SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES) AMNE:(Chemical Sciences) AMNE:(Materials Chemistry) "

Sökning: AMNE:(NATURAL SCIENCES) AMNE:(Chemical Sciences) AMNE:(Materials Chemistry)

  • Resultat 1-50 av 8604
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Younesi, Reza, et al. (författare)
  • Li-O-2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study
  • 2013
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 25:1, s. 77-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical stability of the Li-O-2 battery components (cathode and electrolyte) in contact with lithium peroxide (Li2O2) was investigated using X-ray photoelectron spectroscopy (XPS). XPS is a versatile method to detect amorphous as well as crystalline decomposition products of both salts and solvents. Two strategies were employed. First, cathodes including carbon, alpha-MnO2 catalyst, and Kynar binder (PVdF-HFP) were exposed to Li2O2 and LiClO4 in propylene carbonate (PC) or tetraethylene glycol dimethyl ether (TEGDME) electrolytes. The results indicated that Li2O2 degrades TEGDME to carboxylate containing species and that the decomposition products, in turn, degraded the Kynar binder. The alpha-MnO2 catalyst was unaffected. Second, Li2O2 model surfaces were kept in contact with different electrolytes to investigate the chemical stability and also the resulting surface layer on Li2O2. Further, the XPS experiments revealed that the Li salts such as LiPF6, LiBF4, and LiC!
  •  
4.
  • Halldin Stenlid, Joakim, 1987- (författare)
  • Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper Corrosion
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The chemical bond – a corner stone in science and a prerequisite for life – is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden.In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface.An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compound’s local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces.Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology.
  •  
5.
  • Maurina Morais, Eduardo, 1989, et al. (författare)
  • Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier BV. - 0167-7322. ; 360
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98–99% m/m) and dry (128–553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is constructed of only glass and chemically resistant polymer (PTFE and PVDF) parts, which avoid other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). This process is described in detail in the paper as well as in a video. The resulting ionic liquids were carefully analyzed by spectroscopic and thermal methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
6.
  • Sauer, Christopher, 1993 (författare)
  • Green Aromatics: Catalytic Valorisation of bio-derived 2,5-dimethylfuran over Zeolites and Zeotypes
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis discusses the use of biomass as a potentially green feedstock for the chemical industry in the urgent shift away from fossil resources. I elaborate on reasons why we cannot afford to burn virgin biomass for energy production, among them a variety of ecosystem services that forests and other lands provide. In addition, the utilisation of biomass should be focused on products that sequester and lock away carbon for more extended periods, e.g. timber, materials and chemicals. In particular, biomass can be used as an alternative "carbon neutral" feedstock for the chemical industry, where we can preserve the already existing chemical complexity in the bio-based molecules. One example is the upgrading of furans to benzene, toluene and xylene (BTX) aromatics with the help of zeolite catalysis. These aromatics are important commodity chemicals, where the shift to a bio-based resource could make use of already existing knowledge, catalyst and production infrastructure. However, research is necessary to understand these new feedstock molecules and their interaction with the catalysts and to enable the design of applicable catalysts. In order to study the interaction of the furans, in particular 2,5-dimethylfuran (2,5-dmf), I describe and discuss the development of an analytical methodology that utilises infrared spectroscopy and mass spectrometry for the on-line identification and quantification of product molecules during catalytic reactions. This on-line analysis method is then applied to the catalytic conversion of 2,5-dmf to aromatics over a range of zeolite and zeotype catalysts. In-depth studies with ammonia as a probe molecule of the catalytic active acid sites, as well as temperature programmed experiments with ammonia and 2,5-dmf give insights into product distribution, selectivity changes and deactivation of the catalyst. For example, olefins and aromatics are initially preferred products, while with increasing time on stream, the isomerisation of 2,5-dmf becomes dominant. The incorporation of Ga into the zeotype framework, resulting in a Ga-Silicate, shows how targeted catalyst design can increase overall aromatics production. This catalyst is also suitable for selective isomerisation of 2,5-dmf to 2,4-dimethylfuran, which has a rare substitution pattern. Finally, itwas found that the most valuable of BTX,  p -xylene, can be produced more selectively when 2,5-dmf is pre-adsorbed onto zeolite ZSM-5 and then released during a temperature programmed product desorption.
  •  
7.
  • Rahm, Martin, et al. (författare)
  • The Molecular Surface Structure of Ammonium and Potassium Dinitramide : A Vibrational Sum Frequency Spectroscopy and Quantum Chemical Study
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:21, s. 10588-10596
  • Tidskriftsartikel (refereegranskat)abstract
    • Vibrational sum frequency spectroscopy (VSFS) and quantum chemical modeling have been employed to investigate the molecular surface structure of ammonium and potassium dinitramide (ADN and KDN) crystals. Identification of key vibrational modes was made possible by performing density functional theory calculations of molecular clusters. The surface of KDN was found to be partly covered with a thin layer of the decomposition product KNO3, which due to its low thickness was not detectable by infrared and Raman spectroscopy. In contrast, ADN exhibited an extremely inhomogeneous surface, on which polarized dinitramide anions were present, possibly together with a thin layer of NH4NO3. The intertwined use of theoretical and experimental tools proved indispensable in the analysis of these complex surfaces. The experimental verification of polarized and destabilized dinitramide anions stresses the importance of designing surface-active polymer support, stabilizers, and/or coating agents, in order to enable environmentally friendly ADN-based solid-rocket propulsion.
  •  
8.
  •  
9.
  • Brinck, Tore, et al. (författare)
  • Green Energetic Materials, Chapter 2: "Theoretical Design of Green Energetic Materials: Predicting Stability, Detection, Synthesis and Performance"
  • 2014
  • Ingår i: Green Energetic Materials. - 9781119941293 ; , s. 15-44
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes.Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field.Topics covered include:Theoretical design of green energetic materialsDevelopment of green pyrotechnicsGreen primary and secondary explosivesOxidisers and binder materials for green propellantsEnvironmentally sustainable manufacturing technologies for energetic materialsElectrochemical methods for synthesis of energetic materials and waste remediationGreen Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
  •  
10.
  • Hosseini, Seyedehsan, 1994 (författare)
  • Additive-Driven Improvements in Interfacial Properties and Processing of TMP-Polymer Composites
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Efforts to address environmental concerns have resulted in new regulations designed to plan the reduction of plastic and synthetic polymer usage, necessitating the search for sustainable natural alternatives with comparable cost-effectiveness and mechanical performance. Thermomechanical pulp (TMP) fibres are one of the most affordable natural fibres that have no chemical refining in production, production have a high yield of 90-98% and TMP fibres have been demonstrated to improve the mechanical characteristics (strength, stiffness and toughness) of wood-polymer composites (WPCs) compared to the pure polymer. The integration of TMP fibres with non-polar synthetic polymers remains a challenge due to surface polarity differences. This PhD thesis aims to ease the processing of TMP fibre composites through the incorporation of additives. The hypothesis posits that incorporating magnesium stearate (MgSt), molybdenum disulfide (MoS2) and alkyl ketene dimer (AKD) as additives in TMP composites will enhance interfacial properties, resulting in improved processability and flow behaviour at high temperatures. MoS2 is known for its interaction with lignin, which exists in TMP and MgSt is recognised for its ability to improve flow in pharmaceutical processing when combined with cellulose, also a component of TMP. AKD modifies the hydrophilic properties of lignocellulosic surfaces. The experimental work explores the effect of these additives on the properties of TMP composites of ethylene acrylic acid copolymer (EAA) and polypropylene (PP) matrices. The dynamic mechanical analysis (DMA) and mechanical analysis results reveal that MoS2 exhibits superior interaction with TMP fibres, yielding enhanced interfacial properties compared to MgSt in between EAA and TMP fibres. Rheological studies elucidate the transition from a fluid-like state to a network-like structure upon the incorporation of TMP into the PP matrix. The incorporation of AKD with C18 reduces the viscosity of TMP-PP composites and PP itself, and, as determined through theoretical Hansen solubility parameter (HSP) calculations, increases compatibility between cellulose in TMP fibres and PP. The addition of AKD influences both the colour (lighter) and shape (smoother surface) of the extrudate filaments in the TMP-PP composites, indicative of improved processing. In addition, frictional analysis demonstrates the reduction of the coefficient of friction (COF) between metal and TMP fibre by MgSt and AKD treatments.
  •  
11.
  • Maurina Morais, Eduardo, 1989 (författare)
  • Synthesis of protic ionic liquids. Challenges and solutions for the synthesis of pure compounds.
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The urgent need to diversify our energy matrix is responsible for a renewed interest in fuel cell technology, which can use hydrogen gas, a renewable green fuel, as an energy source. This technology is currently a commercially available option, however, it still requires technological improvements before it can be widely used for different applications. One way this technology could potentially be improved is by increasing its temperature range of operation by developing new, anhydrous proton conducting materials. Protic ionic liquids, which are organic salts with low melting temperatures, are interesting candidates for this application, since they can conduct protons in the operational conditions of fuel cells and without the need of water. These compounds can be synthesized by a simple acid-base neutralization reaction, but certain considerations must be taken in order to obtain high quality (dry and pure) protic ionic liquids. In this thesis, a series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98-99% m/m) and dry (128-553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is consists of only glass and chemically resistant polymer(PTFE and PVDF) parts, which avoids other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). The resulting ionic liquids were carefully analyzed by spectroscopic and thermal analysis methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
12.
  • Carmona, Pierre, 1995, et al. (författare)
  • Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films
  • 2022
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; 18:16, s. 3206-3217
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 μm for bicontinuous and between 0.6 and 1.6 μm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release. © 2022 The Royal Society of Chemistry
  •  
13.
  • Sun, Bing, et al. (författare)
  • Ion transport in polycarbonate based solid polymer electrolytes : experimental and computational investigations
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 18:14, s. 9504-9513
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with epsilon-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li+ and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li+-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments.
  •  
14.
  • Sörensen, Malin H., et al. (författare)
  • Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate
  • 2010
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier Inc.. - 0021-9797 .- 1095-7103. ; 343:1, s. 359-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipase from Thermomyces lanuginosus has been immobilized within particulate mesoporous silica carriers, with either hydrophilic or hydrophobic supporting surfaces, produced by the newly developed emulsion and solvent evaporation (ESE) method.  The Michaelis-Menten model was used to calculate the parameters related to the enzymatic activity of lipase i.e. the turnover number, kcat, and the specific activity. The specific activity was improved by immobilization of lipase onto the hydrophobic support, compared to lipase immobilized onto the hydrophilic support and lipase free in solution. The enhanced enzymatic activity of lipase onto a hydrophobic support was attributed to interfacial activation of the Thermomyces lanuginosus lipase when it is attached to a hydrophobic surface and a reduced denaturation. Confocal scanning laser microscopy (CLSM) studies, of fluorescently tagged lipase, showed that leakage of the lipase from the mesoporous particles was limited to an initial period of only a few hours. Both the rate and the amount of lipase leached were reduced when the lipase was immobilized onto the hydrophobic support.
  •  
15.
  • Hosseini, Seyedehsan, 1994, et al. (författare)
  • Alkyl ketene dimer modification of thermomechanical pulp promotes processability with polypropylene
  • 2024
  • Ingår i: Polymer Composites. - 1548-0569 .- 0272-8397. ; 45:1, s. 825-835
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl ketene dimers (AKDs) are known to efficiently react with cellulose with a dual polarity in their structure: a polar component and a nonpolar component. AKD of three different carbon chain lengths, 4, 10, and 16 carbons have been synthesized, and thermomechanical pulp (TMP) fibers were modified by them. The modification of TMP fibers with AKD resulted in an increased water contact angle, showing the presence of the AKDs on the TMP fibers and a new carbonyl peak in the IR spectra, suggesting modification of the TMP fibers with AKD groups. Calculating the Hansen solubility parameters of AKD and AKD conjugated to TMP in polypropylene (PP) indicates improved compatibility, especially of longer chain AKD and TMP AKD. The rheological studies of the composites showed that the AKD with the longest carbon chain decreases the melt viscosity of the PP-TMP-AKD composite, which combined with the shape and the color of the extruded composite filaments indicates improved flow properties and reduced stress build up during processing. The research findings demonstrate the ability of AKD to enhance the dispersibility and compatibility of natural fibers with PP.
  •  
16.
  • Sznitko, L., et al. (författare)
  • Low-threshold stimulated emission from lysozyme amyloid fibrils doped with a blue laser dye
  • 2015
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2015 AIP Publishing LLC. Amyloid fibrils are excellent self-assembling nanotemplates for organic molecules such as dyes. Here, we demonstrate that laser dye-doped lysozyme type fibrils exhibit significantly reduced threshold for stimulated emission compared to that observed in usual matrices. Laser action was studied in slab planar waveguides of the amyloids doped with Stilbene 420 laser dye prepared using a film casting technique. The lowering of the threshold of stimulated emission is analyzed in the context of intrinsic structure of the amyloid nanotemplates, electrostatic interaction of different microstructures with dye molecules, as well as material properties of the cast layers. All these factors are considered to be of importance for introducing gain for random laser operation.
  •  
17.
  • Öhman, Sebastian, 1991-, et al. (författare)
  • Selective kinetic growth and role of local coordination in forming Al2TiO5-based coatings at lower temperatures
  • 2021
  • Ingår i: Materials Advances. - : Royal Society of Chemistry. - 2633-5409. ; 2:17, s. 5737-5751
  • Tidskriftsartikel (refereegranskat)abstract
    • Negative thermal expansion is an elusive property found among certain materials, whose potential applications have remained limited due to the many challenges faced in their synthesis. Herein, we report the successful formation of aluminium titanate-based coatings (Al2TiO5), a material renowned for its low-to-negative thermal expansion, by the co-deposition of aluminium-isopropoxide and titanium-isopropoxide in a hot-wall chemical vapour deposition instrument. While coatings grown at 450 °C were amorphous as-deposited, a short-range order into the Al2TiO5-phase was found and analysed by using Raman spectroscopy. Upon subsequent annealing at 700 °C for 3 hours, crystalline coatings were achieved without forming any binary phases. The selective synthesis of the Al2TiO5 phase is ascribed to the precursors’ inherent chemical similarities, resulting in a kinetic targeting of this phase and a short-range homogeneity, entailing its preferred crystallisation. The role of local coordination is expressed by demonstrating the formation of intergrowth phases ascribed to lower coordinating interstices in the compound. Both the formation and crystallisation temperatures reported herein, as well as the timescales needed for the synthesises, are considerably lower than any conventional adopted solid-state techniques used so far to attain the Al2TiO5 phase.
  •  
18.
  • Rzepka, Przemyslaw, et al. (författare)
  • CO2-Induced Displacement of Na+ and K+ in Zeolite INaKI-A
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:30, s. 17211-17220
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption technologies offer opportunities to remove CO2 from gas mixtures, and zeolite A has good properties that include a high capacity for the adsorption of CO2 . It has been argued that its abilities to separate CO2 from N-2 in flue gas and CO2 from CH4 in raw biogas can be further enhanced by replacing Na+ with K+ in the controlling pore window apertures. In this study, several compositions of I Na12-xKxI-A were prepared and studied with respect to the adsorption of CO2 N-2, and CH4, and the detailed structural changes were induced by the adsorption of CO2. The adsorption of CO2 gradually decreased on an increasing content of K+, whereas the adsorption of N-2 and CH4 was completely nulled already at relatively small contents of K. Of the studied samples, INa9K3I-A exhibited the highest CO2 over N-2/CH4 selectivities, with a(CO2/N-2 ) > 21 000 and a(CO2/CH4) > 8000. For samples with and without adsorbed CO2 analyses of powder X-ray diffraction (PXRD) data revealed that K+ preferred to substitute Na+ at the eight-ring sites. The Na(+ )ions at the six-ring sites were gradually replaced by K+ on an increasing content, and these sites split into two positions on both sides of the six-ring mirror plane. It was observed that both the eight-ring and six-ring sites tailored the maximum adsorption capacity for CO2 and possibly also the diffusion of CO2 into the alpha-cavities of INa12-xKxI-A. The adsorption of CH4 and N-2 on the other hand appeared to be controlled by the K+ ions blocking the eight-ring windows. The in situ PXRD study revealed that the positions of the extra-framework cations were displaced into the a-cavities of INa12(_)x,KxI-A on the adsorption of CO2 . For samples with a low content of K+, the repositioning of the cations was consistent with a mutual attraction with the adsorbed CO(2 )molecules.
  •  
19.
  • Schäfer, Clara, 1992, et al. (författare)
  • Room Temperature Dye Glasses: A Guideline Toward the Fabrication of Amorphous Dye Films with Monomeric Absorption and Emission
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:20, s. 9294-9302
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphology of films containing photoactive materials is crucial for the performance of solid-state dye applications. Organic dyes tend to crystallize due to their usually planar molecular structure and the resulting intermolecular interactions. This leads to inhomogeneous films with crystalline, aggregated, and amorphous regions, decreasing device efficiency and complicating spectral analysis. Improving the glass-forming ability of organic dyes therefore presents a major challenge for solid-state dye applications. Here, we present a guideline to create organic dye glasses using BODIPY as a model dye. The method is based on the strategic design of BODIPY derivatives, equipped with short alkyl chains, in combination with blending of two or more derivatives. Mixing increases the entropy of the liquid state and lowers the thermodynamic driving force for crystallization as well as the kinetic fragility of the system. This enables the fabrication of homogeneous thin films without any additives. In these films, the dye molecules are trapped in a glassy state, featuring monomeric absorption and emission. This strategy leads to a BODIPY material with an amorphous character in thin films, dropcast films, and bulk. Further, the strategy is based on thermodynamics and is therefore expected to be general, enabling the transformation of any dye molecule into a glass former.
  •  
20.
  • Yang, Yizhou, 1992, et al. (författare)
  • A Highly Conductive All-Carbon Linked 3D Covalent Organic Framework Film
  • 2021
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Here an all-carbon linked 3D covalent organic framework (COF) is introduced by employing a templated surface reaction in a continuous flow (TSRCF). The presented method of synthesis provides spatial control over the reaction chemistry and allows for the creation of ultrasmooth COF films of desired thickness and significant crystallinity. The films show high electrical conductivity (approximate to 3.4 S m(-1)) after being doped with tetracyanoquinodimethane (TCNQ), setting a new record for 3D COF materials. The concurrence of 3D nanosized channels and high conductivity opens up for a number of hitherto unexplored applications for this class of materials, such as high surface area electrodes, electrochemical transistors, and for electronic sensing.
  •  
21.
  • Bergman, Jenny, et al. (författare)
  • Counting the number of enzymes immobilized onto a nanoparticle-coated electrode
  • 2018
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 410:6, s. 1775-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • To immobilize enzymes at the surface of a nanoparticle-based electrochemical sensor is a common method to construct biosensors for non-electroactive analytes. Studying the interactions between the enzymes and nanoparticle support is of great importance in optimizing the conditions for biosensor design. This can be achieved by using a combination of analytical methods to carefully characterize the enzyme nanoparticle coating at the sensor surface while studying the optimal conditions for enzyme immobilization. From this analytical approach, it was found that controlling the enzyme coverage to a monolayer was a key factor to significantly improve the temporal resolution of biosensors. However, these characterization methods involve both tedious methodologies and working with toxic cyanide solutions. Here we introduce a new analytical method that allows direct quantification of the number of immobilized enzymes (glucose oxidase) at the surface of a gold nanoparticle coated glassy carbon electrode. This was achieved by exploiting an electrochemical stripping method for the direct quantification of the density and size of gold nanoparticles coating the electrode surface and combining this information with quantification of fluorophore-labeled enzymes bound to the sensor surface after stripping off their nanoparticle support. This method is both significantly much faster compared to previously reported methods and with the advantage that this method presented is non-toxic.
  •  
22.
  • Asfaw, Habtom Desta (författare)
  • Multifunctional Carbon Foams by Emulsion Templating : Synthesis, Microstructure, and 3D Li-ion Microbatteries
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon foams are among the existing electrode designs proposed for use in 3D Li-ion microbatteries. For such electrodes to find applications in practical microbatteries, however, their void sizes, specific surface areas and pore volumes need be optimized. This thesis concerns the synthesis of highly porous carbon foams and their multifunctional applications in 3D microbatteries. The carbon foams are derived from polymers that are obtained by polymerizing high internal phase water-in-oil emulsions (HIPEs).In general, the carbonization of the sulfonated polymers yielded hierarchically porous structures with void sizes ranging from 2 to 35 µm and a BET specific surface area as high as 630 m2 g-1. Thermogravimetric and spectroscopic evidence indicated that the sulfonic acid groups, introduced during sulfonation, transformed above 250 oC to thioether (-C-S-) crosslinks which were responsible for the thermal stability and charring tendency of the polymer precursors. Depending on the preparation of the HIPEs, the specific surface areas and void-size distributions were observed to vary considerably. In addition, the pyrolysis temperature could also affect the microstructures, the degree of graphitization, and the surface chemistry of the carbon foams.Various potential applications were explored for the bespoke carbon foams. First, their use as freestanding active materials in 3D microbatteries was studied. The carbon foams obtained at 700 to 1500 oC suffered from significant irreversible capacity loss during the initial discharge. In an effort to alleviate this drawback, the pyrolysis temperature was raised to 2200 oC. The resulting carbon foams were observed to deliver high, stable areal capacities over several cycles. Secondly, the possibility of using these structures as 3D current collectors for various active materials was investigated in-depth. As a proof-of-concept demonstration, positive active materials like polyaniline and LiFePO4 were deposited on the 3D architectures by means of electrodeposition and sol-gel approach, respectively. In both cases, the composite electrodes exhibited reasonably high cyclability and rate performance at different current densities. The syntheses of niobium and molybdenum oxides and their potential application as electrodes in microbatteries were also studied. In such applications, the carbon foams served dual purposes as 3D scaffolds and as reducing reactants in the carbothermal reduction process. Finally, a facile method of coating carbon substrates with oxide nanosheets was developed. The approach involved the exfoliation of crystalline VO2 to prepare dispersions of hydrated V2O5, which were subsequently cast onto CNT paper to form oxide films of different thicknesses.
  •  
23.
  • Karlsson, Rasmus, 1987- (författare)
  • Theoretical and Experimental Studies of Electrode and Electrolyte Processes in Industrial Electrosynthesis
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heterogeneous electrocatalysis is the usage of solid materials to decrease the amount of energy needed to produce chemicals using electricity. It is of core importance for modern life, as it enables production of chemicals, such as chlorine gas and sodium chlorate, needed for e.g. materials and pharmaceuticals production. Furthermore, as the need to make a transition to usage of renewable energy sources is growing, the importance for electrocatalysis used for electrolytic production of clean fuels, such as hydrogen, is rising. In this thesis, work aimed at understanding and improving electrocatalysts used for these purposes is presented.A main part of the work has been focused on the selectivity between chlorine gas, or sodium chlorate formation, and parasitic oxygen evolution. An activation of anode surface Ti cations by nearby Ru cations is suggested as a reason for the high chlorine selectivity of the “dimensionally stable anode” (DSA), the standard anode used in industrial chlorine and sodium chlorate production. Furthermore, theoretical methods have been used to screen for dopants that can be used to improve the activity and selectivity of DSA, and several promising candidates have been found. Moreover, the connection between the rate of chlorate formation and the rate of parasitic oxygen evolution, as well as the possible catalytic effects of electrolyte contaminants on parasitic oxygen evolution in the chlorate process, have been studied experimentally.Additionally, the properties of a Co-doped DSA have been studied, and it is found that the doping makes the electrode more active for hydrogen evolution. Finally, the hydrogen evolution reaction on both RuO2 and the noble-metal-free electrocatalyst material MoS2 has been studied using a combination of experimental and theoretically calculated X-ray photoelectron chemical shifts. In this way, insight into structural changes accompanying hydrogen evolution on these materials is obtained.
  •  
24.
  • Österberg, Carin, 1987, et al. (författare)
  • Dynamics of Pyramidal SiH3- Ions in ASiH(3) (A = K and Rb) Investigated with Quasielastic Neutron Scattering
  • 2016
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:12, s. 6369-6376
  • Tidskriftsartikel (refereegranskat)abstract
    • The two alkali silanides ASiH(3) (A = K and Rb) were investigated by means of quasielastic neutron scattering, both below and above the order-disorder phase transition occurring at around 275-300 K. Measurements upon heating show that there is a large change in the dynamics on going through the phase transition, whereas measurements upon cooling reveal a strong hysteresis due to undercooling of the disordered phase. The results show that the dynamics is associated with rotational diffusion of SiH3- anions, adequately modeled by H-jumps among 24 different jump locations radially distributed around the Si atom. The average relaxation time between successive jumps is of the order of subpicoseconds and exhibits a weak temperature dependence with a small difference in activation energy between the two materials, 39(1) meV for KSiH3 and 33(1) meV for RbSiH3. The pronounced SiH3- dynamics explains the high entropy observed in the disordered phase resulting in the low entropy variation for hydrogen absorption/desorption and hence the origin of these materials' favorable hydrogen storage properties.
  •  
25.
  • Thunberg, Johannes, 1982, et al. (författare)
  • Hybrid Metal-Organic Framework-Cellulose Materials Retaining High Porosity: ZIF-8@Cellulose Nanofibrils
  • 2021
  • Ingår i: Inorganics. - : MDPI AG. - 2304-6740. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-organic frameworks have attracted a great deal of attention for future applications in numerous areas, including gas adsorption. However, in order for them to reach their full potential a substrate to provide an anchor may be needed. Ideally, this substrate should be environmentally friendly and renewable. Cellulose nanofibrils show potential in this area. Here we present a hybrid material created from the self-assembly of zeolitic imidazolate framework (ZIF-8) nanocrystals on cellulose nanofibrils (CNF) in aqueous medium. The CNF/ZIF-8 was freeze dried and formed free standing materials suitable for gas adsorption. A BET area of 1014 m(2) g(-1) was achieved for the CNF/ZIF-8 hybrid materials ZIF-8@cellulose which is comparable with reported values for free standing ZIF-8 materials, 1600 m(2) g(-1), considering the dilution with cellulose, and a considerable enhancement compared to CNF on its own, 32 m(2) g(-1).
  •  
26.
  • Andersson Trojer, Markus, et al. (författare)
  • Elastic strain-hardening and shear-thickening exhibited by thermoreversible physical hydrogels based on poly(alkylene oxide)-grafted hyaluronic acid or carboxymethylcellulose
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22:26, s. 14579-14590
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of strongly elastic physical gels based on poly(alkylene oxide)-grafted hyaluronan or carboxymethylcellulose, exhibiting both shear-thickening and strain-hardening have been studied using rheometry and explained using a slightly different interpretation of the transient network theory. The graft copolymers were prepared by a quantitative coupling reaction. Their aqueous solutions displayed a thermoreversible continuous transition from Newtonian fluid to viscoelastic solid which could be controlled by the reaction conditions. The evolution of all material properties of the gel could be categorized into two distinct temperature regimes with a fast evolution at low temperatures followed by a slow evolution at high temperatures. The activation energy of the zero shear viscosity and the relaxation time of the graft inside the interconnecting microdomains were almost identical to each other in both temperature regimes. This suggests that the number of microdomains remained approximately constant whereas the aggregation number inside the microdomains increased according to the binodal curve of the thermosensitive graft.
  •  
27.
  • Liu, Yanfeng, et al. (författare)
  • In Situ Optical Spectroscopy Demonstrates the Effect of Solvent Additive in the Formation of All-Polymer Solar Cells
  • 2022
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 13:50, s. 11696-11702
  • Tidskriftsartikel (refereegranskat)abstract
    • 1-Chloronaphthalene (CN) has been a common solvent additive in both fullerene- A nd nonfullerene-based organic solar cells. In spite of this, its working mechanism is seldom investigated, in particular, during the drying process of bulk heterojunctions composed of a donor:acceptor mixture. In this work, the role of CN in all-polymer solar cells is investigated by in situ spectroscopies and ex situ characterization of blade-coated PBDB-T:PF5-Y5 blends. Our results suggest that the added CN promotes self-aggregation of polymer donor PBDB-T during the drying process of the blend film, resulting in enhanced crystallinity and hole mobility, which contribute to the increased fill factor and improved performance of PBDB-T:PF5-Y5 solar cells. Besides, the nonradiative energy loss of the corresponding device is also reduced by the addition of CN, corresponding to a slightly increased open-circuit voltage. Overall, our observations deepen our understanding of the drying dynamics, which may guide further development of all-polymer solar cells.
  •  
28.
  • Hedlund, Artur, et al. (författare)
  • Microstructures of cellulose coagulated in water and alcohols from 1-ethyl-3-methylimidazolium acetate : contrasting coagulation mechanisms
  • 2019
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 26:3, s. 1545-1563
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Coagulation of cellulose solutions is a process whereby many useful materials with variable microstructures and properties can be produced. This study investigates the complexity of the phase separation that generates the structural heterogeneity of such materials. The ionic liquid, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), and a co-solvent, dimethylsulfoxide (DMSO), are used to dissolve microcrystalline cellulose in concentrations from 5 to 25 wt%. The solutions are coagulated in water or 2-propanol (2PrOH). The coagulated material is then washed and solvent exchanged (water → 2PrOH → butanone → cyclohexane) in order to preserve the generated microstructures upon subsequent drying before analysis. Sweep electron microscopy images of 50 k magnification reveal open-pore fibrillar structures. The crystalline constituents of those fibrils are estimated using wide-angle X-ray spectroscopy and specific surface area data. It is found that the crystalline order or crystallite size is reduced by an increase in cellulose concentration, by the use of the co-solvent DMSO, or by the use of 2PrOH instead of water as the coagulant. Because previous theories cannot explain these trends, an alternative explanation is presented here focused on solid–liquid versus liquid–liquid phase separations. Graphical abstract: [Figure not available: see fulltext.].
  •  
29.
  • Armanious, Antonius, 1981, et al. (författare)
  • Determination of Nanosized Adsorbate Mass in Solution Using Mechanical Resonators: Elimination of the So Far Inseparable Liquid Contribution
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:41, s. 22733-22746
  • Tidskriftsartikel (refereegranskat)abstract
    • Assumption-free mass quantification of nanofilms, nanoparticles, and (supra)molecular adsorbates in a liquid environment remains a key challenge in many branches of science. Mechanical resonators can uniquely determine the mass of essentially any adsorbate; yet, when operating in a liquid environment, the liquid dynamically coupled to the adsorbate contributes significantly to the measured response, which complicates data interpretation and impairs quantitative adsorbate mass determination. Employing the Navier-Stokes equation for liquid velocity in contact with an oscillating surface, we show that the liquid contribution for rigid systems can be eliminated by measuring the response in solutions with identical kinematic viscosity but different densities. Guided by this insight, we used the quartz crystal microbalance (QCM), one of the most widely employed mechanical resonators, to experimentally demonstrate that the kinematic-viscosity matching can be utilized to quantify the dry mass of rigid and in many cases also nonrigid adsorbate systems, including, e.g., rigid nanoparticles, tethered biological nanoparticles (lipid vesicles), as well as highly hydrated polymeric films. For all the adsorbates, the dry mass determined using the kinematic-viscosity matching was within the uncertainty limits of the corresponding mass determined using complementary methods, i.e., QCM in air, scanning electron microscopy, surface plasmon resonance, and theoretical estimations. The same approach applied to the simultaneously measured energy dissipation made it possible to quantify the mechanical properties of the adsorbate and its attachment to the surface, as demonstrated by, for example, probing the hydrodynamic stabilization induced by nanoparticle crowding. In addition to a unique means to quantify the liquid contribution to the measured response of mechanical resonators, we also envision that the kinematic-viscosity-matching approach will open up applications beyond mass determination, including a new means to investigate orientation, spatial distribution, and binding strength of adsorbates without the need for complementary techniques.
  •  
30.
  • Hertzog, Manuel, 1989, et al. (författare)
  • Enhancing Vibrational Light-Matter Coupling Strength beyond the Molecular Concentration Limit Using Plasmonic Arrays
  • 2021
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 21:3, s. 1320-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • Vibrational strong coupling is emerging as a promising tool to modify molecular properties by making use of hybrid light-matter states known as polaritons. Fabry-Perot cavities filled with organic molecules are typically used, and the molecular concentration limits the maximum reachable coupling strength. Developing methods to increase the coupling strength beyond the molecular concentration limit are highly desirable. In this Letter, we investigate the effect of adding a gold nanorod array into a cavity containing pure organic molecules using FT-IR microscopy and numerical modeling. Incorporation of the plasmonic nanorod array that acts as artificial molecules leads to an order of magnitude increase in the total coupling strength for the cavity with matching resonant frequency filled with organic molecules. Additionally, we observe a significant narrowing of the plasmon line width inside the cavity. We anticipate that these results will be a step forward in exploring vibropolaritonic chemistry and may be used in plasmon based biosensors.
  •  
31.
  • Börjesson, Karl, 1982, et al. (författare)
  • Conjugated anthracene dendrimers with monomer-like fluorescence
  • 2014
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 4:38, s. 19846-19850
  • Tidskriftsartikel (refereegranskat)abstract
    • Two generations of highly emissive conjugated anthracene dendrimers containing up to 9 anthracene units are presented. In these dendrimers, anthracene-like absorption and emission properties are preserved due to the relatively weak electronic coupling between the anthracene units, while evidence of fast crosstalk within the molecular framework is still observed.
  •  
32.
  • Morales Salazar, Daniel, 1991- (författare)
  • Functional and Modular As=C and P=C Group Motifs
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This work focuses on the design, synthesis, characterization, and application projections of low-coordinated heavy pnictogen-containing (described by the generic letter E, hence E=C) phosphaalkenes (P=C) and arsaalkenes (As=C), with emphasis on the E=C group motifs. The work aims to understand their functional and modular character, reactivity, and potential applications by stabilizing, isolating, and characterizing these species in low-coordination environments. The thesis defines a set of elementary principles that allowed the author to better understand the materials from the perspective of "functional materials", with a subset of the compounds categorized as "smart materials" after exploring and elucidating their fascinating responses in a series of experiments using electrochemical and spectroscopic techniques. The thesis successfully explains the role of the As=C and P=C units and their innate role as "directors" of the molecular electronic structure of the compounds based on their relevant actions and interactions, which led to their naming as "group motifs". By focusing on fluorene-based and DBU-based phosphaalkene systems, the research projects extend these two families of compounds. It characterizes their responses to different functional groups, environmental conditions, and constraints as settings. The work illustrates the ability of hydrogen bonding to regulate or stabilize the reactivity of the P=C sites, showing the synthesis of hydrogen-bonded adducts that are more stabilized while maintaining the intrinsic compound identity with the P=C moieties. In addition, a fascinating copper(I)-phosphaalkene complex exhibiting photoluminescence and ambipolar properties is studied. The excited state lifetimes of the compound were measured to be in the nanosecond range, which is of interest for applications. Overall, this work represents a comprehensive study of the chemistry of heavy p-block elements and their potential as materials. This work sheds light on their modularity, reactivity, and potential use as "functional materials" and "smart materials" for a variety of future applications ranging from organic electronics and catalysis to artificial intelligence
  •  
33.
  • Moth-Poulsen, Kasper, 1978 (författare)
  • Molecular Systems for Solar Thermal Energy Storage and Conversion
  • 2013
  • Ingår i: Organic Synthesis and Molecular Engineering. - Hoboken, NJ, USA : John Wiley & Sons, Inc.. ; , s. 179-196
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Using a synthetic approach to organic materials chemistry, this book sets forth tested and proven methods and practices that make it possible to engineer organic molecules offering special properties and functions. Throughout the book, plenty of real-world examples demonstrate the countless possibilities of creating one-of-a-kind molecules and supramolecular systems to support a broad range of applications. The book explores applications in both materials and bioorganic chemistry, including molecular electronics, energy storage, sensors, nanomedicine, and enzyme engineering.Organic Synthesis and Molecular Engineering consists of fourteen chapters, each one contributed by one or more leading international experts in the field. The contributions are based on a thorough review and analysis of the current literature as well as the authors' firsthand experience in the lab engineering new organic molecules. Designed as a practical lab reference, the book offers:Tested and proven synthetic approaches to organic materials chemistryMethods and practices to successfully engineer functionality into organic moleculesExplanations of the principles and concepts underlying self-assembly and supramolecular chemistryGuidance in selecting appropriate structural units used in the design and synthesis of functional molecules and materialsCoverage of the full range of applications in materials and bioorganic chemistryA full chapter on graphene, a new topic generating intense researchOrganic Synthesis and Molecular Engineering begins with core concepts, molecular building blocks, and synthetic tools. Next, it explores molecular electronics, supramolecular chemistry and self-assembly, graphene, and photoresponsive materials engineering. In short, it offers everything researchers need to fully grasp the underlying theory and then build new molecules and supramolecular systems.
  •  
34.
  • Singh, Shivangi, 1996 (författare)
  • Investigating hydrothermal stability and influence of water on the activity of Cu-CHA catalysts for NH3-SCR
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Selective catalytic reduction of nitrogen oxides (NOx) with NH3 as a reducing agent (NH3- SCR) is a leading technology for diesel exhaust emission control. Cu-exchanged zeolites with the chabazite structure (Cu-CHA) have emerged as the preferred catalysts thanks to its high activity and hydrothermal stability. Hydrothermal stability is related to dealumination, i.e. removal of aluminum from the zeolite framework to form extraframework aluminum, at high temperatures in the presence of water vapor. Copperexchanged chabazite (Cu-CHA) zeolites have higher hydrothermal stability compared to H-chabazite (H-CHA). To understand the delayed dealumination of Cu-CHA catalysts, we have investigated the reaction paths for dealumination in H-CHA and Cu-CHA using density functional theory (DFT) calculations combined with microkinetic modeling. We find that Cu-CHA and H-CHA follow similar four-step hydrolysis processes, yet the dealumination of Cu-CHA has higher energy barriers, suggesting stabilization of the CHA structure by Cu ions. Furthermore, the preferred reaction product upon complete dealumination of Cu-CHA is a copper-aluminate like species bound to the zeolite framework. The microkinetic analysis quantifies the increased stability of Cu-CHA as compared to H-CHA. In addition to the high-temperature dealumination, we investigated the role of water on low-temperature SCR by experimentally measuring the activity and reaction order of water. The reaction order of water is found to be increasingly negative with increasing water pressure. DFT calculations reveal that water blocks the active Cu-sites and a DFT-based microkinetic model reproduces the measured change of reaction order with water pressure.
  •  
35.
  • Wiorek, Alexander (författare)
  • Solving Analytical Challenges with Thin Layer Electrochemistry
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The decentralization of chemical sensing to attain environmental-related information is today highly desirable to increase the knowledge on biological or geological events as well as effluents. The current state of the field moves toward submersible probes; chemical sensors implemented into submersible devices for quantifying analytes over extended times. However, many sensors are still not robust enough for such applications. Additionally, the detections of most analytes require reagent addition and other steps before analysis (i.e., pre-treatments). For such analyses to be implemented in decentralized measurements, it would be beneficial to find reagentless approaches to modify samples and avoid waste associated with the reagent addition. This thesis aimed to develop such strategies using different solid materials capable of imposing ion-transfer events (actuators) under electrochemical control, to achieve measuring the analytes in the same sample using chemical sensors. Both actuators and sensors were jointly employed in thin layer (or near thin layer) samples, inside newly designed 3D-printed cells. This allowed for small sample volumes (ca 100 µm thicknesses) down to 0.5 µL to be analyzed, and resulted in fast, non-diffusion limited measurements that facilitated the sensor-actuator concepts. First, acidification of thin layer samples using polyaniline (PANI) was investigated. By electrochemical oxidation of PANI, its molecular structure changed resulting in hydrogen ions (acid) being delivered to the thin layer sample within two minutes or less, shifting its pH from ca 8 down to 2–3. By combining PANI and pH-sensors, reliable detection of alkalinity in real and artificial water samples could be achieved for a period of two weeks and possibly more. Also, by combining the PANI-based acidification with planar optodes capable of measuring pH or CO2 with high spatial resolution, buffer capacity or dissolved inorganic carbon (DIC) gradients could be resolved in a 2D domain with sub-mm resolution. PANI-based acidification was tested for sensing several environmental samples, including freshwater plants, brackish water, seawater, and soil, presenting great versatility in analytical performance. Second, a concept of selective deionization of thin layer samples was developed. The importance of such a concept is related to the selectivity of ion-based measurements, where ions such as Li+ or NH4+ are difficult to detect in real samples because of interfering ions increasing their limit of detection (LOD). Non-faradic processes were explored to remove such interferents by using carbon nanotubes (CNTs) for modulating the ion transfer with the sample. To facilitate selective deionization to only remove one ion species, the CNTs were covered with ultra-thin ion-selective membranes (ISMs; ca 200 nm thick). The tandem of CNTs-ISM was found to be capable of selectively removing multiple different cations, proven with the monitoring from both potentiometric sensors and optodes additionally implemented into the thin layer sample. Overall, the CNTs-ISM tandem shows great promise for lowering the LOD of chemical sensors in complex matrixes such as biological or environmental samples, which could aid to decentralized measurements in the future.
  •  
36.
  • Titirici, M., et al. (författare)
  • The sustainable materials roadmap
  • 2022
  • Ingår i: Journal of Physics. - : Institute of Physics. - 2515-7639. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently ‘critical materials’ are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as ‘critical’ by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability. © 2022 The Author(s). 
  •  
37.
  • Hagman, Benjamin, et al. (författare)
  • Steps Control the Dissociation of CO2 on Cu(100)
  • 2018
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 140:40, s. 12974-12979
  • Tidskriftsartikel (refereegranskat)abstract
    • CO2 reduction reactions, which provide one route to limit the emission of this greenhouse gas, are commonly performed over Cu-based catalysts. Here, we use ambient pressure X-ray photoelectron spectroscopy together with density functional theory to obtain an atomistic understanding of the dissociative adsorption of CO2 on Cu(100). We find that the process is dominated by the presence of steps, which promote both a lowering of the dissociation barrier and an efficient separation between adsorbed O and CO, reducing the probability for recombination. The identification of steps as sites for efficient CO2 dissociation provides an understanding that can be used in the design of future CO2 reduction catalysts.
  •  
38.
  • Tehrani, Ali, 1976, et al. (författare)
  • Solubilization of hydrophobic dyes in surfactant solutions
  • 2013
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 6:2, s. 580-608
  • Forskningsöversikt (refereegranskat)abstract
    • In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes) has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs-the critical micelle concentration (CMC)-there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.
  •  
39.
  •  
40.
  • Sepehri, Sobhan, 1986, et al. (författare)
  • Characterization of Binding of Magnetic Nanoparticles to Rolling Circle Amplification Products by Turn-On Magnetic Assay
  • 2019
  • Ingår i: Biosensors-Basel. - : MDPI AG. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The specific binding of oligonucleotide-tagged 100 nm magnetic nanoparticles (MNPs) to rolling circle products (RCPs) is investigated using our newly developed differential homogenous magnetic assay (DHMA). The DHMA measures ac magnetic susceptibility from a test and a control samples simultaneously and eliminates magnetic background signal. Therefore, the DHMA can reveal details of binding kinetics of magnetic nanoparticles at very low concentrations of RCPs. From the analysis of the imaginary part of the DHMA signal, we find that smaller MNPs in the particle ensemble bind first to the RCPs. When the RCP concentration increases, we observe the formation of agglomerates, which leads to lower number of MNPs per RCP at higher concentrations of RCPs. The results thus indicate that a full frequency range of ac susceptibility observation is necessary to detect low concentrations of target RCPs and a long amplification time is not required as it does not significantly increase the number of MNPs per RCP. The findings are critical for understanding the underlying microscopic binding process for improving the assay performance. They furthermore suggest DHMA is a powerful technique for dynamically characterizing the binding interactions between MNPs and biomolecules in fluid volumes.
  •  
41.
  • Amombo Noa, Francoise Mystere, 1988, et al. (författare)
  • A hexagon based Mn(ii) rod metal-organic framework - structure, SF 6 gas sorption, magnetism and electrochemistry
  • 2023
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 59:15, s. 2106-2109
  • Tidskriftsartikel (refereegranskat)abstract
    • A manganese(ii) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6−: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g−1, rapid uptake of sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.
  •  
42.
  • Artemenko, A., et al. (författare)
  • Reference XPS spectra of amino acids
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In this report we present XPS data for five amino acids (AAs) (tryptophan, methionine, glutamine, glutamic acid, and arginine) with different side chain groups measured in solid state (powder form). The theoretically and experimentally obtained chemical structure of AAs are compared. Here, we analyse and discuss C 1 s, N 1 s, O 1s and S 2p core level binding energies, FWHMs, atomic concentrations of the functional groups in AAs. The experimentally obtained and theoretically calculated ratio of atomic concentrations are compared. The zwitterionic nature of methionine and glutamine in solid state was determined from protonated amino groups in N 1s peak and deprotonated carboxylic groups in the C 1s spectrum. The obtained XPS results for AAs well correspond with previously reported data.
  •  
43.
  • Barišić, Antun, et al. (författare)
  • Experimental Data Contributing to the Elusive Surface Charge of Inert Materials in Contact with Aqueous Media
  • 2021
  • Ingår i: Colloids and interfaces. - : MDPI. - 2504-5377. ; 5:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We studied the charging of inert surfaces (polytetrafluoroethylene, i.e., PTFE; graphite; graphene; and hydrophobic silica) using classical colloid chemistry approaches. Potentiometric titrations showed that these surfaces acquired less charge from proton-related reactions than oxide minerals. The data from batch-type titrations for PTFE powder did not show an effect of ionic strength, which was also in contrast with results for classical colloids. In agreement with classical colloids, the electrokinetic results for inert surfaces showed the typical salt level dependence. In some cases, the point of zero net proton charge as determined from mass and tentatively from acid–base titration differed from isoelectric points, which has also been previously observed, for example by Chibowski and co-workers for ice electrolyte interfaces. Finally, we found no evidence for surface contaminations of our PTFE particles before and after immersion in aqueous solutions. Only in the presence of NaCl-containing solutions did cryo-XPS detect oxygen from water. We believe that our low isoelectric points for PTFE were not due to impurities. Moreover, the measured buffering at pH 3 could not be explained by sub-micromolar concentrations of contaminants. The most comprehensive explanation for the various sets of data is that hydroxide ion accumulation occurred at the interfaces between inert surfaces and aqueous solutions.
  •  
44.
  • Brinck, T, et al. (författare)
  • Green Energetic Materials, Chapter 7: "Green propellants Based on Dinitramide Salts: Mastering Stability and Chemical Compatibility Issues"
  • 2014
  • Ingår i: Green Energetic Materials, kapitel 7. - 9781119941293 ; , s. 179-204
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Since the end of the 20th century it has been increasingly realised that the use, or production, of many energetic materials leads to the release of substances which are harmful to both humans and the environment. To address this, the principles of green chemistry can be applied to the design of new products and their manufacturing processes, to create green energetic materials that are virtually free of environmental hazards and toxicity issues during manufacturing, storage, use and disposal. Active research is underway to develop new ingredients and formulations, green synthetic methods and non-polluting manufacturing processes.Green Energetic Materials provides a detailed account of the most recent research and developments in the field, including green pyrotechnics, explosives and propellants. From theoretical modelling and design of new materials, to the development of sustainable manufacturing processes, this book addresses materials already on the production line, as well as considering future developments in this evolving field.Topics covered include:Theoretical design of green energetic materialsDevelopment of green pyrotechnicsGreen primary and secondary explosivesOxidisers and binder materials for green propellantsEnvironmentally sustainable manufacturing technologies for energetic materialsElectrochemical methods for synthesis of energetic materials and waste remediationGreen Energetic Materials is a valuable resource for academic, industrial and governmental researchers working on the development of energetic materials, for both military and civilian applications.
  •  
45.
  • Dissanayake, Makl, et al. (författare)
  • Solid-state solar cells co-sensitized with PbS/CdS quantum dots and N719 dye and based on solid polymer electrolyte with binary cations and nanofillers
  • 2021
  • Ingår i: Journal of Photochemistry and Photobiology a-Chemistry. - : Elsevier BV. - 1010-6030. ; 405
  • Tidskriftsartikel (refereegranskat)abstract
    • Co-sensitized solar cells have gained more attention due to the ability of energy conversion process by absorbing photons from wide range of the solar spectrum including visible and near-infrared region. TiO2 electrodes were co-sensitized with PbS/CdS core-shell quantum dots and N719 dye. PbS/CdS/N719 dye-sensitized solar cells were fabricated with poly(ethylene oxide) based solid polymer electrolyte consisting iodide/triiodide redox couple. The iodide ion conductivity of the electrolyte was enhanced by incorporating a binary iodide salt mixture of different size cations, tetrapropylammonium iodide and potassium iodide. The performance of the solar cell was further enhanced by the incorporating TiO2 P90 nanofiller in the electrolyte. The best solid-state solar cell showed a significantly higher efficiency of 4.41 % with a short-circuit current density of 8.41 mA cm(-2), open circuit voltage of 748.3 mV and a high fill factor of 70.16 % under the simulated light of 100 mW cm(-2) with AM 1.5 filter. This is the first report describing the efficiency enhancement in a solid-state dye sensitized solar cell based on a solid polymer electrolyte incorporating a binary cation iodide salt and TiO2 nanofiller and a photoanode co-sensitized with PbS/CdS quantum dots and N719 dye demonstrating the cumulative effect by the mixed cation effect and co-sensitization.
  •  
46.
  • Visibile, Alberto, et al. (författare)
  • Influence of Strain on the Band Gap of Cu2O
  • 2019
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 31:13, s. 4787-4792
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2O has been considered as a candidate material for transparent conducting oxides and photocatalytic water splitting. Both applications require suitably tuned band gaps. Here we explore the influence of compressive and tensile strain on the band gap by means of density functional theory (DFT) modeling. Our results indicate that the band gap decreases under tensile strain while it increases to a maximum under moderate compressive strain and decreases again under extreme compressive strain. This peculiar behavior is rationalized through a detailed analysis of the electronic structure by means of density of states (DOS), density overlap region indicators (DORI), and crystal overlap Hamilton populations (COHP). Contrary to previous studies we do not find any indications that the band gap is determined by d10-d10 interactions. Instead, our analysis clearly shows that both the conduction and the valence band edges are determined by Cu-O antibonding states. The band gap decrease under extreme compressive strain is associated with the appearance of Cu 4sp states in the conduction band region.
  •  
47.
  • Bericat Vadell, Robert, et al. (författare)
  • Single-electron transfer reactions on surface-modified gold plasmons
  • 2023
  • Ingår i: Materials Today Chemistry. - : Elsevier. - 2468-5194. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoredox catalysis's relevance in organic synthesis research and innovation will increase in the coming decades. However, the processes rely almost exclusively on expensive noble metal complexes, most notably iridium complexes, to absorb light and transfer a single charge to a substrate or a catalyst to initiate cascade transformations. Light-triggered plasmon resonances generate a non-Fermi-Dirac energy distribution with many hot carriers that decay in similar to 1 ps. Their ultrafast relaxation makes performing single electron transfer (SET) transformations challenging. Herein, a novel photosystem is proposed based on surface-modified gold nanoparticles (aka plasmon "molecularization"), which improved charge separation and, more importantly, enabled SET reactions, expanding the portfolio of photocatalysts available for photoredox catalysis. The photosystem was made into an electrode, permitting its use in photoelectrochemical arrangements that leverage electro- and photo-chemical approaches' benefits and chemical engineering solutions, helping the synthetic chemistry efforts towards greener synthesis and synthesis of more complex structures on a scale.
  •  
48.
  • Howe, Andrew, 1995- (författare)
  • Immobilisation of Ru-Based Molecular Catalysts for Electrochemical Water Oxidation
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Artificial photosynthesis requires catalysts for efficient and selective conversions of small molecules. Molecular catalysts are advantageous to use in these instances as they offer precise control over chemical reactivity. They are synthetically tuneable, and their catalytic mechanisms are often well documented and more readily understood than those of solid-state catalysts. In this thesis, the synthetic incorporation of molecular catalysts into heterogenised molecular anodes for water oxidation are evaluated. The catalysts are incorporated as structural linkers into porous metal-organic framework (MOF) structures, and as coordination oligomers stacked onto graphitic surfaces. The preparation of MOF/molecular catalyst hybrid materials of two topologies, UiO (UiO = Universitet i Oslo) and NU-1000 (NU = Northwestern University), were investigated. Multiple synthetic methods for the incorporation of molecular ruthenium-based catalysts into MOFs were examined in papers I and II. In paper III of this thesis, a Ru-bda type molecular complex was successfully used in the solvothermal synthesis of a new MOF. The resulting material is the first of its kind that is built exclusively from molecular water oxidation catalyst linkers. It is shown that MOF incorporation greatly enhances the structural stability of the catalyst linker in chemical water oxidation experiments, giving rise to higher turnover numbers compared to that of a homogenous reference system. Finally, paper IV describes a stable and inert molecular ruthenium complex, which possesses a flexible adaptative multidentate equatorial (FAME) type equatorial ligand with a carbanion on the equatorial ligand that forms a C-Ru bond. This molecular complex is studied in homogeneous phase, and subsequently incorporated into a coordination oligomer, which can be activated for water oxidation catalysis. This finding broadens the field of molecular catalysis significantly, and proves that supramolecular interactions can be used to promote electrocatalysis in complexes which are otherwise too inert and stable to engage in electrocatalytic reactions. 
  •  
49.
  • Shafeie, Samrand, 1984-, et al. (författare)
  • Phase formation, crystal structures and magnetic properties of perovskite-type phases in the system La2Co1+z(MgxTi1-x)1-zO6
  • 2011
  • Ingår i: Journal of Solid State Chemistry. - : Elsevier BV. - 0022-4596 .- 1095-726X. ; 184:1, s. 177-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite-type cobaltates in the system La(2)Co(1+z) (Mg(x)Ti(1-x))(1-z)O(6) were studied for z=0 <= x <= 0.6 and 0 <= x <= 0.9, using X-ray and neutron powder diffraction, electron diffraction (ED), magnetic susceptibility measurements and X-ray absorption near-edge structure (XANES) spectroscopy. The samples were synthesised using the citrate route in air at 1350 degrees C. The space group symmetry of the structure changes from P2(1)/n via Pbnm to R (3) over barc with both increasing Mg content and increasing Co content. The La(2)Co(Mg(x)Ti(1-x))O(6) (z=0) compounds show anti-ferromagnetic couplings of the magnetic moments for the Co below 15 K for x=0, 0.1 and 0.2. XANES spectra show for the compositions 0 <= x <= 0.5 a linear decrease in the L(3)/(L(3)+ L(2))Co-L(2.3) edge branching ratio with x, in agreement with a decrease of the average Co ion spin-state, from a high-spin to a lower-spin-state, with decreasing nominal Co(2+) ion content.
  •  
50.
  • Shafeie, Samrand, 1984- (författare)
  • Structure and Properties Investigations of the La2Co1+z(Ti1-xMgx)1-zO6 Perovskite System
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Perovskite based materials have great potentials for various energy applications and the search for new materials for uses in SOFCs has largely been concentrated to this class of compounds. In this search, we have studied perovskite phases in the system La2Co1+z(Ti1-xMgx)1-zO6, with 0  x 0.9 and z = 0.0, 0.2, 0.4, 0.6. Crystal structures were characterized by XRD and, for selected compositions, also by NPD and SAED. They exhibit with increasing x, as well as increasing z, a progressive increase in symmetry from monoclinic to orthorhombic to rhombohedral. The main focus in this work has been on the investigation of structure-property relations for compositions with 0.0 x 0.5 and z = 0. The nominal oxidation state of Co increases for these with increasing x, from Co2+ for x = 0 to Co3+ for x = 0.5. Magnetic measurements and XANES studies showed that the average spin state of Co changes linearly with increasing x, up to x = 0.5, in accordance with varying proportions of Co with two fixed oxidation states, i.e. Co2+ and Co3+. The data suggests that the Co3+ ions have an IS spin state or a mixture of LS and HS spin states for all compositions with nominally only Co2+ and Co3+ ions, possibly with the exception of the composition with x = 0.1, 0.2 and z = 0, for which the data indicate that the spin state might be HS. The XANES data indicate furthermore that for the perovskite phases with z = 0 and x > 0.5, which in the absence of O atom vacancies contain formally Co4+, the highest oxidation state of Co is Co3+, implying that the substitution of Ti4+ by Mg2+ for x ³ 0.5 effects an oxidation of O2- ions rather than an oxidation of Co3+ ions. The thermal expansion was found to increase nearly linearly with increasing oxidation state of Co. This agrees well with findings in previous studies and is attributable to an increase in the ionic radius of Co3+ ions with increasing temperature, due to a thermal excitation from a LS to IS or LS/HS spin states. High temperature electronic conductivity measurements indicate that the electronic conductivity increases with an increase of both relative and absolute amount of Co3+. The latter can be attributed to an increase in the number of Co-O-Co connections. Additional high temperature magnetic measurements for selected samples, whose susceptibilities did not follow a Curie law behaviour up to room temperature, showed effective magnetic moments that did approach plateaus even at high temperatures (900 K). Interpretations of these data are, however, hindered by the samples losing oxygen during the applied heating-cooling cycle. The present study has shown that the investigated system is suitable for further studies, of more fundamental character, which could provide further insight of the structure-property relationships that depend on the oxidation state of Co.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 8604
Typ av publikation
tidskriftsartikel (6637)
konferensbidrag (693)
doktorsavhandling (493)
forskningsöversikt (238)
annan publikation (220)
licentiatavhandling (169)
visa fler...
bokkapitel (92)
rapport (24)
patent (24)
bok (10)
samlingsverk (redaktörskap) (4)
konstnärligt arbete (3)
visa färre...
Typ av innehåll
refereegranskat (7260)
övrigt vetenskapligt/konstnärligt (1313)
populärvet., debatt m.m. (29)
Författare/redaktör
Younesi, Reza (136)
Brandell, Daniel, 19 ... (130)
Ahuja, Rajeev, 1965- (128)
Edström, Kristina, P ... (116)
Jannasch, Patric (106)
Edström, Kristina (98)
visa fler...
Sun, Licheng, 1962- (88)
Skoglundh, Magnus, 1 ... (85)
Johansson, Patrik, 1 ... (85)
Kessler, Vadim (81)
Hagfeldt, Anders (78)
Primetzhofer, Daniel (75)
Müller, Christian, 1 ... (71)
Bergström, Lennart (71)
Skrifvars, Mikael (69)
Boschloo, Gerrit (69)
Liu, Johan, 1960 (67)
Seisenbaeva, Gulaim (64)
Wang, Ergang, 1981 (64)
Mindemark, Jonas (64)
Ågren, Hans (63)
Hultman, Lars (61)
Nyholm, Leif (61)
Matic, Aleksandar, 1 ... (59)
Rensmo, Håkan (57)
Carlsson, Per-Anders ... (57)
Brandell, Daniel (56)
Roth, Stephan V. (56)
Hedin, Niklas (55)
Rosén, Johanna (54)
Nyholm, Leif, 1961- (54)
Hahlin, Maria (51)
Svensson, Jan-Erik, ... (50)
Kloo, Lars (49)
Salazar-Alvarez, Ger ... (48)
Hryha, Eduard, 1980 (48)
Shen, Zhijian (47)
Strömme, Maria (47)
Hedenqvist, Mikael S ... (46)
Muhammed, Mamoun (44)
Wågberg, Thomas, 197 ... (44)
Wågberg, Lars, 1956- (44)
Lundgren, Edvin (43)
Grönbeck, Henrik, 19 ... (43)
Nyborg, Lars, 1958 (43)
Tai, Cheuk-Wai (42)
Eklund, Per (42)
Jansson, Ulf (41)
Liu, Xianjie (40)
Härelind, Hanna, 197 ... (40)
visa färre...
Lärosäte
Uppsala universitet (2373)
Chalmers tekniska högskola (2366)
Kungliga Tekniska Högskolan (1689)
Linköpings universitet (926)
Stockholms universitet (786)
Lunds universitet (744)
visa fler...
RISE (420)
Luleå tekniska universitet (317)
Umeå universitet (315)
Göteborgs universitet (259)
Sveriges Lantbruksuniversitet (192)
Högskolan i Borås (147)
Karlstads universitet (85)
Linnéuniversitetet (73)
Mittuniversitetet (68)
Karolinska Institutet (58)
Malmö universitet (52)
Örebro universitet (16)
Högskolan Väst (15)
Högskolan i Halmstad (14)
Högskolan i Gävle (11)
Högskolan i Skövde (10)
Högskolan Dalarna (9)
Mälardalens universitet (8)
Jönköping University (8)
Naturhistoriska riksmuseet (3)
Blekinge Tekniska Högskola (3)
IVL Svenska Miljöinstitutet (3)
Riksantikvarieämbetet (2)
VTI - Statens väg- och transportforskningsinstitut (2)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (8573)
Svenska (21)
Kinesiska (2)
Tyska (1)
Franska (1)
Ryska (1)
visa fler...
Norska (1)
Italienska (1)
Finska (1)
Japanska (1)
Koreanska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8604)
Teknik (3146)
Medicin och hälsovetenskap (136)
Lantbruksvetenskap (65)
Humaniora (21)
Samhällsvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy