SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Other Industrial Biotechnology) "

Sökning: AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Other Industrial Biotechnology)

  • Resultat 1-25 av 1103
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munthe, Christian, 1962 (författare)
  • Precaution and Ethics: Handling risks, uncertainties and knowledge gaps in the regulation of new biotechnologies
  • 2017
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This volume outlines and analyses ethical issues actualized by applying a precautionary approach to the regulation of new biotechnologies. It presents a novel way of categorizing and comparing biotechnologies from a precautionary standpoint. Based on this, it addresses underlying philosophical problems regarding the ethical assessment of decision-making under uncertainty and ignorance, and discusses how risks and possible benefits of such technologies should be balanced from an ethical standpoint. It argues on conceptual and ethical grounds for a technology neutral regulation as well as for a regulation that not only checks new technologies but also requires old, inferior ones to be phased out. It demonstrates how difficult ethical issues regarding the extent and ambition of precautionary policies need to be handled by such a regulation, and presents an overarching framework for doing so.
  •  
2.
  • Eivazihollagh, Alireza, et al. (författare)
  • On chelating surfactants : Molecular perspectives and application prospects
  • 2019
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322 .- 1873-3166. ; 278, s. 688-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Chelating agents, molecules that very strongly coordinates certain metal ions, are used industrially as well as in consumer products to minimize disturbances and increase performance of reactions and applications. The widely used sequestering agents, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) belong to this branch of readily water-soluble compounds. When these chemical structures also have hydrophobic parts, they are prone to adsorb at air-water interfaces and to self-assemble. Such bifunctional molecules can be called chelating surfactants and will have more extended utilization prospects than common chelating agents or ordinary ionic surfactants. The present review attempts to highlight the fundamental behavior of chelating surfactants in solution and at interfaces, and their very specific interactions with metal ions. Methods to recover chelating surfactants from metal chelates are also described. Moreover, utilization of chelating surfactants in applications for metal removal in environmental engineering and mineral processing, as well as for metal control in the fields of biology, chemistry and physics, is exemplified and discussed.
  •  
3.
  • Munthe, Christian, 1962 (författare)
  • The Price of Precaution and the Ethics of Risk
  • 2011
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • Since a couple of decades, the notion of a precautionary principle plays a central and increasingly influential role in international as well as national policy and regulation regarding the environment and the use of technology. Urging society to take action in the face of potential risks of human activities in these areas, the recent focus on climate change has further sharpened the importance of this idea. However, the idea of a precautionary principle has also been problematised and criticised by scientists, scholars and policy activists, and been accused of almost every intellectual sin imaginable: unclarity, impracticality, arbitrariness and moral as well as political unsoundness. In that light, the very idea of precaution as an ideal for policy making rather comes out as a dead end. On the basis of these contrasting starting points, Christian Munthe undertakes an innovative, in-depth philosophical analysis of what the idea of a precautionary principle is and should be about. A novel theory of the ethics of imposing risks is developed and used as a foundation for defending the idea of precaution in environmental and technological policy making against its critics, while at the same time avoiding a number of identified flaws. The theory is shown to have far-reaching consequences for areas such as bio-, information- and nuclear technology, and global environmental policy in areas such as climate change. The author argues that, while the price we pay for precaution must not be too high, we have to be prepared to pay it in order to act ethically defensible. A number of practical suggestions for precautionary regulation and policy making are made on the basis of this, and some challenges to basic ethical theory as well as consumerist societies, the global political order and liberal democracy are identified
  •  
4.
  • Sepehri, Sobhan, 1986, et al. (författare)
  • Volume-amplified magnetic bioassay integrated with microfluidic sample handling and high-Tc SQUID magnetic readout
  • 2018
  • Ingår i: APL Bioengineering. - : AIP Publishing. - 2473-2877. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A bioassay based on a high-Tc superconducting quantum interference device (SQUID) reading out functionalized magnetic nanoparticles (fMNPs) in a prototype microfluidic platform is presented. The target molecule recognition is based on volume amplification using padlock-probe-ligation followed by rolling circle amplification (RCA). The MNPs are functionalized with single-stranded oligonucleotides, which give a specific binding of the MNPs to the large RCA coil product, resulting in a large change in the amplitude of the imaginary part of the ac magnetic susceptibility. The RCA products from amplification of synthetic Vibrio cholera target DNA were investigated using our SQUID ac susceptibility system in microfluidic channel with an equivalent sample volume of 3 μl. From extrapolation of the linear dependence of the SQUID signal versus concentration of the RCA coils, it is found that the projected limit of detection for our system is about 1.0 e5 RCA coils (0.2e−18 mol), which is equivalent to 66 fM in the 3 μl sample volume. This ultra-high magnetic sensitivity and integration with microfluidic sample handling are critical steps towards magnetic bioassays for rapid detection of DNA and RNA targets at the point of care.
  •  
5.
  • Mayers, Joshua, 1988, et al. (författare)
  • Integrating Microalgal Production with Industrial Outputs - Reducing Process Inputs and Quantifying the Benefits
  • 2016
  • Ingår i: Industrial Biotechnology. - : Mary Ann Liebert Inc. - 1550-9087 .- 1931-8421. ; 12:4, s. 219-234
  • Tidskriftsartikel (refereegranskat)abstract
    • The cultivation and processing of microalgal biomass is resource- and energy-intensive, negatively affecting the sustainability and profitability of producing bulk commodities, limiting this platform to the manufacture of relatively small quantities of high-value compounds. A biorefinery approach where all fractions of the biomass are valorized might improve the case for producing lower-value products. However, these systems are still likely to operate very close to thresholds of profitability and energy balance, with wide-ranging environmental and societal impacts. It thus remains critically important to reduce the use of costly and impactful inputs and energy-intensive processes involved in these scenarios. Integration with industrial infrastructure can provide a number of residual streams that can be readily used during microalgal cultivation and downstream processing. This review critically considers some of the main inputs required for microalgal biorefineries - such as nutrients, water, carbon dioxide, and heat - and appraises the benefits and possibilities for industrial integration on a more quantitative basis. Recent literature and demonstration studies will also be considered to best illustrate these benefits to both producers and industrial operators. Additionally, this review will highlight some inconsistencies in the data used in assessments of microalgal production scenarios, allowing more accurate evaluation of potential future biorefineries.
  •  
6.
  •  
7.
  • Enoksson, Peter, 1957, et al. (författare)
  • Micro- and Nanosystems for Sensing in Medicine
  • 2008
  • Ingår i: Proceedings of Medicinteknikdagarna 2008, 14-15 October, Göteborg, Sweden. ; , s. 117-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
8.
  •  
9.
  • Hong, Kuk-ki, 1976, et al. (författare)
  • Metabolic Engineering of Saccharomyces cerevisiae: A Key Cell Factory Platform for Future Biorefineries
  • 2012
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-9071 .- 1420-682X. ; 69:16, s. 2671-2690
  • Forskningsöversikt (refereegranskat)abstract
    • Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.
  •  
10.
  •  
11.
  • Andersson, Viktor, 1983 (författare)
  • Excess heat utilisation in oil refineries - CCS and algae-based biofuels
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objective of this thesis is to investigate two different concepts for CO2 mitigation, from a system perspective, in relation to the oil refining industry: CO2 capture and storage; and algae-based biofuels. For all these processes, process integration with an oil refinery is assumed. The oil refinery sector is a major emitter of CO2 and is responsible for 9% of the industrial emissions of CO2 worldwide. Oil refineries have large amounts of unused excess heat, which can be used to satisfy the heat demands of a CO2 capture plant, a land-based algal cultivation facility, or an algae-based biofuel process. The use of this excess heat significantly reduces the cost for CO2 capture, while an economic evaluation for algae-based biofuels has not been made.Since the amount of heat available from the oil refinery´s processes increase with decreasing temperature in the stripper reboiler, it was investigated how much heat was available at different temperatures. It was also investigated how the decreased temperature would affect the heat demand of CO2 capture processes that use MEA or ammonia as the absorbent. The findings show that it is possible to capture more CO2 using excess heat when the temperature in the stripper reboiler is decreased. For the MEA process, the lower limit of the temperature interval investigated showed the maximum CO2 capture rate, while the ammonia process benefitted from a lower temperature than the standard temperature but showed maximal CO2 capture rate above the lower limit. These results are valid only when using excess heat to satisfy the entire heat demand. At the case study refinery, the available excess heat could satisfy between 28% and 50% of the heat demand of the MEA process when treating the flue gases from all chimneys, depending on the temperature in the stripper reboiler. This utilisation of excess heat represents a way to reduce significantly the costs for CCS in an oil refinery. Land-based cultivation of algae proved to be unsuitable for the utilisation of excess heat. Since the cultivation pond is exposed to wind, rain, and cold, the heat demand fluctuates strongly over the year, making the pond an unstable recipient of the excess heat.Three types of biofuel processes based on microalgae and macroalgae were investigated with respect to integration with the oil refinery. For the algae-based biofuel processes, heat integration and material integration combined to increase the efficiency of the system. When two different build margin technologies (with different CO2 emission factors) are employed for electricity production, macroalgae-based biofuel production appears to be the more robust process from the perspective of CO2 due to the lower electricity demands of the algal cultivation and harvesting phases.
  •  
12.
  • Systems Perspectives on Biorefineries 2012
  • 2012
  • Samlingsverk (redaktörskap) (refereegranskat)abstract
    • Replacing fossil fuels with biomass for the production of energy carriers, materials and specialty chemicalsis a challenge that now confronts humanity. In which applications shall we use limited resourcesof biomass? How can biomass be refined into the products we want? What is an optimal design of abiorefinery? How is the most advantageous portfolio of policy instruments designed to realise the biorefineriesof the future?There is not one final answer to these questions. However, different systems studies can provide us withcomplementary pieces of the puzzle. These can be valuable by themselves, or be brought together into alarger and more complex picture. Systems perspectives on Biorefineries 2012 contains nine chapters thataddress different topics related to the immensely important issue of how the world’s biomass resourcescan, or should, be converted into the goods we need and desire. The book is far from complete, but it is acontribution and a start...
  •  
13.
  •  
14.
  • Rems, Lea, et al. (författare)
  • Cell electrofusion using nanosecond electric pulses
  • 2013
  • Ingår i: Scientific Reports. - : Macmillan Publishers Ltd.. - 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrofusion is an efficient method for fusing cells using short-duration high-voltage electric pulses. However, electrofusion yields are very low when fusion partner cells differ considerably in their size, since the extent of electroporation (consequently membrane fusogenic state) with conventionally used microsecond pulses depends proportionally on the cell radius. We here propose a new and innovative approach to fuse cells with shorter, nanosecond (ns) pulses. Using numerical calculations we demonstrate that ns pulses can induce selective electroporation of the contact areas between cells (i.e. the target areas), regardless of the cell size. We then confirm experimentally on B16-F1 and CHO cell lines that electrofusion of cells with either equal or different size by using ns pulses is indeed feasible. Based on our results we expect that ns pulses can improve fusion yields in electrofusion of cells with different size, such as myeloma cells and B lymphocytes in hybridoma technology.
  •  
15.
  • Gullfot, Fredrika, 1967- (författare)
  • Synthesis of xyloglucan oligo- and polysaccharides with glycosynthase technology
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Xyloglucans are polysaccharides found as storage polymers in seeds and tubers, and as cross-linking glycans in the cell wall of plants. Their structure is complex with intricate branching patterns, which contribute to the physical properties of the polysaccharide including its binding to and interaction with other glycans such as cellulose. Xyloglucan is widely used in bulk quantities in the food, textile and paper making industries. With an increasing interest in technically more advanced applications of xyloglucan, such as novel biocomposites, there is a need to understand and control the properties and interactions of xyloglucan with other compounds, to decipher the relationship between xyloglucan structure and function, and in particular the effect of different branching patterns. However, due to the structural heterogeneity of the polysaccharide as obtained from natural sources, relevant studies have not been possible to perform in practise. This fact has stimulated an interest in synthetic methods to obtain xyloglucan mimics and analogs with well-defined structure and decoration patterns. Glycosynthases are hydrolytically inactive mutant glycosidases that catalyse the formation of glycosidic linkages between glycosyl fluoride donors and glycoside acceptors. Since its first conception in 1998, the technology is emerging as a useful tool in the synthesis of large, complex polysaccharides. This thesis presents the generation and characterisation of glycosynthases based on xyloglucanase scaffolds for the synthesis of well-defined homogenous xyloglucan oligo- and polysaccharides with regular substitution patterns.
  •  
16.
  • Harrysson, Hanna, 1987, et al. (författare)
  • Strategies for Improving the Protein Yield in pH-Shift Processing of Ulva lactuca Linnaeus: Effects of Ulvan Lyases, pH-Exposure Time, and Temperature
  • 2019
  • Ingår i: Acs Sustainable Chemistry & Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 7:15, s. 12688-12691
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, there is a need for novel vegetarian protein sources. We recently showed that the pH-shift process, using alkaline protein solubilization followed by isoelectric precipitation, is an efficient way to produce extracts with high protein concentrations from Ulva lactuca (>50% on a dry matter basis). However, the total protein yield was low, and to improve this, the effects of adding ulvan lyase, preincubating the seaweed homogenate at pH 8.5 and using different protein extraction temperatures (8 degrees C, RT and 40 degrees C), were evaluated in this study. Addition of ulvan lyase reduced protein solubility but increased the precipitation. Incubation at pH 8.5, without ulvan lyase added, significantly increased both protein solubility and precipitation at 8 degrees C and RT. Temperature per se had no effect on protein solubility, while protein precipitation increased with decreasing temperature. Highest protein yield (29%) was achieved when keeping the process at 8 degrees C with a preincubation step at pH 8.5 for 1 h. By these process modifications, the yield was 3.2 times higher than achieved by the control process (9.2%).
  •  
17.
  •  
18.
  • Fjellgaard Mikalsen, Ragni (författare)
  • Fighting flameless fires : Initiating and extinguishing self-sustainedsmoldering fires in wood pellets
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Smoldering fires represent domestic, environmental and industrial hazards. This flameless form of combustion is more easily initiated than flaming, and is also more persistent and difficult to extinguish. The growing demand for non-fossil fuels has increased the use of solid biofuels such as biomass. This represents a safety challenge, as biomass self-ignition can cause smoldering fires, flaming fires or explosions.Smoldering and extinguishment in granular biomass was studied experimentally. The set-up consisted of a cylindrical fuel container of steel with thermally insulated side walls. The container was closed at the bottom, open at the top and heated from below by a hot surface. Two types of wood pellets were used as fuel, with 0.75-1.5 kg samples.Logistic regression was used to determine the transition region between non-smoldering and self-sustained smoldering experiments, and to determine the influence of parameters. Duration of external heating was most important for initiation of smoldering. Sample height was also significant, while the type of wood pellet was near-significant and fuel container height was not.The susceptibility of smoldering to changes in air supply was studied. With a small gap at the bottom of the fuel bed, the increased air flow in the same direction as the initial smoldering front (forward air flow) caused a significantly more intense combustion compared to the normal set-up with opposed air flow.Heat extraction from the combustion was studied using a water-cooled copper pipe. Challenges with direct fuel-water contact (fuel swelling, water channeling and runoff) were thus avoided. Smoldering was extinguished in 7 of 15 cases where heat extraction was in the same range as the heat production from combustion. This is the first experimental proof-of-concept of cooling as an extinguishment method for smoldering fires.Marginal differences in heating and cooling separated smoldering from extinguished cases; the fuel bed was at a heating-cooling balance point. Lower cooling levels did not lead to extinguishment, but cooling caused more predictable smoldering, possibly delaying the most intense combustion. Also observed at the balance point were pulsating temperatures; a form of long-lived (hours), macroscopic synchronization not previously observed in smoldering fires.For practical applications, cooling could be feasible for prevention of temperature escalation from self-heating in industrial storage units. This study provides a first step towards improved fuel storage safety for biomass. 
  •  
19.
  • Ask, Magnus, 1983 (författare)
  • Towards More Robust Saccharomyces cerevisiae Strains for Lignocellulosic Bioethanol Production: Lessons from process concepts and physiological investigations
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dwindling oil reserves and the negative impacts of fossil fuels on the environment call for more sustainable energy sources. First-generation bioethanol produced from sugar cane and corn has met some of these needs, but it competes with the food supply for raw materials. Lignocellulosic biomass is an abundant non-edible raw material that can be converted to ethanol using the yeast Saccharomyces cerevisiae. However, due to the inherent recalcitrance to degradation of lignocellulosic raw materials, harsh pretreatment methods must be used to liberate fermentable sugars, resulting in the release of compounds such as acetic acid, furan aldehydes and phenolics, that inhibit yeast metabolism. This thesis research aimed to identify bottlenecks in terms of inhibitory compounds related to ethanol production from two lignocellulosic raw materials, Arundo donax and spruce, and furthermore to harness the physiological responses to these inhibitors to engineer more robust yeast strains. A comparative study of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) revealed that acetic acid limits xylose utilization in pretreated Arundo donax, whereas the furan aldehydes furfural and 5-hydroxymethyl-2-furaldehyde (HMF) were hypothesized to be key inhibitors in pretreated spruce. The impacts of furfural and HMF on the redox and energy metabolism of S. cerevisiae were studied in detail in chemostat and batch cultivations. After adding the inhibitors to the feed medium of chemostat cultivations, the intracellular levels of NADH, NADPH, and ATP were found to decrease by 40, 75, and 19%, respectively, suggesting that furan aldehydes drain the cells of reducing power. A strong effect on redox metabolism was also observed after pulsing furfural and HMF in the xylose consumption phase in batch cultures. The drainage of reducing power was also observed in a genome-wide study of transcription that found that genes related to NADPH-requiring processes, such as nitrogen and sulphur assimilation, were significantly induced. The redox metabolism was engineered by overproducing the protective metabolite and antioxidant glutathione. Strains with an increased intracellular level of reduced glutathione were found to sustain ethanol production for longer duration in SSF of pretreated spruce, yielding 70% more ethanol than did the wild type strain.
  •  
20.
  • Ylitervo, Päivi (författare)
  • Concepts for improving ethanol productivity from lignocellulosic materials : encapsulated yeast and membrane bioreactors
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lignocellulosic biomass is a potential feedstock for production of sugars, which can be fermented into ethanol. The work presented in this thesis proposes some solutions to overcome problems with suboptimal process performance due to elevated cultivation temperatures and inhibitors present during ethanol production from lignocellulosic materials. In particular, continuous processes operated at high dilution rates with high sugar utilisation are attractive for ethanol fermentation, as this can result in higher ethanol productivity. Both encapsulation and membrane bioreactors were studied and developed to achieve rapid fermentation at high yeast cell density. My studies showed that encapsulated yeast is more thermotolerant than suspended yeast. The encapsulated yeast could successfully ferment all glucose during five consecutive batches, 12 h each at 42 °C. In contrast, freely suspended yeast was inactivated already in the second or third batch. One problem with encapsulation is, however, the mechanical robustness of the capsule membrane. If the capsules are exposed to e.g. high shear forces, the capsule membrane may break. Therefore, a method was developed to produce more robust capsules by treating alginate-chitosan-alginate (ACA) capsules with 3-aminopropyltriethoxysilane (APTES) to get polysiloxane-ACA capsules. Of the ACA-capsules treated with 1.5% APTES, only 0–2% of the capsules broke, while 25% of the untreated capsules ruptured within 6 h in a shear test. In this thesis membrane bioreactors (MBR), using either a cross-flow or a submerged membrane, could successfully be applied to retain the yeast inside the reactor. The cross-flow membrane was operated at a dilution rate of 0.5 h-1 whereas the submerged membrane was tested at several dilution rates, from 0.2 up to 0.8 h-1. Cultivations at high cell densities demonstrated an efficient in situ detoxification of very high furfural levels of up to 17 g L-1 in the feed medium when using a MBR. The maximum yeast density achieved in the MBR was more than 200 g L-1. Additionally, ethanol fermentation of nondetoxified spruce hydrolysate was possible at a high feeding rate of 0.8 h-1 by applying a submerged membrane bioreactor, resulting in ethanol productivities of up to 8 g L-1 h-1. In conclusion, this study suggests methods for rapid continuous ethanol production even at stressful elevated cultivation temperatures or inhibitory conditions by using encapsulation or membrane bioreactors and high cell density cultivations.
  •  
21.
  • Bergman, Alexandra Linda, 1985, et al. (författare)
  • Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae
  • 2019
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Phosphoketolases (Xfpk) are a non-native group of enzymes in yeast, which can be expressed in combination with other metabolic enzymes to positively influence the yield of acetyl-CoA derived products by reducing carbon losses in the form of CO2. In this study, a yeast strain expressing Xfpk from Bifidobacterium breve, which was previously found to have a growth defect and to increase acetate production, was characterized. Results: Xfpk-expression was found to increase respiration and reduce biomass yield during glucose consumption in batch and chemostat cultivations. By cultivating yeast with or without Xfpk in bioreactors at different pHs, we show that certain aspects of the negative growth effects coupled with Xfpk-expression are likely to be explained by proton decoupling. At low pH, this manifests as a reduction in biomass yield and growth rate in the ethanol phase. Secondly, we show that intracellular sugar phosphate pools are significantly altered in the Xfpk-expressing strain. In particular a decrease of the substrates xylulose-5-phosphate and fructose-6-phosphate was detected (26% and 74% of control levels) together with an increase of the products glyceraldehyde-3-phosphate and erythrose-4-phosphate (208% and 542% of control levels), clearly verifying in vivo Xfpk enzymatic activity. Lastly, RNAseq analysis shows that Xfpk expression increases transcription of genes related to the glyoxylate cycle, the TCA cycle and respiration, while expression of genes related to ethanol and acetate formation is reduced. The physiological and transcriptional changes clearly demonstrate that a heterologous phosphoketolase flux in combination with endogenous hydrolysis of acetyl-phosphate to acetate increases the cellular demand for acetate assimilation and respiratory ATP-generation, leading to carbon losses. Conclusion: Our study shows that expression of Xfpk in yeast diverts a relatively small part of its glycolytic flux towards acetate formation, which has a significant impact on intracellular sugar phosphate levels and on cell energetics. The elevated acetate flux increases the ATP-requirement for ion homeostasis and need for respiratory assimilation, which leads to an increased production of CO2. A majority of the negative growth effects coupled to Xfpk expression could likely be counteracted by preventing acetate accumulation via direct channeling of acetyl-phosphate towards acetyl-CoA.
  •  
22.
  • Westman, Johan, 1983, et al. (författare)
  • Current progress in high cell density yeast bioprocesses for bioethanol production
  • 2015
  • Ingår i: Biotechnology journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 10:8, s. 1185-1195
  • Forskningsöversikt (refereegranskat)abstract
    • High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production.
  •  
23.
  • Iseri, Emre (författare)
  • Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The organisation of fluids in small compartments is ubiquitous in nature, such as in the cellular composition of all life. This work explores several engineering avenues where microscale fluid compartmentalization can bring novel material properties or novel functionality in life sciences or medicine. Here, we introduce four unique compartmentalization methods: 1) 3D fluid self-organisation in microscaffolds (FLUID3EAMS), 2) 2D microcapillary arrays on a dipstick (Digital Dipstick), 3) a sliding microfluidic platform with cross-flow (Slip-X-Chip), and 4) compartmentalization by cutting of soft solid matter (Solidify & Cut). These methods were used in a wide range of applications. Within the area of smart materials, we applied FLUID3EAMS to synthesize materials with temperature-tuneable permeability and surface energy and to establish, in a well-controlled fashion, tissue-like materials in the form of 3D droplet interface bilayer networks. Solidify & Cut was used to form soft composites with a new type of magnetic behaviour, rotation-induced ferromagnetism, that allows easy reprogramming of the magnetization of magnetopolymers. Within the area of medical diagnostics, we applied Digital Dipstick to perform rapid digital bacterial culture in a dipstick format and obtained clinically relevant diagnostic results on samples from patients with a urinary tract infection. Furthermore, Slip-X-Chip enables particle concentration and washing as new functions in sliding microfluidic platforms, which significantly expands their potential application area. Finally, within the area of cell therapy, we explored the microencapsulation of high concentrations of therapeutic cells and presented a novel technique to fabricate core-shell microcapsules by exploiting the superior material properties of spider silk membranes. 
  •  
24.
  • Waara, Sylvia, et al. (författare)
  • Performance of a constructed wetland system for treatment of landfill leachate.
  • 2008
  • Ingår i: Waste 2008. Waste and Resource management-A shared responsibility. - Stanton-on-the-Wolds : Waste Conference Ltd.. ; , s. 655-667, s. 655-667
  • Konferensbidrag (refereegranskat)abstract
    • The performance of a constructed wetland for treatment of landfill leachate has been evaluated based upon data obtained during 4 years (2003-2006). It consists of a series of 10 ponds with a total capacity of 52.000 m3 covering 8 ha. Using univariate and multivariate statistics (PCA) the reduction pattern of a large number of chemical parameters including heavy metals has been investigated in 3 parts of the wetland with equal volume. Analyses show that many parameters are removed to the greatest extent in the first part of the system (e.g. many heavy metals, total suspended solids) or the second part of the system (N-NH4) while other parameters such as total nitrogen are more gradually reduced (10 ton/year removed).  Toxicity testing with 5 bioassays showed that toxicity was sometimes observed at the inlet but no toxicity was observed at the outlet for 4 of the test species. The data presented will be used for optimizing the treatment process as well as to improve the monitoring program.
  •  
25.
  • Cutas, Daniela, 1978, et al. (författare)
  • Legal imperialism in the regulation of stem cell research and therapy: the problem of extraterritorial jurisdiction
  • 2010
  • Ingår i: Capps BJ & Campbell AV (eds.). CONTESTED CELLS: Global Perspectives on the Stem Cell Debate. - London : Imperial College Press. - 9781848164376 ; , s. 95-119
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Countries worldwide have very different national regulations on human embryonic stem (ES) cell research, informed by a range of ethical values. Some countries find reason to extend the applicability of their regulations on such research to its citizens when they visit other countries. Extraterritorial jurisdiction has recently been identified as a potential challenge towards global regulation of ES cell research. This chapter explores the implications and impact of extraterritorial jurisdiction and global regulation of ES cell research on researchers, clinicians and national health systems, and how this may affect patients. The authors argue that it would make ethical sense for ES cell restrictive countries to extend its regulations on ES cell research beyond its borders, because, if these countries really consider embryo destruction to be objectionable on the basis on the status of the embryo, then they ought to count it morally on par with murder (and thus have a moral imperative to protect embryos from the actions of its own citizens). However, doing so could lead to a legal situation that would result in substantial harm to central values in areas besides research, such as health care, the job market, basic freedom of movement, and strategic international finance and politics. Thus, it seems that restrictive extraterritorial jurisdiction in respect to ES cell research would be deeply problematic, given that the ethical permissibility of ES cell research is characterised by deep and wide disagreement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 1103
Typ av publikation
tidskriftsartikel (651)
konferensbidrag (193)
doktorsavhandling (79)
bokkapitel (56)
forskningsöversikt (48)
rapport (29)
visa fler...
licentiatavhandling (21)
annan publikation (11)
patent (6)
bok (5)
samlingsverk (redaktörskap) (3)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (775)
övrigt vetenskapligt/konstnärligt (320)
populärvet., debatt m.m. (8)
Författare/redaktör
Olsson, Lisbeth, 196 ... (69)
Nielsen, Jens B, 196 ... (66)
Taherzadeh, Mohammad ... (63)
Franzén, Carl Johan, ... (34)
Albers, Eva, 1966 (33)
Taherzadeh Esfahani, ... (30)
visa fler...
Taherzadeh, Mohammad ... (26)
Mattiasson, Bo (24)
Niklasson, Claes, 19 ... (23)
Mattisson, Tobias, 1 ... (20)
Taherzadeh, Mohammad (19)
Undeland, Ingrid, 19 ... (18)
Munthe, Christian, 1 ... (17)
Mahboubi, Amir (17)
Karimi, Keikhosro (16)
Seemann, Martin, 197 ... (16)
Mapelli, Valeria, 19 ... (16)
Lyngfelt, Anders, 19 ... (15)
Wik, Torsten, 1968 (15)
Knutsson, Pavleta, 1 ... (14)
Leion, Henrik, 1976 (13)
Janssen, Mathias, 19 ... (13)
Thunman, Henrik, 197 ... (13)
Bettiga, Maurizio, 1 ... (12)
Enoksson, Peter, 195 ... (12)
Koppram, Rakesh, 198 ... (12)
Siewers, Verena, 197 ... (12)
Millati, Ria, 1972 (11)
Olsson, Gustaf (11)
Johnsson, Filip, 196 ... (11)
Zamani, Akram (11)
Chen, Yun, 1978 (11)
Jeihanipour, Azam (11)
Liu, Jing (11)
Lundeberg, Joakim (10)
Christakopoulos, Pau ... (10)
Rova, Ulrika (10)
Berndes, Göran, 1966 (10)
Sandberg, Ann-Sofie, ... (9)
Nygren, Per-Åke (9)
Stemme, Göran, 1958 (9)
Zhang, Zengqiang (9)
Rydén, Magnus, 1975 (8)
Lendel, Christofer (8)
Mikkola, Jyri-Pekka (8)
Adlercreutz, Patrick (8)
Galaev, Igor (8)
Lind, Fredrik, 1978 (8)
Mayers, Joshua, 1988 (8)
Lestander, Torbjörn (8)
visa färre...
Lärosäte
Chalmers tekniska högskola (610)
Högskolan i Borås (153)
Kungliga Tekniska Högskolan (124)
Göteborgs universitet (104)
Sveriges Lantbruksuniversitet (83)
Luleå tekniska universitet (77)
visa fler...
Lunds universitet (72)
Umeå universitet (47)
RISE (40)
Linnéuniversitetet (28)
Linköpings universitet (25)
Uppsala universitet (24)
Karolinska Institutet (12)
Mittuniversitetet (10)
Stockholms universitet (9)
Mälardalens universitet (7)
IVL Svenska Miljöinstitutet (7)
Högskolan i Gävle (6)
Örebro universitet (5)
Karlstads universitet (4)
Jönköping University (2)
Högskolan Kristianstad (1)
Högskolan i Halmstad (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (1076)
Svenska (24)
Danska (1)
Odefinierat språk (1)
Rumänska (1)
Forskningsämne (UKÄ/SCB)
Teknik (1099)
Naturvetenskap (405)
Lantbruksvetenskap (179)
Medicin och hälsovetenskap (103)
Samhällsvetenskap (33)
Humaniora (19)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy