SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(ENGINEERING AND TECHNOLOGY Mechanical Engineering Fluid Mechanics and Acoustics) "

Sökning: AMNE:(ENGINEERING AND TECHNOLOGY Mechanical Engineering Fluid Mechanics and Acoustics)

  • Resultat 1-25 av 8818
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Okda, Sherif, et al. (författare)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • Ingår i: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
2.
  •  
3.
  • Mill, O., et al. (författare)
  • Analysis and development of hydro power research : synthesis within Swedish Hydro Power Centre
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The market for hydropower re-investments in Sweden is approx 2.5 billion SEK/yr the coming decade. Large investments will also be carried out in Swedish tailing dams. This will result in challenging projects and need of experts. A crucial factor for a successful management of these challenges is the supply of engineers and researchers with hydro power and dam skills and knowledge. Swedish Hydro Power Centre (Svenskt vattenkraftcentrum, SVC) is a competence centre for university education and research environments within hydro power and mining dams. SVC comprises of two knowledge areas: Hydraulic Engineering and Hydro Turbines and Generators, respectively. SVC builds high-quality and long term sustainable knowledge at selected universities...
  •  
4.
  •  
5.
  • Nybacka, Mikael, et al. (författare)
  • Project: CASTT - Centre for Automotive Systems Technologies and Testing
  • 2007
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Through the Centre for Automotive Systems Technologies and Testing, Luleå University of Technology aims to first of all support automotive winter testing in Northern Sweden. This means to support the local automotive test entrepreneurs and through them their customers: the car manufacturers and their suppliers. To succeed in this task, the center relies on the university's areas of leading research and most importantly on the cooperation between those areas.
  •  
6.
  • Wadekar, Sandip, 1989 (författare)
  • Large-Eddy Simulation of Gasoline Fuel Spray Injection at Ultra-High Injection Pressures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gasoline direct injection is a state-of-the-art technique that reduces hydrocarbon and particulate emissions. However, further improvement is needed to meet current as well as future emission regulations. A prominent solution is to increase the fuel injection pressure which allows faster fuel droplet atomization, quick evaporation and improves fuel-air mixture formation under realistic engine conditions. In this work, the gasoline fuel injection process at ultra-high injection pressures ranging from 200 to 1500 bar was analyzed using numerical models. In particular, the Large-Eddy Simulation (LES) method, with the standard Smagorinsky turbulence model, was utilized using the Eulerian formulation  for the continuous phase. The discrete droplet phase was treated using a Lagrangian formulation together with spray sub-models. In the first part of study, spray was injected into an initially quiescent constant volume chamber using two different nozzle hole shape geometries: divergent and convergent. The numerical results were calibrated by reproducing experimentally observed liquid penetration length and efforts were made to understand the influence of ultra-high injection pressures on spray development. The calibrated models were then used to investigate the impact of ultra-high injection pressures on mean droplet sizes, droplet size distribution, spray-induced large-scale eddies and entrainment rate. The results showed that, at ultra-high injection pressures, the mean droplet sizes were significantly reduced and the droplets achieving very high  velocities. Integral length scales of spray-induced turbulence and air entrainment rate were better for the divergent-shaped injector, and considerably larger at higher injection pressures compared to lower ones. In the second part of the study, four consecutive full-cycle cold flow LES simulations were carried out to generate realistic turbulence inside the engine cylinder. The first three cycles were ignored, with the fourth cycle being used to model the injection of the fuel using the divergent-shaped injector only (which was found to be better in the previous part of this study) at different injection pressures. In addition to the continuous gas phase (Eulerian) and the dispersed liquid (Lagrangian), the liquid film feature (Finite-Area) was used to model the impingement of fuel spray on the engine walls and subsequent liquid film formation. The simulation results were used to evaluate spray-induced turbulence, fuel-air mixing efficiency and the amount of liquid mass deposited on the walls. The limitation of the high-pressure injection technique with respect to liquid film formation was optimized using a start of injection (SOI) sweep. Overall results showed that the mixing efficiency increased at high injection pressure and that SOI should occur between early injection and late injection to optimize the amount of mass being deposited on the engine walls.
  •  
7.
  • Sandberg, Marcus, et al. (författare)
  • A modelling methodology for assessing use of datacenter waste heat in greenhouses
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • In Sweden, the number of datacenters establishments are steadily increasing thanks to green, stable and affordable electricity, free air cooling, advantageous energy taxes and well-developed Internet fiber infrastructures. Even though datacenters use a lot of energy, the waste heat that they create is seldom reused. A possible cause is that this waste heat is often low grade and airborne: it is therefore hard to directly inject it into a district heating system without upgrades, which require additional energy and equipment that generate extra costs. One option for reusing this heat without needs for upgrades is to employ it for heating up greenhouses. But assessing the feasibility of this approach by building physical prototypes can be costly, therefore using computer models to simulate real world conditions is an opportunity. However, there is a lack of computer modelling methodologies that can assess the possibility of using waste heat from datacenters in greenhouses in cold climates.The objective of this paper is therefore to propose such a methodology and discuss its benefits and drawbacks in comparison with other research studies. This methodology combines computational fluid dynamics, process modelling and control engineering principles into a computer model that constitutes a decision support system to study different waste heat and greenhouse or mushroom house scenarios.The paper validates the strategy through a case study in northern Sweden, where we assess the amount of produced waste heat by collecting temperature, relative humidity, and fan speed data for the air discharged from the datacenter.The resulting methodology, composed by conducting measurements and computer models, calculations can then be used for other datacenter operators or greenhouse developers to judge whether it is possible or not to build greenhouses using datacenter waste heat.
  •  
8.
  • Kyprianidis, Konstantinos, 1984, et al. (författare)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
9.
  • Van der Kelen, Christophe, 1986-, et al. (författare)
  • Measurement and Inverse Estimation of the Full Anisotropic Flow Resistivity Tensor of Glass Wool
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The air flow resistivity of nine adjacent glass wool samples is measured and estimated using a previously published method. The samples are extracted from a large slab of glass wool material. Identifying the full flow resistivity tensors for nine adjacent cubic glass wool samples allows for an estimation of the spatial distribution of normal and planar flow resistivity throughout the measured material. The average density of the samples tested is 27.8 kg/m3. The estimated flow resistivity tensors are validated by comparison to uni-directional measurements on cylindrical samples, extracted from the cubic glass wool samples tested. Furthermore, the uni-directional measurement method is studied, providing useful insights on the effect of sample thickness on the measured flow resistivity for an anisotropic material.
  •  
10.
  • Van der Kelen, Christophe, 1986-, et al. (författare)
  • Measurement and Inverse Estimation of the Full Anisotropic Flow Resistivity Tensor of Melamine Foam
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The flow resistivity tensor, which is the inverse of the viscous per- meability tensor, is one of the most important material properties for the acoustic performance of open cell foams used in acoustic treatments. Due to the manufacturing processes, these foams are most often geomet- rically anisotropic on a microscopic scale. For such a materials there is a need for improved characterisation methods, and this paper discusses the estimation of the flow resistivity tensor of Melamine samples using a methodology which is an improvement of a method previously published by Go ̈ransson et al. The validity of the new method is in addition ver- ified for a wider range of anisotropy. Measurements are performed on cubic Melamine samples, and the resulting 3D flow resistivity tensors are presented. The anisotropic flow resistivity tensors are validated by com- parison to measurements performed on uni-directional cylindrical samples extracted from the previously measured cubic samples. The results sug- gest that there is a relation between the direction of highest flow resistivity, and the rise direction of the material.
  •  
11.
  • Li, Xiaojian, 1991, et al. (författare)
  • Installation effects on engine design
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing the engine bypass ratio is one way to improve propulsive efficiency. However, an increase in the bypass ratio (BPR) has usually been associated with an increase in the fan diameter. Consequently, there can be a notable increase in the impact of the engine installation on the overall aircraft performance. In order to achieve a better balance between those factors, it requires novel nacelle and engine design concepts. This report mainly reviews installation effects on engine design. Firstly, the installation effects assessment methods are introduced. Then, the installation effects on engine cycle design, intake design and exhaust design are sequentially reviewed.
  •  
12.
  • Cervantes, Michel, et al. (författare)
  • Porjus U9A full-scale hydropower research facility
  • 2008
  • Ingår i: Hydro technology and the evironment for the new century. - Foz do Iguassu.
  • Konferensbidrag (refereegranskat)abstract
    • Hydropower still faces complex scientific and technical challenges in order to secure the availability and reliability of the power plants despite more than a century of development. The main challenge is due to new market constrains such as electrical market deregulation and introduction of renewable sources of energy. The major problem is related to the dynamic of the rotor involving several fields: hydraulics, power engineering and mechanics. On the other side, the large and growing hydropower world market represents an opportunity for technically advanced companies offering better efficiency. The difficulty to scale rigorously any technical advance makes full-scale experiment a necessity. World unique facilities are available at Porjus, Sweden, for this purpose. The Porjus Hydropower Centre is composed of a Francis (U8) and a Kaplan (U9) turbine of 10 MW, each exclusively dedicated to education, research and development. In order to further investigate specific issues related to availability and reliability, a project was initiated in 2006. The main objective is to make U9 a full-scale hydropower laboratory able firstly to furnish the necessary data for the development of rotor-dynamic models but also turbines and bearings. To this purposes more than 200 sensors have been installed to measure displacements, forces, pressure, film thickness, strains... The work presents an overview of the newly upgrade facility as well as some of the problems faced during the instrumentation of the machine.
  •  
13.
  • Lafont, T., et al. (författare)
  • Modelling tyre noise in finite element simulations for pass-by noise predictions
  • 2019
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. - : SAGE Publications. - 2041-2983 .- 0954-4062. ; 233:18, s. 6398-6408
  • Tidskriftsartikel (refereegranskat)abstract
    • © IMechE 2019. Fulfilling the current pass-by noise regulation is a challenge for the original equipment manufacturers and their suppliers. And it's not going to improve over time. Any possible ways to reduce the exterior noise can happen to be beneficial. In this context, simulations are natural alternatives to costly and long measurement campaigns to quantify the benefits of acoustic treatments. Nevertheless, modelling procedures to tackle this type of issues are far from being well-established, even though the literature is rich with studies describing the complex processes involved in the tyre–road contact. Very often, when it comes to full-vehicle modelling, tyre sources are replaced by simple sources as monopoles, thus introducing a physical simplification. This paper is concerned with the tyre noise modelling in finite element simulation in the perspective to assess the pass-by noise of a car. For that, the sound radiated by validated velocity maps from a tyre–road noise simulation model at different speeds and for different loads is compared with the noise radiated by monopoles in the close vicinity of the tyres. The aim is to define the limitation related to the use of the monopoles in order to correctly capture the relevant physics in the simulation.
  •  
14.
  •  
15.
  • Etikyala, Sreelekha, 1991 (författare)
  • Particulate Formation in GDI Engines
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The need to comply with stringent emission regulations while improving fuel economy and reducing criteria pollutant emissions from transportation presents a major challenge in the design of gasoline Direct Injection (DI) engines because of the adverse effects of ultrafine Particulate Number (PN) emissions on human health and other environmental concerns. With upcoming advances in vehicle electrification, it may be the case that electric vehicles completely replace all current vehicles powered by internal combustion engines ensuring zero emissions. In the meantime, Gasoline Direct Injection (GDI) engines have become the primary mode of transportation using gasoline as they offer better fuel economy while also providing low CO2 emissions. However, GDI engines tend to produce relatively high PN emissions when compared to conventional Port Fuel Injection (PFI) engines, largely because of challenges associated with in-cylinder liquid fuel injection. Cold-starts, transients, and high load operation generate a disproportionate share of PN emissions from GDI engines over a certification cycle. The mechanisms of PN formation during these stages must therefore be understood to identify solutions that reduce overall PN emissions in order to comply with increasingly strict emissions standards. This work presents experimental studies on particulate emissions from a naturally aspirated single cylinder metal gasoline engine run in a homogeneous configuration. The engine was adapted to enable operation in both DI and PFI modes. In PFI mode, injection was performed through a custom inlet manifold about 50 cm from the cylinder head to maximize the homogeneity of the fuel-air mixture. The metal head was eventually modified by incorporating an endoscope that made it possible to visualize the combustion process inside the cylinder. The experimental campaigns were structured to systematically isolate and clarify PN formation mechanisms. Tests were initially performed in steady state mode to obtain preliminary insights and to screen operating conditions before conducting transient tests. Particulate emissions were measured and correlated with the images obtained through endoscope visualization where possible. Key objectives of these studies were to find ways of reducing PN formation by increasing combustion stability. It was found that by avoiding conditions that cause wall wetting with liquid fuel, PN emissions can be substantially reduced during both steady state operation and transients. Warming the coolant and injecting fuel at later timings reduced PN emissions during warmup and cold transient conditions. Additionally, experiments using fuel blends with different oxygenate contents showed that the chemical composition of the fuel strongly influences particulate formation under steady state and transient conditions, and that this effect is load-dependent. Overall, the results obtained in this work indicate that wall wetting is the dominant cause of particulate formation inside the cylinder and that fuel-wall interactions involving the piston, cylinder walls, and valves during fuel injection account for a significant proportion of PN emissions in the engine raw exhaust.
  •  
16.
  • Gantasala, Sudhakar, et al. (författare)
  • Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades
  • 2019
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Wind turbines installed in cold-climate regions are prone to the risks of ice accumulation which affects their aeroelastic behavior. The studies carried out on this topic so far considered icing in a few sections of the blade, mostly located in the outer part of the blade, and their influence on the loads and power production of the turbine are only analyzed. The knowledge about the influence of icing in different locations of the blade and asymmetrical icing of the blades on loads, power, and vibration behavior of the turbine is still not matured. To improve this knowledge, multiple simulation cases are needed to run with different ice accumulations on the blade considering structural and aerodynamic property changes due to ice. Such simulations can be easily run by automating the ice shape creation on aerofoil sections and two-dimensional (2-D) Computational Fluid Dynamics (CFD) analysis of those sections. The current work proposes such methodology and it is illustrated on the National Renewable Energy Laboratory (NREL) 5 MW baseline wind turbine model. The influence of symmetrical icing in different locations of the blade and asymmetrical icing of the blade assembly is analyzed on the turbine’s dynamic behavior using the aeroelastic computer-aided engineering tool FAST. The outer third of the blade produces about 50% of the turbine’s total power and severe icing in this part of the blade reduces power output and aeroelastic damping of the blade’s flapwise vibration modes. The increase in blade mass due to ice reduces its natural frequencies which can be extracted from the vibration responses of the turbine operating under turbulent wind conditions. Symmetrical icing of the blades reduces loads acting on the turbine components, whereas asymmetrical icing of the blades induces loads and vibrations in the tower, hub, and nacelle assembly at a frequency synchronous to rotational speed of the turbine.
  •  
17.
  • Lejon, Marcus, 1986, et al. (författare)
  • Multidisciplinary Design of a Three Stage High Speed Booster
  • 2017
  • Ingår i: ASME Turbo Expo 2017: Turbine Technical Conference and Exposition. - : ASME Press. ; 2B-2017
  • Konferensbidrag (refereegranskat)abstract
    • The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.
  •  
18.
  • Andersson, H.M., et al. (författare)
  • Application of digital speckle photography to measure thickness variations in the vacuum infusion process
  • 2003
  • Ingår i: Polymer Composites. - : Wiley. - 0272-8397 .- 1548-0569. ; 24:3, s. 448-455
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method to measure the movement of the flexible bag used in vacuum infusion is presented. The method is based on an in-house developed stereoscopic digital speckle photography system (DSP). The advantage with this optical method, which is based on cross-correlation, is that the deflection of a large area can be continuously measured with a great accuracy (down to 10 μm. The method is at this stage most suited for research but can in the long run also be adopted in production control and optimization. By use of the method it was confirmed that a ditch is formed at the resin flow front and that there can be a considerable and seemingly perpetual compaction after complete filling. The existence of the ditch demonstrates that the stiffness of the reinforcement can be considerably reduced when it is wetted. Hence, the maximum fiber volume fraction can be larger than predicted from dry measurements of preform elasticity. It is likely that the overall thickness reduction after complete filling emanates from lubrication of the fibers combined with an outflow of the resin. Besides, the cross-linking starts and the polymer shrinks. Hence, the alteration in height will continue until complete cross-linking is reached.
  •  
19.
  • Carlsson, Per, et al. (författare)
  • High-speed imaging of biomass particles heated with a laser
  • 2013
  • Ingår i: Journal of Analytical and Applied Pyrolysis. - : Elsevier BV. - 0165-2370 .- 1873-250X. ; 103, s. 278-286
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work two types of lignocellulosic biomass particles, European spruce and American hardwood (particle sizes from 100 μm to 500 μm) were pyrolysed with a continuous wave 2 W Nd:YAG laser. Simultaneously a high-speed camera was used to capture the behavior of the biomass particle as it was heated for about 0.1 s. Cover glasses were used as a sample holder which allowed for light microscope studies after the heating. Since the cover glasses are not initially heated by the laser, vapors from the biomass particle are quenched on the glass within about 1 particle diameter from the initial particle. Image processing was used to track the contour of the biomass particle and the enclosed area of the contour was calculated for each frame.The main observations are: There is a significant difference between how much surface energy is needed to pyrolyses the spruce (about 75% more) compared to the hardwood. The oil-like substance which appeared on the glass during the experiment is solid at room temperature and shows different levels of transparency. A fraction of this substance is water soluble. A brownish coat is seen on the unreacted biomass. The biomass showed insignificant swelling as it was heated. The biomass particle appears to melt and boil at the front that is formed between the laser beam and the biomass particle. The part of the particle that is not subjected to the laser beam seems to be unaffected.
  •  
20.
  • Hadadpour, Ahmad (författare)
  • Spray combustion with multiple-injection in modern engine conditions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Combustion of fuel in diesel engines emits substances harmful to the environment such as soot. These emissions can be reduced by either in-cylinder treatments or after-treatments. One of the common in-cylinder treatments is multiple-injection, which divides a single fuel injection to multiple smaller injections. There are many open questions on the physical processes of the ignition, combustion and emissions of diesel spray flame with multiple injections. The current PhD project aims at studying these processes using large-eddy simulations (LES) and strives to answer some of the open questions. To develop a fast and robust LES tool for this study, a new method is formulated for spray combustion simulation. This method is developed based on the flamelet-generated manifold (FGM) method and the Eulerian stochastic fields (ESF) method. The new ESF/FGM method relaxes some of the substantial assumptions in conventional FGM, while it still keeps the computational costs at a reasonable level for engineering applications. Additionally in this work, a new reaction progress variable for FGM models is proposed by using local oxygen consumption, and the advantages and limitations of this progress variable are explored. Spray-A from Engine Combustion Network (ECN) which is designed to mimic modern engine conditions is chosen as the baseline case for simulations. In this case, liquid n-dodecane, which is a diesel surrogate, is injected into a high-pressure constant-volume vessel. The comparison of simulation results with experimental measurements shows that the ESF/FGM method with the new progress variable can predict the spray combustion characteristics such as ignition delay time, ignition location, lift-off length, pressure rise and thermochemical structure of the spray flame, accurately. After validation of simulation results against experimental measurements, the new ESF/FGM and other available turbulence-combustion simulation tools are applied to simulate multiple-injection spray combustion. Different multiple-injection strategies are investigated by systematically changing the injection timing. The effects of applying each strategy on the ignition, combustion, mixing and emissions are investigated. The results show that in split-injection and post-injection strategies the major physical reason for reduction of soot is better air entrainment and lower local equivalence ratio. It is shown that increasing the dwell time and retarding it toward the end of injection can enhance this effect. On the contrary, for the pre-injection strategies, shortening the ignition delay time of the main injection reduces its pre-mixing and increases its soot formation. In these strategies, the high-temperature region from the pre-injection combustion can increase soot oxidation of the main injection fuel, only if this region is not cooled down as a result of air entrainment during dwell time. Therefore, in such cases shortening the dwell time decreases net soot emissions.
  •  
21.
  • Li, Xiaojian, 1991, et al. (författare)
  • A New Method for Impeller Inlet Design of Supercritical CO2 Centrifugal Compressors in Brayton Cycles
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Supercritical Carbon Dioxide (SCO2) is considered as a potential working fluid in next generation power and energy systems. The SCO2 Brayton cycle is advantaged with higher cycle efficiency, smaller compression work, and more compact layout, as compared with traditional cycles. When the inlet total condition of the compressor approaches the critical point of the working fluid, the cycle efficiency is further enhanced. However, the flow acceleration near the impeller inducer causes the fluid to enter two-phase region, which may lead to additional aerodynamic losses and flow instability. In this study, a new impeller inlet design method is proposed to achieve a better balance among the cycle efficiency, compressor compactness, and inducer condensation. This approach couples a concept of the maximum swallowing capacity of real gas and a new principle for condensation design. Firstly, the mass flow function of real gas centrifugal compressors is analytically expressed by non-dimensional parameters. An optimal inlet flow angle is derived to achieve the maximum swallowing capacity under a certain inlet relative Mach number, which leads to the minimum energy loss and a more compact geometry for the compressor. Secondly, a new condensation design principle is developed by proposing a novel concept of the two-zone inlet total condition for SCO2 compressors. In this new principle, the acceptable acceleration margin (AAM) is derived as a criterion to limit the impeller inlet condensation. The present inlet design method is validated in the design and simulation of a low-flow-coefficient compressor stage based on the real gas model. The mechanisms of flow accelerations in the impeller inducer, which form low-pressure regions and further produce condensation, are analyzed and clarified under different operating conditions. It is found that the proposed method is efficient to limit the condensation in the impeller inducer, keep the compactness of the compressor, and maintain a high cycle efficiency.
  •  
22.
  • Lycksam, Henrik, et al. (författare)
  • High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating
  • 2012
  • Ingår i: Optics and lasers in engineering. - : Elsevier BV. - 0143-8166 .- 1873-0302. ; 50:11, s. 1654-1661
  • Tidskriftsartikel (refereegranskat)abstract
    • Black liquor is a mix of organic and inorganic materials that is left after the kraft pulping process. In a modern pulp mill the pulping chemicals and the energy in the black liquor is recovered and used in the pulping cycle by burning the black liquor in a recovery burner. An alternative to the recovery boiler is to gasify the black liquor to produce an energy rich synthesis gas that can be upgraded into synthetic fuels or chemicals. Characterization of black liquor has mostly been done under conditions that are relevant for recovery boilers but the conditions in a gasifier differ significantly from this. In particular the droplets are much smaller and the heating rates are much higher. This paper presents an optical interferometric technique that has the potential to produce data under relevant conditions for gasification. In the paper, results are measured at atmospheric conditions and with relatively low heating rate. However, the method can be applied also for pressurized conditions and at heating rates that are only limited by the frame rate of the digital camera that is used to capture the transient event when the droplets are heated. In the paper the dynamic properties of the gas ejected from and the swelling during conversion of a single droplet are measured
  •  
23.
  • Thulin, Oskar, 1987, et al. (författare)
  • First and Second Law Analysis of Radical Intercooling Concepts
  • 2018
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 140:8, s. 081201-081201-10
  • Tidskriftsartikel (refereegranskat)abstract
    • An exergy framework was developed taking into consideration a detailed analysis of the heat exchanger (HEX) (intercooler (IC)) component irreversibilities. Moreover, it was further extended to include an adequate formulation for closed systems, e.g., a secondary cycle (SC), moving with the aircraft. Afterward, the proposed framework was employed to study two radical intercooling concepts. The first proposed concept uses already available wetted surfaces, i.e., nacelle surfaces, to reject the core heat and contributes to an overall drag reduction. The second concept uses the rejected core heat to power a secondary organic Rankine cycle and produces useful power to the aircraft-engine system. Both radical concepts are integrated into a high bypass ratio (BPR) turbofan engine, with technology levels assumed to be available by year 2025. A reference intercooled cycle incorporating a HEX in the bypass (BP) duct is established for comparison. Results indicate that the radical intercooling concepts studied in this paper show similar performance levels to the reference cycle. This is mainly due to higher irreversibility rates created during the heat exchange process. A detailed assessment of the irreversibility contributors, including the considered HEXs and SC, is made. A striking strength of the present analysis is the assessment of the component-level irreversibility rate and its contribution to the overall aero-engine losses.
  •  
24.
  • Thulin, Oskar, 1987 (författare)
  • On the Analysis of Energy Efficient Aircraft Engines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aero engine performance analysis is highly multidimensional using various measures of component performance such as turbomachinery and mechanical efficiencies, and pressure loss coefficients. Using conventional performance analysis, relying on only the laws of thermodynamics, it is possible to understand how the performance parameters affect the component performance, but it is difficult to directly compare the magnitude of various loss sources. A comprehensive framework has been detailed to analyze aero engine loss sources in one common currency. As the common currency yields a measure of the lost work potential in every component, it is used to relate the component performance to the system performance. The theory includes a more detailed layout of all the terms that apply to a propulsion unit than presented before. The framework is here adopted to real gases to be used in state of the art performance codes. Additionally, the framework is further developed to enable detailed studies of two radical intercooling concepts that either rejects the core heat in the outer nacelle surfaces or uses the core heat for powering of a secondary cycle. The theory is also extended upon by presenting the installed rational efficiency, a true measure of the propulsion subsystem performance, including the installation effects of the propulsion subsystem as it adds weight and drag that needs to be compensated for in the performance assessment.
  •  
25.
  • Somhorst, Joop, 1965 (författare)
  • Thermal insulation of the combustion chamber in a light duty diesel engine
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reduction of heat loss from the combustion chamber in an engine has great potential to decrease fuel consumption and CO2 emissions. Research on thermal barrier coatings (TBC) has been performed since the early eighties to address this potential. However, reported results for engine efficiency improvements with insulation show a large spread and there is no consensus on the actual benefits of TBCs. The purpose of this PhD project was to make an accurate assessment of state-of-the-art TBCs and establish what coating properties are required to improve indicated engine efficiency. Cylinder pressure data and measured heat losses to the piston cooling oil in a light duty single cylinder engine formed the basis for the experimental research. A robust and automated measurement method was developed and combined with statistical modeling of the data. Plasma sprayed yttria stabilized zirconia and anodized alumina were selected to establish the effectiveness of state-of-the-art TBCs. These coatings, applied on the piston top, did not improve indicated efficiency. The high surface roughness of the coatings was an important contributor to the poor performance. Experiments with a novel coating technology: suspension plasma spraying and a new material gadolinium-zirconate, led to a slightly improved indicated efficiency. Details in the heat release analysis indicated that the high open porosity in this coating might lead to increased heat losses and fuel entrainment. An investigation of possible charge entrainment effects in a standard plasma sprayed zirconia thermal barrier coating was performed, using a combination of engine experiments, CFD simulations and a 0D crevice model. The crevice model predicted the observed deviations of the apparent rate of heat release surprisingly well, which is strong evidence for the existance and significance of this crevice effect. To significantly increase engine efficiency with thermal insulation, materials with further reduced thermal conductivity and volumetric heat capacity are needed, while negative effects such as high surface roughness and crevice effects from permeable porosity should be minimized.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 8818
Typ av publikation
tidskriftsartikel (3848)
konferensbidrag (3261)
doktorsavhandling (509)
licentiatavhandling (413)
rapport (287)
annan publikation (277)
visa fler...
bokkapitel (124)
bok (30)
forskningsöversikt (26)
proceedings (redaktörskap) (18)
patent (12)
samlingsverk (redaktörskap) (11)
konstnärligt arbete (2)
visa färre...
Typ av innehåll
refereegranskat (6445)
övrigt vetenskapligt/konstnärligt (2331)
populärvet., debatt m.m. (41)
Författare/redaktör
Schlatter, Philipp (283)
Fuchs, Laszlo (273)
Davidson, Lars, 1957 (259)
Cervantes, Michel (247)
Lundström, Staffan (241)
Krajnovic, Sinisa, 1 ... (211)
visa fler...
Bai, Xue-Song (208)
Bensow, Rickard, 197 ... (194)
Löfdahl, Lennart, 19 ... (194)
Henningson, Dan S. (175)
Brandt, Luca (172)
Lipatnikov, Andrei, ... (165)
Chernoray, Valery, 1 ... (156)
Larsson, Lars, 1945 (151)
Vinuesa, Ricardo (143)
Nilsson, Håkan, 1971 (139)
Kropp, Wolfgang, 195 ... (121)
Lundström, T. Staffa ... (121)
Ågren, Anders (116)
Ström, Henrik, 1981 (111)
Sasic, Srdjan, 1968 (102)
Forssén, Jens, 1968 (99)
Yao, Huadong, 1982 (97)
Eriksson, Lars-Erik, ... (96)
Westerberg, Lars-Gör ... (95)
Hanifi, Ardeshir, Do ... (88)
Revstedt, Johan (87)
Szász, Robert-Zoltán (86)
Duwig, Christophe (83)
Gutmark, Ephraim (82)
Örlü, Ramis, 1977- (81)
Åbom, Mats (78)
Hellström, J. Gunnar ... (76)
Johansson, Örjan (75)
Lundell, Fredrik (74)
Ljung, Anna-Lena (72)
Sundbäck, Ulrik (69)
Alfredsson, P. Henri ... (63)
Karlsson, Matts (62)
Minelli, Guglielmo, ... (59)
Efraimsson, Gunilla (59)
Andersson, Niklas, 1 ... (58)
Mark, Andreas, 1980 (57)
Grönstedt, Tomas, 19 ... (54)
Kozlov, V.V. (53)
Bodén, Hans, 1954- (52)
Shia-Hui, Peng, 1967 (52)
Sundén, Bengt (51)
Göransson, Peter, 19 ... (51)
Basara, Branislav, 1 ... (51)
visa färre...
Lärosäte
Chalmers tekniska högskola (3248)
Kungliga Tekniska Högskolan (2785)
Luleå tekniska universitet (1522)
Lunds universitet (909)
Linköpings universitet (195)
Uppsala universitet (162)
visa fler...
RISE (151)
Göteborgs universitet (86)
Stockholms universitet (76)
Högskolan i Gävle (60)
Blekinge Tekniska Högskola (59)
Umeå universitet (56)
Mälardalens universitet (40)
Södertörns högskola (37)
Linnéuniversitetet (35)
VTI - Statens väg- och transportforskningsinstitut (33)
Jönköping University (32)
Karolinska Institutet (27)
Högskolan Väst (25)
Mittuniversitetet (24)
Karlstads universitet (19)
Örebro universitet (12)
Sveriges Lantbruksuniversitet (8)
Högskolan i Halmstad (6)
Högskolan i Skövde (6)
IVL Svenska Miljöinstitutet (4)
Malmö universitet (3)
Högskolan Dalarna (3)
Konstfack (2)
Högskolan i Borås (1)
Kungl. Musikhögskolan (1)
visa färre...
Språk
Engelska (8639)
Svenska (150)
Tyska (14)
Franska (4)
Kinesiska (3)
Ryska (1)
visa fler...
Spanska (1)
Polska (1)
Nederländska (1)
Arabiska (1)
Japanska (1)
Persiska (1)
Koreanska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Teknik (8815)
Naturvetenskap (840)
Medicin och hälsovetenskap (99)
Samhällsvetenskap (70)
Humaniora (59)
Lantbruksvetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy