cr) release assay is a “gold standard” for assessment of natural killer (NK) cytolytic activity in vitro. Several disadvantages of this assay led us to design alternative tools based on flow cytometry analysis. Four different fluorescent dyes, calcein acetoxymethyl ester (CAM), carboxyfluorescein succinimidyl ester (CFSE), Vybrant DiO (DiO) and MitoTracker Green (MTG) were tested for labeling of NK target K-562 cells. Target staining stability, spontaneous release of fluorochromes and subsequent accumulation in bystander unstained cells were measured using fluorimetry and flow cytometry. Healthy donor peripheral blood mononuclear cells and affinity column purified NK cells were used as effectors coincubated with target K-562 cells at different E:T ratios for 3h and 90min, respectively. Fluorescent probe 7-amino-actinomycin D was used for live and dead cell discrimination. Bland–Altman statistical method was applied to measure true agreement for all CAM–51Cr, CFSE–51Cr, DiO–51Cr and MTG–51Cr pairs analyzed. Based on the data, none of the four proposed methods can be stated equivalent to the standard 51Cr release assay. Considering linear relationships between data obtained with four fluorochromes and 51Cr release assay as well as linear regression analysis with R2=0.9393 value for CAM–51Cr pair, we found the CAM assay to be the most closely related to the 51Cr assay.
  •  
10.
  • Christoffersson, Jonas, 1986-, et al. (author)
  • A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device
  • 2018
  • In: Bioengineering. - : MDPI AG. - 2306-5354. ; 5:2, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Three-dimensional (3D) models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC)-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.
  •  
11.
  • Clausson, Carl-Magnus, 1985- (author)
  • Making Visible the Proximity Between Proteins
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • Genomic DNA is the template of life - the entity which is characterized by a self-sustaining anatomical development, regulated signaling processes, the ability to reproduce and to respond to stimuli. Through what is classically known as the central dogma, the genome is transcribed into mRNA, which in turn is translated into proteins. The proteins take part in most, if not all, cellular processes, and it is by unraveling these processes that we can begin to understand life and disease-causing mechanisms.In vitro and in vivo assays are two levels at which protein communication may be studied, and which permit manipulation and control over the proteins under investigation. But in order to retrieve a representation of the processes as close to reality as possible, in situ analysis may instead be applied as a complement to the other two levels of study. In situ PLA offers the ability to survey protein activity in tissue samples and primary cell lines, at a single cell level, detecting single targets in their natural unperturbed environment.  In this thesis new developments of the in situ PLA are described, along with a new technique offering in situ enzyme-free detection of proximity between biomolecules.The dynamic range of in situ PLA has now been increased by several orders of magnitude to cover analogous ranges of protein expression; the output signals have been modified to offer a greater signal-to-noise ratio and to limit false-positive-rates while also extending the dynamic range further; simultaneous detection of multiple protein complexes is now possible; proximity-HCR is presented as a robust and inexpensive enzyme-free assay for protein complex detection.The thesis also covers descriptions on how the techniques may be simultaneously applied, also together with other techniques, for the multiple data-point acquisition required by the emerging realm of systems biology. A future perspective is presented for how much more information may be simultaneously acquired from tissue samples to describe biomolecular interactions in a new manner. This will allow new types of biomarkers and drugs to be discovered, and a new holistic understanding of life.
  •  
12.
  • Cros, Olivier (author)
  • Structural properties of the mastoid using image analysis and visualization
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • The mastoid, located in the temporal bone, houses an air cell system whose cells have a variation in size that can go far below current conventional clinical CT scanner resolution. Therefore, the mastoid air cell system is only partially represented in a CT scan. Where the conventional clinical CT scanner lacks level of minute details, micro-CT scanning provides an overwhelming amount of ne details. The temporal bone being one of the most complex in the human body, visualization of micro-CT scanning of this boneawakens the curiosity of the experimenter, especially with the correct visualization settings.This thesis first presents a statistical analysis determining the surface area to volume ratio of the mastoid air cell system of human temporal bone, from micro-CT scanning using methods previously applied for conventional clinical CT scans. The study compared current results with previous studies, with successive downsampling the data down to a resolution found in conventional clinical CT scanning. The results from the statistical analysis showed that all the small mastoid air cells, that cannot be detected in conventional clinical CT scans, do heavily contribute to the estimation of the surface area, and in consequence to the estimation of the surface area to volume ratio by a factor of about 2.6. Such a result further strengthens the idea of the mastoid to play an active role in pressure regulation and gas exchange.Discovery of micro-channels through specific use of a non-traditional transfer function was then reported, where a qualitative and a quantitative pre-analysis were performed and reported. To gain more knowledge about these micro-channels, a local structure tensor analysis was applied where structures are described in terms of planar, tubular, or isotropic structures. The results from this structural tensor analysis suggest these microchannels to potentially be part of a more complex framework, which hypothetically would provide a separate blood supply for the mucosa lining the mastoid air cell system.The knowledge gained from analysing the micro-channels as locally providing blood to the mucosa, led to the consideration of how inflammation of the mucosa could impact the pneumatization of the mastoid air cell system. Though very primitive, a 3D shape analysis of the mastoid air cell system was carried out. The mastoid air cell system was first represented in a compact form through a medial axis, from which medial balls could be used. The medial balls, representative of how large the mastoid air cells can be locally, were used in two complementary clustering methods, one based on the size diameter of the medial balls and one based on their location within the mastoid air cell system. From both quantitative and qualitative statistics, it was possible to map the clusters based on pre-defined regions already described in the literature, which opened the door for new hypotheses concerning the effect of mucosal inflammation on the mastoid pneumatization.Last but not least, discovery of other structures, previously unreported in the literature, were also visually observed and briefly discussed in this thesis. Further analysis of these unknown structures is needed.
  •  
13.
  • Desmarais, Samantha M, et al. (author)
  • High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography
  • 2015
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 290:52, s. 31090-31100
  • Journal article (peer-reviewed)abstract
    • The bacterial cell wall is a network of glycan strands crosslinked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.
  •  
14.
  •  
15.
  • Grannas, Karin, 1983- (author)
  • Improvements and Applications of in situ Proximity Ligation Assays
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The cells building up the human body is in constant communication with each other. This communication is done through large complex networks of signaling pathways for inter- and intracellular signal transduction. The signaling activity regulates many important processes, for example cell death, proliferation and differentiation. Information within the signaling networks is communicated over the cell membrane, through the cytoplasm and entering the nucleus by protein activities such as protein-protein interactions (PPIs) and post translation modifications (PTMs). The cells adapts to their own environment, responding to multiple stimuli from their surroundings. This in combination with memory of previous responses, difference in cell cycles stages and sometimes altered genetic background generates heterogeneous cell populations in which every cell is slightly different from its neighbor. This calls for methods to study the activity of endogenous proteins in individual cells within a population.In situ proximity ligation assay (in situ PLA) was originally developed to visualize interaction between endogenous proteins in fixed cells and tissue and can also be applied to detect PTMs. This thesis describe the application of in situ PLA to study PPIs in signaling pathways and the work to further develop and improve techniques for proximity dependent detection. In paper I in situ PLA is used to study cross talk between the Hippo and the TGFβ signaling pathways. The study shows the complex formation by the transcription co-factors of the Hippo pathway, Yap and Taz, and the main effectors of the TGFβ pathway Smad2/3. Furthermore the density dependent localization of the interaction is described.Paper II presents a new version of the in situ PLA probes for simultaneous detection of multiple complexes. Visualization of various complexes involving EGFR, Her2 and Her3 is presented as a proof of concept.The efficiency of in situ PLA is limited by several factors, one being the design of PLA probes and oligonucleotide systems. Even upon proximal binding of the probes there is a risk of formation of non-circular ligation products, which cannot be amplified and detected. In Paper III two new PLA probes are presented aiming to reduce the formation of non-circular ligation product and hence increase the detection efficiency of in situ PLA.Paper IV presents a new method for detection of protein complexes and phosphorylation; proxHCR. ProxHCR combines signal amplification by enzyme free hybridization chain reaction (HCR) with the requirement of proximal binding of two affinity probes. As a proof of principle the method is used to detect multiple complexes and protein phosphorylation in fixed cells and tissue.  
  •  
16.
  • Gustafsson, Johan, 1976, et al. (author)
  • Cellular limitation of enzymatic capacity explains glutamine addiction in cancers
  • 2022
  • Journal article (other academic/artistic)abstract
    • Metabolism within the tumor microenvironment, where a complex mixture of different cell types resides in a nutrient-deprived surrounding, is not fully understood due to difficulties in measuring metabolic fluxes and exchange of metabolites between different cell types in vivo. Genome-scale metabolic modeling enables estimation of such exchange fluxes as well as an opportunity to gain insight into the metabolic behavior of individual cell types. Here, we estimated the availability of nutrients and oxygen within the tumor microenvironment using concentration measurements from blood together with a metabolite diffusion model. In addition, we developed an approach to efficiently apply enzyme usage constraints in a comprehensive metabolic model of human cells. The combined modeling reproduced severe hypoxic conditions and the Warburg effect, and we found that limitations in enzymatic capacity contribute to cancer cells’ preferential use of glutamine as a substrate to the citric acid cycle. Furthermore, we investigated the common belief that some stromal cells are exploited by cancer cells to produce metabolites useful for the cancer cells. We identified a total of 233 potential metabolites that could support collaboration between cancer cells and cancer associated fibroblasts, but when limiting to metabolites previously identified to participate in such collaboration, no growth advantage was observed. Our work highlights the importance of enzymatic capacity limitations for cell behaviors and exemplifies the utility of enzyme constrained models for accurate prediction of metabolism in cells and tumor microenvironments.
  •  
17.
  • Hahn, Max, 1993- (author)
  • Characterizing the pancreatic "isletome" : 3D optical imaging to study diabetes
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • The pancreas is a specialised multipurpose organ, that can be separated into two major compartments: endocrine and exocrine. The exocrine part makes up the majority of the organ volume and functions to secrete digestive enzymes into the small intestine. Notably, endocrine islets of Langerhans are embedded and scattered in vast numbers throughout the exocrine space. These miniature functional units are composed of different cell types that secrete hormones into the blood stream. The most abundant islet-cell is the insulin-producing β-cell. Highly coordinated, the endocrine cells are the primary regulators of energy homeostasis in the body. Together, the collective islet volume constitutes the pancreatic “isletome”, a synchronised, complex and size-equilibrated system that is able to respond to various metabolic conditions. Indeed, environmental and/or genetic conditions often lead to impaired islet function and/or β-cell destruction leading to elevated blood glucose levels over time and eventually diabetes. Diabetes mellitus is a disease that currently affects more than 400 million individuals worldwide. As such, understanding pancreatic disease-related mechanisms is pivotal to the development of new and more effective therapeutic, or even curative, regimens. The deep location of the pancreas in the abdomen and the relatively low resolution of current clinical imaging approaches, however, render the pancreatic islets difficult to study when visually assessing endocrine function. Although non-invasive imaging techniques have yet to reach their full potential, post-mortem studies of the pancreas and rodent disease models offer unique insights into the process of diabetes disease dynamics.Diabetes induced by streptozotocin (STZ) is a widely used model system in pre-clinical research, where it is generally believed that the b-cells are depleted upon the administration of the drug. Yet, quantification of β-cell volume dynamics and underlying disease mechanisms have not been extensively described. Using optical projection tomography (OPT), light sheet fluorescence microscopy (LSFM) and advanced protocols for ex vivo whole organ three-dimensional (3D) imaging, this study demonstrated that STZ-induced β-cell depletion is modest, primarily affecting large islets, and is not the primary cause for the development of diabetes in STZ-diabetic mice. Combined with islet gene expression studies, the remaining β-cell volume in STZ-diabetic mice displayed a downregulation of glucose transporter type 2 (GLUT2), a transmembrane carrier vital for sensing blood glucose levels. Islet transplantation into the anterior chamber of the eye (ACE) reversed the STZ-induced hyperglycaemia and partially restored islet function, including GLUT2, but did not restore β-cell volume loss. Extensive 3D image datasets were generated as a resource to the research community. The combined results of this study indicated that STZ-induced hyperglycaemia is not caused by β-cell loss, but rather by dysfunctional β-cells and that recovery of islet function is restrained by continuous hyperglycaemia.3D imaging using OPT has proven to be a reliable technique in quantifying cellular/anatomical features of the mouse pancreas. However, the technique has rarely been applied to patient-derived tissues. Here, a label-free and non-destructive method was developed to assess clinical biopsies within hours of collection. Specifically, this study showed that autofluorescence-based imaging can be used to delineate tumours of the pancreas (pancreatic ductal adenocarcinoma, PDAC) in 3D, which may aid in identifying tumour margins in conjunction with resective surgery. Importantly, the protocol included a reversal pipeline so that other histological workflows could be applied to the same specimen. Furthermore, this study demonstrated that natural fluorescent substances in the endocrine cells provide sufficient contrast when quantifying both the volume and number of islets of Langerhans in the healthy pancreas. Altogether, the developed technique may provide a novel tool for the rapid 3D analysis of pancreatic biopsies that may complement and improve traditional pathological assessments.With the emergence of islet transplantation networks worldwide, access to fixed pancreatic tissues from diseased donors has dramatically improved. Hereby, the near instant autolysis of the pancreas post-mortem can generally be avoided, which provides the opportunity to quantitatively study the entire gland ex vivo within a conserved spatial context. Yet, mesoscopic 3D imaging of the pancreas (by OPT and/or LSFM) has been limited predominantly due to the obstacle of labelling larger tissue volumes. As such, a simple approach to antibody labelling and cellular imaging was developed in cubic centimetre-sized tissue cuboids that were mapped to the whole organ. By stitching the resultant datasets back into 3D space, this approach demonstrated how essentially any human organ may be analysed in full with high resolution. This technique was applied to pancreata from non-diabetic and type 2 diabetic (T2D) donors, analysing over 200 thousand islets, revealing features of the human pancreas that were not analysed in 3D previously, including high islet dense regions and intra-islet haemorrhaging. Crucially, this new technique may contribute to unveil a wealth of new insights into the complex pathophysiology of the “diabetic pancreas”.By applying the above method to the entire volume of the human pancreas, the absolute distribution and volume of insulin-positive cells in a pancreas from a donor with longstanding type 1 diabetes (T1D) was demonstrated for the first time. By dividing the 19 cm long organ into smaller pieces, followed by insulin labelling, OPT imaging and reconstruction in 3D space, approximately 173,000 insulin-positive objects were identified. By utilising tissue autofluorescence, the entire organ was reconstructed in 3D, together with blood vessels and ducts. These data indicated several important regional differences in β-cell mass, such as the uncinate process showing the highest density, which potentially reflects key aspects of disease dynamics. Furthermore, regions with a “punctated distribution” of single β-cells in close proximity to each other were identified. Although the significance of these observations needs to be elucidated, we speculate that these regions could be associated with pancreatic regeneration, which might permit the development of new interventions for clinical regenerative processes in the future. Altogether, this study represents the first whole organ account of β-cell distribution at the current level of resolution in an entire organ. As such, it may serve as an important advancement towards detailed whole organ analyses of endocrine cell identity/function, via a wide range of markers, in the study of normal anatomy and pathophysiology of the human pancreas.
  •  
18.
  • Katona, Borbala, et al. (author)
  • Antibody Validation Strategy for Nuclear Receptors.
  • 2019
  • In: Methods in Molecular Biology. - New York, NY : Springer New York. - 1064-3745 .- 1940-6029. ; 1966, s. 79-99
  • Journal article (peer-reviewed)abstract
    • Antibodies are invaluable biological tools that we can use to detect the presence, location, or alteration of nuclear receptors. However, antibodies frequently cross-react with other proteins and their performance can vary from batch to batch, from application to application and from lab to lab. When each lot of antibody is not thoroughly validated for each assay, each sample type, and each lab and user, antibody-based assays can lead to flawed interpretations and reproducibility problems. In this chapter, we describe a scheme for thorough antibody validation, suitable for nuclear receptors. The method is based on using highly characterized positive and negative controls assembled into a validation tissue microarray (TMA). Through correlation of immunohistochemical staining (IHC) and mRNA levels over multiple tissues, use of current public databases, and assessment of binding to intended and nonintended targets using western blotting (WB), immunoprecipitation (IP), and mass spectrometry (MS), we describe a path for thoroughly validation of antibodies.
  •  
19.
  • Kortenkamp, Andreas, et al. (author)
  • Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals-The ATHENA Project
  • 2020
  • In: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:9
  • Journal article (peer-reviewed)abstract
    • The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.
  •  
20.
  • Langer, Krzysztof, et al. (author)
  • Rapid production and recovery of cell spheroids by automated droplet microfluidics
  • 2019
  • Other publication (other academic/artistic)abstract
    • Droplet microfluidics enables high throughput cell processing, analysis and screening by miniaturizing the reaction vessels to nano- or pico-liter water-in oil droplets, but like many other microfluidic formats, droplet microfluidics have not been interfaced with or automated by laboratory robotics. Here we demonstrate automation of droplet microfluidics based on an inexpensive liquid handling robot for the automated production of human scaffold-free cell spheroids, using pipette actuation and interfacing the pipetting tip with a droplet generating microfluidic chip. In this chip we produce highly mono-disperse 290μm droplets with diameter CV of 1.7%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard formats at a throughput of 85000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high after recovery only decreased by 4% starting from 96% after 16 hours incubation in nanoliter droplets. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single cell cultures, but assembly methods for spheroids, e.g. hanging drop micro-plates, has had limited throughput. The increased throughput and decreased cost of our method enables spheroid production at the scale needed for lead discovery drug screening and approaches the cost where these micro tissues could be used as building blocks for organ scale regenerative medicine.
  •  
21.
  • Madsen, Rasmus Kirkegaard, 1979-, et al. (author)
  • Metabolic responses to change in disease activity during tumor necrosis factor inhibition in patients with rheumatoid arthritis
  • 2012
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:7, s. 3796-3804
  • Journal article (peer-reviewed)abstract
    • Assessment of disease activity in patients with rheumatoid arthritis (RA) is of importance in the evaluation of treatment. The most important measure of disease activity is the Disease Activity Score counted in 28 joints (DAS28). In this study, we evaluated whether metabolic profiling could complement current measures of disease activity. Fifty-six patients, in two separate studies, were followed for two years after commencing anti-TNF therapy. DAS28 was assessed, and metabolic profiles were recorded at defined time points. Correlations between metabolic profile and DAS28 scores were analyzed using multivariate statistics. The metabolic responses to lowering DAS28 scores varied in different patients but could predict DAS28 scores at the individual and subgroup level models. The erythrocyte sedimentation rate (ESR) component in DAS28 was most correlated to the metabolite data, pointing to inflammation as the primary effect driving metabolic profile changes. Patients with RA had differing metabolic response to changes in DAS28 following anti-TNF therapy. This suggests that discovery of new metabolic biomarkers for disease activity will derive from studies at the individual and subgroup level. Increased inflammation, measured as ESR, was the main common effect seen in metabolic profiles from periods associated with high DAS28.
  •  
22.
  •  
23.
  • McGinn, Steven, et al. (author)
  • New Technologies for DNA analysis-A review of the READNA Project.
  • 2016
  • In: New Biotechnology. - : Elsevier BV. - 1876-4347 .- 1871-6784.
  • Research review (peer-reviewed)abstract
    • The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
  •  
24.
  • Rahman, Mashuqur, 1984-, et al. (author)
  • Enhanced detection of ATTR amyloid using a nanofibril-based assay
  • 2021
  • In: Amyloid. - : Taylor and Francis Ltd.. - 1350-6129 .- 1744-2818. ; 28:3, s. 158-167
  • Journal article (peer-reviewed)abstract
    • More than 30 proteins and peptides have been found to form amyloid fibrils in human diseases. Fibrils formed by transthyretin (TTR) are associated with ATTR amyloidosis, affecting many vital organs, including the heart and peripheral nervous system. Congo red staining is the gold standard method for detection of amyloid deposits in tissue. However, Congo red staining and amyloid typing methods such as immunofluorescence labelling are limited to relatively large deposits. Detection of small ATTR deposits present at an early stage of the disease could enable timely treatment and prevent severe tissue damage. In this study, we developed an enhanced ATTR amyloid detection method that uses functionalised protein nanofibrils. Using this method, we achieved sensitive detection of monomeric TTR in a microplate immunoassay and immunofluorescence labelling of ex vivo tissue from two patients containing ATTR aggregates. The system's utility was confirmed on sections from a patient with AA amyloidosis and liver sections from inflamed mouse. These results suggest that the detection system constitutes important new technology for highly sensitive detection of microscopic amounts of ATTR amyloid deposited in tissue. 
  •  
25.
  • Rinne, Sara S., et al. (author)
  • Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules
  • 2022
  • In: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:6
  • Journal article (peer-reviewed)abstract
    • Increasing evidence suggests that therapy targeting the human epidermal growth factor receptor 3 (HER3) could be a viable route for targeted cancer therapy. Here, we studied a novel drug conjugate, ZHER3-ABD-mcDM1, consisting of a HER3-targeting affibody molecule, coupled to the cytotoxic tubulin polymerization inhibitor DM1, and an albumin-binding domain for in vivo half-life extension. ZHER3-ABD-mcDM1 showed a strong affinity to the extracellular domain of HER3 (K-D 6 nM), and an even stronger affinity (KD 0.2 nM) to the HER3-overexpressing pancreatic carcinoma cell line, BxPC-3. The drug conjugate showed a potent cytotoxic effect on BxPC-3 cells with an IC50 value of 7 nM. Evaluation of a radiolabeled version, [99mTc]Tc-ZHER3-ABD-mcDM1, showed a relatively high rate of internalization, with a 27% internalized fraction after 8 h. Further in vivo evaluation showed that it could target BxPC-3 (pancreatic carcinoma) and DU145 (prostate carcinoma) xenografts in mice, with an uptake peaking at 6.3 +/- 0.4% IA/g at 6 h post-injection for the BxPC-3 xenografts. The general biodistribution showed uptake in the liver, lung, salivary gland, stomach, and small intestine, organs known to express murine ErbB3 naturally. The results from the study show that ZHER3-ABD-mcDM1 is a highly potent and selective drug conjugate with the ability to specifically target HER3 overexpressing cells. Further pre-clinical and clinical development is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 1290
Type of publication
journal article (818)
conference paper (215)
doctoral thesis (107)
research review (51)
other publication (40)
book chapter (26)
show more...
licentiate thesis (13)
reports (8)
patent (6)
book (3)
editorial collection (2)
artistic work (2)
show less...
Type of content
peer-reviewed (998)
other academic/artistic (267)
pop. science, debate, etc. (24)
Author/Editor
Knutsson, Hans (23)
Lindecrantz, Kaj (20)
Lindecrantz, Kaj, 19 ... (17)
Hammarsten, Ola (16)
Sandberg, Frida (15)
Seoane, Fernando (15)
show more...
Laurell, Thomas (15)
Ask, Per (13)
Tenje, Maria (12)
Andersson, Mats (10)
Ebbers, Tino (10)
Uhlén, Mathias (9)
Johansson, A (9)
Kjellmer, Ingemar, 1 ... (9)
Halldén, Christer (9)
Sjöqvist, Bengt-Arne ... (9)
Nilsson, Mats (8)
Borga, Magnus (8)
Orešič, Matej, 1967- (8)
Ekman, Inger, 1952 (8)
Holzapfel, Gerhard A ... (8)
Persson, Mikael, 195 ... (8)
Nielsen, Jens B, 196 ... (7)
Lundberg, Peter (7)
Dahlbäck, Björn (7)
Wigström, Lars (7)
Lindahl, Bertil, 195 ... (7)
Kocherbitov, Vitaly (7)
Sörnmo, Leif (7)
Stegmayr, Bernd (7)
Andersson-Svahn, Hel ... (7)
Blennow, Kaj, 1958 (6)
Ortiz Catalan, Max J ... (6)
Theodorsson, Elvar (6)
Zetterberg, Henrik, ... (6)
Schwenk, Jochen M. (6)
Nilsson, Peter (6)
Landegren, Ulf (6)
Seoane, Fernando, 19 ... (6)
Nilsson, Johan (6)
Mardinoglu, Adil, 19 ... (6)
Gharehbaghi, Arash (6)
Isaksson, Hanna (6)
Johannsson, Gudmundu ... (6)
Cinthio, Magnus (6)
Ashton, Nicholas J. (6)
Ljung, Rolf (6)
Wårdell, Karin (6)
Astermark, Jan (6)
Sellergren, Börje (6)
show less...
University
University of Gothenburg (230)
Lund University (226)
Chalmers University of Technology (194)
Linköping University (192)
Uppsala University (169)
Royal Institute of Technology (156)
show more...
Karolinska Institutet (116)
Umeå University (103)
Örebro University (71)
Malmö University (56)
University of Borås (53)
Karlstad University (42)
Linnaeus University (33)
Stockholm University (32)
Kristianstad University College (19)
RISE (16)
Swedish University of Agricultural Sciences (16)
Jönköping University (14)
University of Skövde (12)
Mälardalen University (8)
Mid Sweden University (8)
Luleå University of Technology (7)
Halmstad University (5)
Högskolan Dalarna (5)
University of Gävle (4)
University West (3)
Blekinge Institute of Technology (3)
Södertörn University (1)
The Swedish School of Sport and Health Sciences (1)
Sophiahemmet University College (1)
Red Cross University College (1)
show less...
Language
English (1259)
Swedish (30)
Hungarian (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (1288)
Natural sciences (243)
Engineering and Technology (220)
Social Sciences (35)
Agricultural Sciences (8)
Humanities (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view