SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Bio Materials) "

Sökning: AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Bio Materials)

  • Resultat 1-25 av 1107
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munthe, Christian, 1962 (författare)
  • Precaution and Ethics: Handling risks, uncertainties and knowledge gaps in the regulation of new biotechnologies
  • 2017
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This volume outlines and analyses ethical issues actualized by applying a precautionary approach to the regulation of new biotechnologies. It presents a novel way of categorizing and comparing biotechnologies from a precautionary standpoint. Based on this, it addresses underlying philosophical problems regarding the ethical assessment of decision-making under uncertainty and ignorance, and discusses how risks and possible benefits of such technologies should be balanced from an ethical standpoint. It argues on conceptual and ethical grounds for a technology neutral regulation as well as for a regulation that not only checks new technologies but also requires old, inferior ones to be phased out. It demonstrates how difficult ethical issues regarding the extent and ambition of precautionary policies need to be handled by such a regulation, and presents an overarching framework for doing so.
  •  
2.
  • Eivazihollagh, Alireza, et al. (författare)
  • On chelating surfactants : Molecular perspectives and application prospects
  • 2019
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322 .- 1873-3166. ; 278, s. 688-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Chelating agents, molecules that very strongly coordinates certain metal ions, are used industrially as well as in consumer products to minimize disturbances and increase performance of reactions and applications. The widely used sequestering agents, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) belong to this branch of readily water-soluble compounds. When these chemical structures also have hydrophobic parts, they are prone to adsorb at air-water interfaces and to self-assemble. Such bifunctional molecules can be called chelating surfactants and will have more extended utilization prospects than common chelating agents or ordinary ionic surfactants. The present review attempts to highlight the fundamental behavior of chelating surfactants in solution and at interfaces, and their very specific interactions with metal ions. Methods to recover chelating surfactants from metal chelates are also described. Moreover, utilization of chelating surfactants in applications for metal removal in environmental engineering and mineral processing, as well as for metal control in the fields of biology, chemistry and physics, is exemplified and discussed.
  •  
3.
  • Jansson, Ronnie, et al. (författare)
  • Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris
  • 2016
  • Ingår i: Biotechnology Journal. - : Wiley-VCH Verlagsgesellschaft. - 1860-6768 .- 1860-7314. ; 11:5, s. 687-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation.
  •  
4.
  • He, Wenxiao, 1985 (författare)
  • Biomimetic Formation of Calcium Phosphate Based Nanomaterials
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The intercellular material in bone is a nanocomposite of aligned “hard” inorganics—calcium phosphate (CaP) platelets embedded in the long-range ordered “soft” organic collagen matrix. This elaborate structural arrangement redeems the weaknesses of the individual components (being soft protein or brittle mineral) and gives bone its excellent mechanical properties for the protection and support of our bodies. The structural order and hierarchy in the soft matrix is organized via self-assembly of collagen molecules and is reinforced by intermolecular crosslinking. The subsequent growth of “hard” crystallites inside the “soft” matrix compartments, likely through the deposition of a transient amorphous calcium phosphate (ACP) phase, results in the interpenetrated composite structure.The aim of this thesis was to prepare synthetic mimetics of “hard” material (CaP) with well-defined nanostructures, soft organic matrices with long-range order and interpenetrated composites composing of the two. The work was inspired by the material deposition process in natural bone. Lyotropic liquid crystal (LC) phases self-assembled by block copolymers were used to mimic the structural order of the collagen matrix. Both the inorganic morphogenesis of CaP in LCs and the controlled crystallization of ACP were investigated. To explore ordered organic matrices, crosslinking of the LCs and the self-assembly of an amphiphilic peptide with designed sequence were performed. In addition, controlled mineralization within crosslinked LCs was examined for the formation of nanocomposites.ACP nanospheres, CaP nanowires and nanosheets were prepared from LCs via templated growth. The ACP nanospheres were capable of transforming into bone-like apatite by controlled aging in water and the prepared nanoparticles were shown to affect osteoblast gene expression. Dicalcium phosphate crystals (brushite and monetite) with structural hierarchy and distinct features were also grown in LCs through epitaxial overgrowth or a self-organization regime. Polymerized LCs were successfully prepared from a modified block copolymer (diacrylate derivative of Pluronic® F127), which served as a resilient matrix for the deposition of ACP nanospheres. A subsequent in situ crystallization of ACP into bone-like apatite resulted in mechanically stable composites retaining nanostructures that resembled that of natural bone. An amphiphilic peptide was designed using mainly natural amino acids and it was shown to self-assemble into distinct structures at different concentrations. Based upon the results presented in this thesis, nanomaterials with assorted structures can be further designed for bio-related applications.
  •  
5.
  • Guo, Weijin, et al. (författare)
  • Synthetic Paper Separates Plasma from Whole Blood with Low Protein Loss
  • 2020
  • Ingår i: Analytical Chemistry. - Washington D.C. : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:9, s. 6194-6199
  • Tidskriftsartikel (refereegranskat)abstract
    • The separation of plasma from whole blood is the first step in many diagnostic tests. Point-of-care tests often rely on integrated plasma filters, but protein retention in such filters limits their performance. Here, we investigate plasma separation on interlocked micropillar scaffolds ("synthetic paper") by the local agglutination of blood cells coupled with the capillary separation of the plasma. We separated clinically relevant volumes of plasma with high efficiency in a separation time on par with that of state of the art techniques. We investigated different covalent and non-covalent surface treatments (PEGMA, HEMA, BSA, O2 plasma) on our blood filter and their effect on protein recovery, and identified O2 plasma treatment and 7.9 μg/cm2 agglutination antibody as most suitable treatments. Using these treatments, we recovered at least 82% of the blood plasma proteins, more than with state-of-the-art filters. The simplicity of our device and the performance of our approach could enable better point-of-care tests.
  •  
6.
  • Anasontzis, George E, 1980 (författare)
  • Biomass modifying enzymes: From discovery to application
  • 2012
  • Ingår i: Oral presentation at the Chalmers Life Science AoA conference.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It has now been realized that the road towards the bio-based economy is a one-way street, leaving gradually the oil-based technology and driving slowly towards a more sustainable society. The current non-biodegradable hydrocarbon fuels and plastics will be replaced by new products which will derive from natural and renewable resources. The synthesis of such biofuels and biochemicals is still challenged by the difficulties to cost efficiently degrade lignocellulosic material to fermentable sugars or to isolate the intact polymers. Biomass degrading and modifying enzymes play an integral role both in the separation of the polymers from the wood network, as well as in their subsequent modification, prior to further product development.Our group interests focus on all levels of applied enzyme research of biomass acting enzymes: Discovery, assay development, production and application. Relevant examples will be provided: What is our strategy for discovering novel microorganisms and enzymes from the tropical forests and grasslands of Vietnam? How do we design novel real-world assays for enzyme activity determination? Which are the bottlenecks in the enzymatic cellulose hydrolysis? How enzymes can be used to produce high added value compounds from biomass?
  •  
7.
  • Andersson, Helene, 1983, et al. (författare)
  • Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films
  • 2013
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 48:1-2, s. 240-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Films of ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be used for extended release coatings in oral formulations. The permeability and microstructure of free EC/HPC films with 30% w/w HPC were studied to investigate effects of EC molecular weight. Phase separation during film spraying and subsequent HPC leaching after immersion in aqueous media cause pore formation in such films. It was found that sprayed films were porous throughout the bulk of the films after water immersion. The molecular weight affected HPC leaching, pore morphology and film permeability; increasing the molecular weight resulted in decreasing permeability. A model to distinguish the major factors contributing to diffusion retardation in porous films showed that the trend in permeability was determined predominantly by factors associated with the geometry and arrangement of pores, independent of the diffusing species. The film with the highest molecular weight did, however, show an additional contribution from pore wall/permeant interactions. In addition, rapid drying and increasing molecular weight resulted in smaller pores, which suggest that phase separation kinetics affects the final microstructure of EC/HPC films. Thus, the molecular weight influences the microstructural features of pores, which are crucial for mass transport in EC/HPC films.
  •  
8.
  • Vilardell, Anna M., et al. (författare)
  • Cold spray as an emerging technology for biocompatible and antibacterial coatings : State of art
  • 2015
  • Ingår i: Journal of Materials Science. - New York : Springer. - 0022-2461 .- 1573-4803. ; 50:13, s. 4441-4462
  • Forskningsöversikt (refereegranskat)abstract
    • The use of coatings in biomaterials has been fundamental on the applicability of many medical devices and has helped improve mechanical properties such as wear and fatigue and biological properties such as biocompatibility and bioactivity of implant prosthesis, thus, in essence, ameliorating human quality life. The aim of the present paper is to give a review on cold spray (CS) coating systems that are emerging in orthopedics industry (internal fixation systems and prosthesis) as well as those for antibacterial purposes (in body and touch external surfaces). These studies are very new, the oldest dating from the half of last decade and most deal with the improvement of biocompatibility and bioactivity of hard tissue replacement; therefore, research on biocoatings is in constant development with the aim to produce implant surfaces that provide a balance between cell adhesion and low cytotoxicity, mechanical properties, and functionalization. CS offers many advantages over conventional high-temperature processes and seems to be able to become competitive in front of the low-temperature techniques. It is mainly cost effective, appropriate for oxygen-sensitive materials, and environmentally green. It basically involves the use of feedstock material in powder form, which is supersonically sprayed onto the appropriate substrate but without any melting as it occurs in conventional thermal spray processes. Biocompatible metallic materials and polymers have been successfully deposited by this method because it is based on the plasticity of the coating material; pure ceramic deposits, for example of hydroxyapatite, are still a challenge.
  •  
9.
  • Martinez Avila, Hector, 1985 (författare)
  • Biofabrication, Biomechanics and Biocompatibility of Nanocellulose-based Scaffolds for Auricular Cartilage Regeneration
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In about 2:10,000 births the external part of the ear, the auricle, is severely malformed or absent. Furthermore, tumors and trauma can cause defects to the auricle. For patients with dysplasia of the auricle, and especially for children, an inconspicuous outer appearance with life-like auricles is important for their psychological and emotional well being as well as their psycho-social development. Auricular reconstruction remains a great challenge due to the complexity of surgical reconstruction using rib cartilage. Despite the advances in stem cell technology and biomaterials, auricular cartilage tissue engineering (TE) is still in an early stage of development due to critical requirements demanding appropriate mechanical properties and shape stability of the tissue-engineered construct. This thesis has focused on developing patient-specific tissue-engineered auricles for one-step surgery using a novel biomaterial, bacterial nanocellulose (BNC), seeded with human nasoseptal chondrocytes (hNC) and bone marrow mononuclear cells (MNC).Biomechanical properties of human auricle cartilage were measured and used as a benchmark for tuning BNC properties. In order to meet the biomechanical requirements, a scaffold with bilayer architecture composed of a dense BNC support layer and a macroporous structure was designed. Firstly, the biocompatibility of the dense BNC layer was investigated, demonstrating a minimal foreign body response according to standards set forth in ISO 10993. Secondly, different methods to create macroporous BNC scaffolds were studied and the redifferentiation capacity of hNCs was evaluated in vitro; revealing that macroporous BNC scaffolds support cell ingrowth, proliferation and neocartilage formation. The bilayer BNC scaffold was biofabricated and tested for endotoxins and cytotoxicity before evaluating in long-term 3D culture, and subsequently in vivo for eight weeks—in an immunocompromised animal model. The results demonstrated that the non-pyrogenic and non- cytotoxic bilayer BNC scaffold offers a good mechanical stability and maintains a structural integrity, while providing a porous 3D environment that is suitable for hNCs and MNCs to produce neocartilage, in vitro and in vivo. Furthermore, patient-specific auricular BNC scaffolds with bilayer architecture were biofabricated and seeded with autologous rabbit auricular chondrocytes (rAC) for implantation in an immunocompetent rabbit model for six weeks. The results demonstrated the shape stability of the rAC-seeded scaffolds and neocartilage depositions in the immunocompetent autologous grafts. 3D bioprinting was also evaluated for biofabrication of patient-specific, chondrocyte-laden auricular constructs using a bioink composed of nanofibrillated cellulose and alginate. Bioprinted auricular constructs showed an excellent shape and size stability after in vitro culture. Moreover, this bioink supports redifferentiation of hNCs while offering excellent printability, making this a promising approach for auricular cartilage TE. Furthermore, the use of bioreactors is essential for the development of tissue-engineered cartilage in vitro. Thus, a compression bioreactor was utilized to apply dynamic mechanical stimulation to cell-seeded constructs as a means to enhance production of extracellular matrix in vitro.In this work, a potential clinical therapy for auricular reconstruction using tissue-engineered auricles is demonstrated; where BNC is proposed as a promising non-degradable biomaterial with good chemical and mechanical stability for auricular cartilage TE. Although the primary focus of this thesis is on auricular reconstruction, the methods developed are also applicable in the regeneration of other cartilage tissues such as those found in the nose, trachea, spine and articular joints.
  •  
10.
  • Hartzén, Ann-Sofie, et al. (författare)
  • The material expression of new pulp-fibre reinforced composites in relation to other material categories
  • 2016
  • Ingår i: Proceedings - D and E 2016. - Amsterdam : Universidad de los Andes. - 9789461867254 ; , s. 191-200
  • Konferensbidrag (refereegranskat)abstract
    • To help bridge the gap between the science lab and commercial production there is a need for a better understanding of how new bio-based materials are perceived by users. The aim of the studies in this paper was to identify the material expression, sensorial properties and semantic dimensions of a group of pulp-fibre reinforced composites that are still in the research phase and how these relate to other, better-known materials already on the market. The studies involved 21 different materials, divided into different material groups such as metals, solid woods, wood fibre materials, plastic and fibre-reinforced composites in which the pulp-fibre reinforced composites were included. The materials were evaluated for meaning in a product semantic study and for sensory perception in a sensorial study. The results of the semantic study gave two underlining dimensions explaining most of the variations between the materials, Quality and Naturalness. These dimensions also had strong correlations to some of the sensorial properties. The results indicate that the pulp-fibre reinforced composites were not perceived as having high quality or expressing naturalness. They were hard to distinguish from the plastics in the study. The implications for further research and material development are discussed.
  •  
11.
  • Andersson, Johanna, 1984, et al. (författare)
  • Stick–slip motion and controlled filling speed by the geometric design of soft micro-channels
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 524, s. 139-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis Liquid can move by capillary action through interconnected porous materials, as in fabric or paper towels. Today mass transport is controlled by chemical modification. It is, however, possible to direct mass transport by geometrical modifications. It is here proposed that it is possible to tailor capillary flow speed in a model system of micro-channels by the angle, size and position of attached side channels. Experiments A flexible, rapid, and cost-effective method is used to produce micro-channels in gels. It involves 3D-printed moulds in which gels are cast. Open channels of micrometre size with several side channels on either one or two sides are produced with tilting angles of 10 – 170°. On a horizontal plane the meniscus of water driven by surface tension is tracked in the main channel. Findings The presence of side channels on one side slowed down the speed of the meniscus in the main channel least. Channels having side channels on both sides with tilting angles of up to 30° indicated tremendously slower flow, and the liquid exhibited a stick-slip motion. Broader side channels decreased the speed more than thinner ones, as suggested by the hypothesis. Inertial forces are suggested to be important in branched channel systems studied here.
  •  
12.
  • Fjellgaard Mikalsen, Ragni (författare)
  • Fighting flameless fires : Initiating and extinguishing self-sustainedsmoldering fires in wood pellets
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Smoldering fires represent domestic, environmental and industrial hazards. This flameless form of combustion is more easily initiated than flaming, and is also more persistent and difficult to extinguish. The growing demand for non-fossil fuels has increased the use of solid biofuels such as biomass. This represents a safety challenge, as biomass self-ignition can cause smoldering fires, flaming fires or explosions.Smoldering and extinguishment in granular biomass was studied experimentally. The set-up consisted of a cylindrical fuel container of steel with thermally insulated side walls. The container was closed at the bottom, open at the top and heated from below by a hot surface. Two types of wood pellets were used as fuel, with 0.75-1.5 kg samples.Logistic regression was used to determine the transition region between non-smoldering and self-sustained smoldering experiments, and to determine the influence of parameters. Duration of external heating was most important for initiation of smoldering. Sample height was also significant, while the type of wood pellet was near-significant and fuel container height was not.The susceptibility of smoldering to changes in air supply was studied. With a small gap at the bottom of the fuel bed, the increased air flow in the same direction as the initial smoldering front (forward air flow) caused a significantly more intense combustion compared to the normal set-up with opposed air flow.Heat extraction from the combustion was studied using a water-cooled copper pipe. Challenges with direct fuel-water contact (fuel swelling, water channeling and runoff) were thus avoided. Smoldering was extinguished in 7 of 15 cases where heat extraction was in the same range as the heat production from combustion. This is the first experimental proof-of-concept of cooling as an extinguishment method for smoldering fires.Marginal differences in heating and cooling separated smoldering from extinguished cases; the fuel bed was at a heating-cooling balance point. Lower cooling levels did not lead to extinguishment, but cooling caused more predictable smoldering, possibly delaying the most intense combustion. Also observed at the balance point were pulsating temperatures; a form of long-lived (hours), macroscopic synchronization not previously observed in smoldering fires.For practical applications, cooling could be feasible for prevention of temperature escalation from self-heating in industrial storage units. This study provides a first step towards improved fuel storage safety for biomass. 
  •  
13.
  • Sörensen, Malin H., et al. (författare)
  • Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate
  • 2010
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier Inc.. - 0021-9797 .- 1095-7103. ; 343:1, s. 359-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipase from Thermomyces lanuginosus has been immobilized within particulate mesoporous silica carriers, with either hydrophilic or hydrophobic supporting surfaces, produced by the newly developed emulsion and solvent evaporation (ESE) method.  The Michaelis-Menten model was used to calculate the parameters related to the enzymatic activity of lipase i.e. the turnover number, kcat, and the specific activity. The specific activity was improved by immobilization of lipase onto the hydrophobic support, compared to lipase immobilized onto the hydrophilic support and lipase free in solution. The enhanced enzymatic activity of lipase onto a hydrophobic support was attributed to interfacial activation of the Thermomyces lanuginosus lipase when it is attached to a hydrophobic surface and a reduced denaturation. Confocal scanning laser microscopy (CLSM) studies, of fluorescently tagged lipase, showed that leakage of the lipase from the mesoporous particles was limited to an initial period of only a few hours. Both the rate and the amount of lipase leached were reduced when the lipase was immobilized onto the hydrophobic support.
  •  
14.
  • Hedlund, Artur, 1984 (författare)
  • Coagulation of Cellulose: from Ionic-Liquid Solution to Cellulose Nanostructure
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract A linear chain of glucose monomers, cellulose, provides the structural reinforcement of the cell walls of plants and constitutes almost half of their dry mass. Wood and other plant-based raw materials are processed on a large industrial scale to isolate the cellulose, which is then dissolved. The resulting solutions can be shaped into films or fibers and solidified as such by immersion in a nonsolvent. The properties of the solidified cellulose products can, however, vary and are frequently not quite satisfactory. In the solidification process, cellulose forms one phase and the nonsolvent and solvent form a second phase, which is later removed through washing and drying. However, these phase separations of ternary mixtures are more complicated than the sentence above indicates. In fact, the details left out decide the properties of those variable materials. This thesis reports on the interdependencies between several parameters and aspects that are critical to cellulose phase separations: compound properties, phase equilibria for the ternary mixtures, the diffusion processes, and the nanostructures formed. Several new experimental methods were developed to measure the critical amounts of nonsolvent that induce coagulation, the mass transport of solvent and nonsolvent, and the rates of coagulation. The cellulose solutions of an ionic liquid, 1ethyl-3methyl-imidazolium acetate, [C2mim][OAc], with varied amounts of a cosolvent, DMSO, were coagulated in water, ethanol (EtOH), or 2-propanol (2PrOH). It was found that 2PrOH is, expressed in molar ratio, the strongest nonsolvent (> EtOH > water). However, the diffusive rates, D, and coagulation rates were in the opposite order (water > EtOH > 2PrOH). The observed differences between nonsolvent compounds were much larger for D[C2mim][OAc] than for DNonSolvent , for the rates of coagulation or for DDMSO, particularly with high cellulose concentration. More differences between water and alcohol as the nonsolvent were observed in the cellulose structures formed. Coagulation in water produced relatively well-ordered crystalline structures, whereas coagulation in alcohol did not. The differences between water and alcohol as the nonsolvent can be explained by different modes of phase separation and differences in nonsolvent interactions with [C2mim][OAc] and cellulose. To show the reader how we arrived at those conclusions, which have not been found in previous literature in the cellulose field, a substantial background regarding the properties and interactions of the compounds is supplied. Networks of cellulose nanofibrils were formed in all the nonsolvents tested, which explained the generally high diffusivities observed and the minor effect of cellulose on diffusion. It appeared that diffusion through the cellulose nanofibril network is similar to diffusion in a mixture of [C2mim][OAc] and nonsolvent only, which was confirmed with a simplistic computer model.
  •  
15.
  •  
16.
  • Mastantuoni, Gabriella G. (författare)
  • Engineering of lignin in wood towards functional materials
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Through 270 million years of evolution, the finely tuned hierarchical structure of wood has been optimized for efficient nutrient transport and exceptional mechanical stability. Its distinctive orthotropic constitution can provide inspiration and design opportunities for the development of novel functional materials. In recent years, top-down modification approaches have adapted the wood structure for innovative applications, utilizing the hierarchical arrangement at different length scales. In doing so, preserving the structural integrity is of the essence.This thesis explores new top-down modification techniques for the functionalization and structural control of wood-based materials. With the intent of better preserving and utilizing the natural wood organization and native components, two different modification routes were explored on softwood Scots pine: complete lignin removal and in-situ lignin modification. Complete delignification was achieved through preventive crosslinking of the polysaccharide matrix, enhancing intercellular adhesion between tracheids and preventing the disintegration of the cellular arrangement after lignin removal. The second approach focused on chemical modification of lignin by sulfonation as an alternative to complete lignin removal, resulting in wood templates of high negative charge up to 375 µmol g-1 and with well-preserved residual lignin. Hot compression of the delignified wood veneers produced thin wood films with high optical transmittance of 71 % alongside exceptional tensile strength of 449 MPa and Young’s modulus of 50 GPa. Densification of lignin-retaining wood veneers yielded strong and transparent thin films with UV blocking ability. Additionally, these densified films could be easily recycled into discrete wood fibers. The integration of conductive polymers including poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and polypyrrole in in-situ sulfonated wood resulted in bio-composites with high conductivity up to 203 S m-1 and high pseudo-capacitance up to 38 mF cm-2, indicating that tailoring the wood chemistry and activating the redox activity of lignin by sulfonation are important strategies for the fabrication of composites with potential for sustainable energy applications. By tailoring both wood chemistry and morphology, a wood foam with unique microstructure, enhanced permeability, along with high ultimate strength of 9 MPa and Young’s modulus of 364 MPa was obtained. When combined with the conductive polymer PEDOT:PSS, the composite demonstrated uniform conductivity of 215 S m-1 and mechanoresponsive electrical resistance, showing promise in sensing and mechanoresponsive devices.Therefore, in-situ engineering of lignin proved to be a versatile toolkit to obtain wood templates of improved permeability and porosity, greater compliance to densification, and enhanced compatibility with conductive polymers.
  •  
17.
  • Hooshmand, Saleh, et al. (författare)
  • Porous alumina ceramics by gel casting : Effect of type of sacrificial template on the properties
  • 2019
  • Ingår i: International Journal of Ceramic Engineering & Science. - : American Ceramic Society. - 2578-3270. ; 1:2, s. 77-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of type of sacrificial template on the processing and properties of porous alumina ceramics was investigated. Two templates, (a) hollow pre‐expanded polymer spheres (Expancel) and (b) dense glassy carbon, were used to prepare porous alumina ceramics by gel casting. The results showed that the burnout of sacrificial expandable polymer microspheres from alumina ceramics was 10 times faster than glassy carbon without compromising the compressive strength. Moreover, the effect of the size of the porous ceramic component during the burnout showed that the template decomposition and the escape of the formed gases took a longer time for the thicker specimens than the thinner one and it was significant in case of glassy carbon. It was found that the burnout of expandable microspheres could happen at a faster rate, and the time of the burnout cycle could be reduced significantly to save energy while keeping the mechanical strength twice as high than porous alumina ceramics after burnout of glassy carbon. Furthermore, the CO2 emissions during the burnout of sacrificial templates and the microstructure of the prepared porous alumina were compared for these two types of sacrificial templates. The prepared foams with pre‐expanded microspheres showed potential for being used in industrial applications, where the decreasing of the released gases is critical for saving time and energy for the fabrication of large ceramic parts.
  •  
18.
  • Muneer, Faraz, et al. (författare)
  • Innovative Gliadin/Glutenin and Modified Potato Starch Green Composites : Chemistry, Structure, and Functionality Induced by Processing
  • 2016
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 4:12, s. 6332-6343
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we combined two wheat proteins, gliadin (Gli)/glutenin (GT), and modified potato starch (MPS) into composites using extrusion. In the Gli/GT MPS composites, we studied the structural dynamics of proteins and starch, protein starch interactions, protein properties, and composite morphology in relation to mechanical and barrier properties. Materials with different ratios of Gli/GT and MPS were extruded using either glycerol or glycerol water at 110 and 130 degrees C. For the first time, a hierarchical hexagonal structure of Gli proteins was observed in Gli MPS composite at both extrusion temperatures. The higher temperature (130 degrees C) induced a higher degree of protein cross-links, an increase in the polymer size, and formation of beta-sheets compared to 110 degrees C. The combination of plasticizers (glycerol and water) favored a micro-structural morphology with improved gelatinization of starch, processability, as well as strength, stiffness, and extensibility of GT MPS composites. The highest amount of the oxidized proteins was observed in the samples with the highest protein content and at high extrusion temperature. The Gli- and GT MPS (30/70) samples showed promising oxygen barrier properties under ambient testing conditions. These findings provide in-depth information for tailoring the structural functional relationship of the Gli/GT-potato starch composites for their promising use in designing various green materials.
  •  
19.
  • Chudinova, Ekaterina, et al. (författare)
  • Additive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596.
  • Konferensbidrag (refereegranskat)abstract
    • Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds.
  •  
20.
  • Zboinska, Malgorzata, 1981, et al. (författare)
  • Robotically 3D printed architectural membranes from ambient dried cellulose nanofibril-alginate hydrogel
  • 2023
  • Ingår i: Materials and Design. - 1873-4197 .- 0264-1275. ; 236
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanofibril hydrogel mixed with an aqueous solution of sodium alginate is a novel bio-based material suitable for 3D printing of lightweight membranes with exquisite properties and sustainable traits. However, fun- damental knowledge enabling its applications in architectural design is still missing. Hence, this study examines the macro-scale features of lightweight membranes from cellulose nanofibril-alginate hydrogel, relevant for the design of various interior architectural products, such as wall claddings, ceiling tiles, room partitions, tapestries, and window screens. Through iterative prototyping experiments involving robotic 3D printing of lightweight membranes, their upscaling potential is demonstrated. Correlations between toolpath designs and shrinkages are also characterized, alongside an in-depth analysis of coloration changes upon ambient drying. Further, the tunability potential of various architectural features, enabled by bespoke 3D printing toolpath design, is discussed and exemplified. The aim is to expose the wide palette of design possibilities for cellulose nanofibril-alginate membranes, encompassing variations in curvature, porosity, translucency, texture, patterning, pliability, and feature sizes. The results comprise an important knowledge foundation for the design and manufacturing of custom lightweight architectural products from cellulose nanofibril-alginate hydrogel. These products could be applied in a variety of new bio-based, sustainable interior building systems, replacing environmentally harmful, fossil-based solutions.
  •  
21.
  • Gontia, Paul, 1984, et al. (författare)
  • Life cycle assessment of bio-based sodium polyacrylate production from pulp mill side streams: Case study of thermo-mechanical and sulfite pulp mills
  • 2016
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 131, s. 475-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium polyacrylate (Na-PA) is a super absorbent polymer, which is commonly used in diverse hygiene products. The polymer is currently produced from fossil feedstock and its production consequently leads to adverse environmental impacts. Na-PA production from sugars present in pulp mill side streams can potentially be a successful way to achieve a more sustainable production of this polymer. In order to guide the development of a novel biochemical process for producing Na-PA, a life cycle assessment was done in which Na-PA produced from side streams of thermo-mechanical pulp (TMP) and sulfite pulp mills were compared. Furthermore, a comparison was made with Na-PA produced from fossil resources. The results show that the main determinant of the environmental impact of the bio-based Na-PA production is the free sugar content in the side streams. The lowest environmental impact is achieved by the least diluted side streams. More diluted side streams require larger amounts of energy for concentration, and, if the diluted streams are not concentrated, processes such as hydrolysis and detoxification, and fermentation are the environmental hotspots. Furthermore, the higher the yield of the fermentation process, the lower the environmental impact will be. Lastly, the production of bio-based Na-PA led to a lower global warming potential for some of the considered pulp mill side streams, but all of the other impacts considered were higher, when compared to fossil-based Na-PA production. Therefore, in parallel with efforts to develop a high-yield yeast for the fermentation process, technology developers should focus on low energy concentration processes for the side streams.
  •  
22.
  • Ma, Chunyan, et al. (författare)
  • Towards negative carbon emissions : Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine
  • 2020
  • Ingår i: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, an aqueous pentaethylenehexamine (PEHA) solution was studied for CO2 removal from bio-syngas for the first time. Firstly, pure CO2 absorption in aqueous PEHA solution under different conditions was conducted, and 20 wt% PEHA solution was identified as the best option. Secondly, the capture of CO2 was tested with synthetic syngas from a gas cylinder, and the species other than CO2 showed a negligible impact on CO2 removal. Finally, to evaluate the practical feasibility of using aqueous PEHA solution on the downstream CO2 capture, the pilot experiments of gasification with boreal forest-based biomasses were designed to provide real syngas with a realistic distribution in composition for further testing. The results showed that the operating conditions and the type of feedstocks affected the distribution in the bio-syngas composition. Among these feedstocks, at the optimal oxygen supply, using spruce needles generated the highest yields of CO and H2 and, meanwhile, gave rise to similar yields of other gases such as CO2, CH4, etc. The influence of the species other than CO2 for CO2 removal was negligible. Additionally, aqueous PEHA solution was tested as a biomass pretreatment agent, showing that no significant changes could be identified by the ultimate analysis (except for increased nitrogen content), but the yields of CO were affected negatively. On the other hand, when using the pretreated biomass by the aqueous PEHA solution, the NH3 concentration in bio-syngas reached to the highest (4000 parts per million), which slightly affected the CO2 absorption capacity and initial absorption rate of 20 wt% PEHA solution in a positive way.
  •  
23.
  • Apelgren, Peter, et al. (författare)
  • Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.
  • 2017
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.
  •  
24.
  • Metreveli, Giorgi, et al. (författare)
  • A Size-Exclusion Nanocellulose Filter Paper for Virus Removal
  • 2014
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 10:3, s. 1546-1550
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the first time a 100% natural, unmodified nanofibrous polymer-based membrane is demonstrated capable of removing viruses solely based on the size-exclusion principle, with log10 reduction value (LRV) ≥ 6.3 as limited by the assay lower detection limit and the feed virus titre, thereby matching the performance of industrial synthetic polymer virus removal filters.
  •  
25.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Molecular docking and linear interaction energy studies give insight to α, β-reduction of enoate groups in enzymes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Production of adipic acid from renewable sources has been gaining attention in an attempt to move from an oil-based economy to a biobased economy. Metabolic engineering allows microorganisms to produce useful chemicals using renewable resources as carbon sources. We target a theoretical metabolic pathway that relies on conversion of L-lysine to adipic acid. One of the enzymatic steps in this conversion pathway is an α, β-reduction of an unsaturated bond in an enoate moiety and no aerobic enzymes have been identified to specifically make this conversion on 6-amino-trans-2-hexenoic acid. We evaluated Escherichia coli NemA, and Saccharomyces pastorianus Oye1 (Old Yellow Enzyme 1) for their potenstial capability to carry out the desired α, β-reduction. Here, we build homology models for E. coli NemA and perform molecular docking studies of trans-2-hexenoic acid and trans-2-hexenal to the candidate enzyme models. Ligand-enzyme binding stability is assessed by molecular dynamics (MD) simulations. Additionally, linear energy calculations were used to investigate binding stability in solution environment. Here, we propose that NemA and Oye1, both belonging to the Old yellow enzyme family, have large enough catalytic pocket for accommodating enoate moieties but not enough stability to carry out the α, β-reduction. Protein engineering of both NemA and Oye1 would be necessary for these enzymes to perform the targeted reactions efficiently. The results shown in this study provides a useful insight to α, β-reduction reaction potentially crucial in bio-based production of adipic acid.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 1107
Typ av publikation
tidskriftsartikel (663)
konferensbidrag (247)
bokkapitel (57)
rapport (48)
doktorsavhandling (36)
licentiatavhandling (23)
visa fler...
forskningsöversikt (18)
annan publikation (5)
bok (4)
samlingsverk (redaktörskap) (3)
patent (2)
konstnärligt arbete (1)
proceedings (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (887)
övrigt vetenskapligt/konstnärligt (211)
populärvet., debatt m.m. (9)
Författare/redaktör
Oksman, Kristiina (304)
Mathew, Aji P. (165)
Oksman, Kristiina, 1 ... (68)
Morén, Tom (66)
Sehlstedt-Persson, M ... (49)
Karlsson, Olov (42)
visa fler...
Westermark, Ulla (33)
Elustondo, Diego (32)
Aitomäki, Yvonne (32)
Geng, Shiyu (32)
Sain, Mohini (29)
Berglund, Linn (27)
Jonoobi, Mehdi (27)
Antti, Lena (27)
Hansson, Lars (25)
Butylina, Svetlana (25)
Liu, Peng (24)
Karim, Zoheb (21)
Hietala, Maiju (21)
Tanpichai, Supachok (18)
Lindberg, Henrik (17)
Naseri, Narges (17)
Hooshmand, Saleh (17)
Das, Oisik (15)
Gatenholm, Paul, 195 ... (14)
Thomas, Sabu (14)
Kärki, Timo (14)
Ahmed, Sheikh Ali (13)
Larsson, Sylvia (13)
Hedenqvist, Mikael S ... (13)
Danvind, Jonas (13)
Sarmad, Shokat, 1976 ... (12)
Kvien, Ingvild (12)
Bengtsson, Magnus (11)
Zhou, Qi (11)
Eyholzer, Christian (11)
Sundqvist, Bror (11)
Hassan, Mohammad L (11)
Mattiasson, Bo (10)
Berglund, Lars, 1956 ... (10)
Johansson, Dennis (9)
Rising, Anna (9)
Neisiany, Rasoul Esm ... (9)
Olsson, Lisbeth, 196 ... (9)
Persson, Cecilia (9)
Vikberg, Tommy (9)
Martikka, Ossi (9)
Avramidis, Stavros H ... (9)
Wei, Jiayuan (9)
Hassan, Enas A. (9)
visa färre...
Lärosäte
Luleå tekniska universitet (804)
Kungliga Tekniska Högskolan (113)
Chalmers tekniska högskola (70)
Sveriges Lantbruksuniversitet (65)
RISE (47)
Lunds universitet (36)
visa fler...
Uppsala universitet (30)
Linnéuniversitetet (25)
Göteborgs universitet (24)
Stockholms universitet (21)
Högskolan i Borås (19)
Umeå universitet (14)
Linköpings universitet (11)
Karolinska Institutet (11)
Högskolan i Halmstad (4)
Malmö universitet (4)
Mittuniversitetet (4)
Högskolan i Skövde (3)
Karlstads universitet (3)
Örebro universitet (2)
Högskolan i Gävle (1)
Jönköping University (1)
visa färre...
Språk
Engelska (1052)
Svenska (53)
Norska (2)
Forskningsämne (UKÄ/SCB)
Teknik (1107)
Naturvetenskap (107)
Medicin och hälsovetenskap (59)
Lantbruksvetenskap (27)
Humaniora (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy