SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0004 637X OR L773:1538 4357 "

Sökning: L773:0004 637X OR L773:1538 4357

  • Resultat 1-50 av 1696
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdo, A. A., et al. (författare)
  • Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Interstellar Matter and High-energy Cosmic Rays
  • 2009
  • Ingår i: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 703:2, s. 1249-1256
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse γ-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated γ-ray emissivity is (1.63 ± 0.05) × 10-26 photons s-1sr-1 H-atom-1 and (0.66 ± 0.02) × 10-26 photons s-1sr-1 H-atom-1 above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ~10%.
  •  
2.
  • Alfaro-Cuello, M., et al. (författare)
  • A Deep View into the Nucleus of the Sagittarius Dwarf Spheroidal Galaxy with MUSE. II. Kinematic Characterization of the Stellar Populations
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 892:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sagittarius dwarf spheroidal galaxy is in an advanced stage of disruption but still hosts its nuclear star cluster (NSC), M54, at its center. In this paper, we present a detailed kinematic characterization of the three stellar populations present in M54: Young metal-rich (YMR); intermediate-age metal-rich (IMR); and old metal-poor (OMP), based on the spectra of 6500 individual M54 member stars extracted from a large Multi-Unit Spectroscopic Explorer (MUSE)/Very Large Telescope data set. We find that the OMP population is slightly flattened with a low amount of rotation (0.8 km s-1) and with a velocity dispersion that follows a Plummer profile. The YMR population displays a high amount of rotation (5 km s-1) and a high degree of flattening, with a lower and flat velocity dispersion profile. The IMR population shows a high but flat velocity dispersion profile, with some degree of rotation (2 km s-1). We complement our MUSE data with information from Gaia DR2 and confirm that the stars from the OMP and YMR populations are comoving in 3D space, suggesting that they are dynamically bound. While dynamical evolutionary effects (e.g., energy equipartition) are able to explain the differences in velocity dispersion between the stellar populations, the strong differences in rotation indicate different formation paths for the populations, as supported by an N-body simulation tailored to emulate the YMR-OMP system. This study provides additional evidence for the M54 formation scenario proposed in our previous work, where this NSC formed via GC accretion (OMP) and in situ formation from gas accretion in a rotationally supported disk (YMR).
  •  
3.
  • Arabsalmani, M., et al. (författare)
  • Local Starburst Conditions and Formation of GRB 980425/SN 1998bw within a Collisional Ring
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first spatially resolved study of molecular gas in the vicinity of a gamma-ray burst (GRB), using CO(2-1) emission-line observations with the Atacama Large Millimetre Array at ∼50 pc scales. The host galaxy of GRB 980425 contains a ring of high column density H i gas, which is likely to have formed due to a collision between the GRB host and its companion galaxy, within which the GRB is located. We detect 11 molecular gas clumps in the galaxy, 7 of which are within the gas ring. The clump closest to the GRB position is at a projected separation of ∼280 pc. Although it is plausible that the GRB progenitor was ejected from clusters formed in this clump, we argue that the in situ formation of the GRB progenitor is the most likely scenario. We measure the molecular gas masses of the clumps and find them to be sufficient for forming massive star clusters. The molecular gas depletion times of the clumps show a variation of ∼2 dex, comparable with the large variation in depletion times found in starburst galaxies in the nearby universe. This demonstrates the presence of starburst modes of star formation on local scales in the galaxy, even while the galaxy as a whole cannot be categorized as a starburst based on its global properties. Our findings suggest that the progenitor of GRB 9802425 was originated in a young massive star cluster formed in the starburst mode of star formation.
  •  
4.
  • Bedell, Megan, et al. (författare)
  • Kepler-11 is a Solar Twin : Revising the Masses and Radii of Benchmark Planets via Precise Stellar Characterization
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 839:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The six planets of the Kepler-11 system are the archetypal example of a population of surprisingly low-density transiting planets revealed by the Kepler mission. We have determined the fundamental parameters and chemical composition of the Kepler-11 host star to unprecedented precision using an extremely high-quality spectrum from Keck-HIRES (R ≃ 67,000, S/N per pixel at 600 nm). Contrary to previously published results, our spectroscopic constraints indicate that Kepler-11 is a young main-sequence solar twin. The revised stellar parameters and new analysis raise the densities of the Kepler-11 planets by between 20% and 95% per planet, making them more typical of the emerging class of "puffy" close-in exoplanets. We obtain photospheric abundances of 22 elements and find that Kepler-11 has an abundance pattern similar to that of the Sun with a slightly higher overall metallicity. We additionally analyze the Kepler light curves using a photodynamical model and discuss the tension between spectroscopic and transit/TTV-based estimates of stellar density.
  •  
5.
  • Bergemann, Maria, et al. (författare)
  • Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and 3D Models. II. Chemical Properties of the Galactic Metal-poor Disk and the Halo
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 847:1
  • Tidskriftsartikel (refereegranskat)abstract
    • From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged models. We show that compared to the NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]-[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ∼ -1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.
  •  
6.
  • Calamida, Annalisa, et al. (författare)
  • The Not so Simple Stellar System ω Cen. II. Evidence in Support of a Merging Scenario
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 891:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multiband photometry covering ∼5° × 5° across ω Cen collected with the Dark Energy Camera on the 4 m Blanco telescope, combined with Hubble Space Telescope and Wide Field Imager data for the central regions. The unprecedented photometric accuracy and field coverage allows us to confirm the different spatial distribution of blue and red main-sequence stars, and of red giant branch (RGB) stars with different metallicities. The ratio of the number of blue to red main-sequence stars shows that the blue main-sequence stellar subpopulation has a more extended spatial distribution compared to the red main-sequence one, with the frequency of blue main-sequence stars increasing at a distance of ∼20′ from ω Cen's center. Similarly, the more metal-rich RGB stars show a more extended spatial distribution compared to the more metal-poor ones in the outskirts of the cluster. Moreover, the centers of the distributions of metal-rich and metal-poor RGB stars are shifted in different directions with respect to the geometrical center of ω Cen. We constructed stellar density profiles for the blue and red main-sequence stars; they show that the blue main-sequence stellar subpopulation has a more extended spatial distribution compared to the red main-sequence one in the outskirts of ω Cen, confirming the results based on the number ratio. We also computed the ellipticity profile of ω Cen, which has a maximum value of 0.16 at a distance of ∼8′ from the center, and a minimum of 0.05 at ∼30′; the average ellipticity is ∼0.10. The circumstantial evidence presented in this work suggests a merging scenario for the formation of the peculiar stellar system ω Cen.
  •  
7.
  • Dainotti, Maria Giovanna, et al. (författare)
  • Predicting the Redshift of γ-Ray-loud AGNs Using Supervised Machine Learning
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Active galactic nuclei (AGNs) are very powerful galaxies characterized by extremely bright emissions coming from their central massive black holes. Knowing the redshifts of AGNs provides us with an opportunity to determine their distance to investigate important astrophysical problems, such as the evolution of the early stars and their formation, along with the structure of early galaxies. The redshift determination is challenging because it requires detailed follow-up of multiwavelength observations, often involving various astronomical facilities. Here we employ machine-learning algorithms to estimate redshifts from the observed γ-ray properties and photometric data of γ-ray-loud AGNs from the Fourth Fermi-LAT Catalog. The prediction is obtained with the Superlearner algorithm using a LASSO-selected set of predictors. We obtain a tight correlation, with a Pearson correlation coefficient of 71.3% between the inferred and observed redshifts and an average Δz norm = 11.6 10-4. We stress that, notwithstanding the small sample of γ-ray-loud AGNs, we obtain a reliable predictive model using Superlearner, which is an ensemble of several machine-learning models.
  •  
8.
  • Griffith, Emily, et al. (författare)
  • The Similarity of Abundance Ratio Trends and Nucleosynthetic Patterns in the Milky Way Disk and Bulge
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 909:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare abundance ratio trends in a sample of similar to 11,000 Milky Way bulge stars (R-GC < 3 kpc) from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) to those of APOGEE stars in the Galactic disk (5 kpc < R-GC < 11 kpc). We divide each sample into low-Ia (high-[Mg/Fe]) and high-Ia (low-[Mg/Fe]) populations, and in each population, we examine the median trends of [X/Mg] versus [Mg/H] for elements X = Fe, O, Na, Al, Si, P, S, K, Ca, V, Cr, Mn, Co, Ni, Cu, and Ce. To remove small systematic trends of APOGEE abundances with stellar log(g), we resample the disk stars to match the log(g) distributions of the bulge data. After doing so, we find nearly identical median trends for low-Ia disk and bulge stars for all elements. High-Ia trends are similar for most elements, with noticeable (0.05-0.1 dex) differences for Mn, Na, and Co. The close agreement of abundance trends (with typical differences less than or similar to 0.03 dex) implies that similar nucleosynthetic processes enriched bulge and disk stars despite the different star formation histories and physical conditions of these regions. For example, we infer that differences in the high-mass slope of the stellar initial mass function between disk and bulge must have been less than or similar to 0.30. This agreement, and the generally small scatter about the median sequences, means that one can predict all of a bulge star's APOGEE abundances with good accuracy knowing only its measured [Mg/Fe] and [Mg/H] and the observed trends of disk stars.
  •  
9.
  • Hasselquist, Sten, et al. (författare)
  • APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.
  •  
10.
  • Johansen, Anders, et al. (författare)
  • Transport, destruction, and growth of pebbles in the gas envelope of a protoplanet
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 903:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the size evolution of pebbles accreted into the gaseous envelope of a protoplanet growing in a protoplanetary disk, taking into account collisions driven by the relative sedimentation speed as well as the convective gas motion. Using a simple estimate of the convective gas speed based on the pebble accretion luminosity, we find that the speed of the convective gas is higher than the sedimentation speed for all particles smaller than 1 mm. This implies that both pebbles and pebble fragments are strongly affected by the convective gas motion and will be transported by large-scale convection cells both toward and away from the protoplanet's surface. We present a simple scheme for evolving the characteristic size of the pebbles, taking into account the effects of erosion, mass transfer, and fragmentation. Including the downwards motion of convective cells for the transport of pebbles with an initial radius of 1 mm, we find pebble sizes between 100 μm and 1 mm near the surface of the protoplanet. These sizes are generally amenable to accretion at the base of the convection flow. Small protoplanets far from the star (>30 au) nevertheless erode their pebbles to sizes below 10 μm; future hydrodynamical simulations will be needed to determine whether such small fragments can detach from the convection flow and become accreted by the protoplanet.
  •  
11.
  • Landi, E., et al. (författare)
  • Hinode/EIS Measurements of Active-region Magnetic Fields
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 904:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work illustrates the potential of a new diagnostic technique that allows the measurement of the coronal magnetic field strength in solar active regions by utilizing a handful of bright Fe x and Fe xi lines commonly observed by the high-resolution Hinode/EUV Imaging Spectrometer (EIS). The importance of this new diagnostic technique is twofold: (1) the coronal magnetic field is probably the most important quantity in coronal physics, being at the heart of the processes regulating space weather and the properties of the solar corona, and (2) this technique can be applied to the existing EIS archive spanning from 2007 to 2020, including more than one full solar cycle and covering a large number of active regions, flares, and even coronal mass ejections. This new diagnostic technique opens the door to a whole new field of studies, complementing the magnetic field measurements from the upcoming DKIST and UCoMP ground-based observatories, and extending our reach to active regions observed on the disk and until now only sampled by radio measurements. In this work, we present a few examples of the application of this technique to EIS observations taken at different times during the EIS mission, and we discuss its current limitations and the steps to improve its accuracy. We also present a list of EIS observing sequences whose data include all of the lines necessary for the application of this diagnostic technique, to help the solar community navigate the immense set of EIS data and to find observations suitable for measuring the coronal magnetic field.
  •  
12.
  • Landi, E., et al. (författare)
  • SUMER measurement of the fex 3p43d 4D5/2,7/2 energy difference
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have shown that magnetic fields in the solar corona are strong enough to significantly mix the two 3p43d 4D5/2,7/2 levels in Cl-like Fe X. This mixing gives rise to a magnetically induced transition (MIT) component in the bright Fe X 257.3 Å line, commonly observed by current instrumentation, that can be used for coronal magnetic field diagnostics. This line, commonly observed by the still operational EIS spectrometer on board the Hinode satellite since 2007, opens a new window into the coronal magnetic field. However, the strength of this MIT transition depends on the square of the energy difference ΔE of the two 4D5 2,7 2 levels, so that an accurate determination of ΔE is of critical importance to accurately measure coronal magnetic field strengths. In the present work we present a new measurement of ΔE obtained determining the separation of the two component of the Fe X doublet close to 1603.3 Å from deep-exposure spectra of a quiescent streamer at the solar limb taken with the SUMER instrument on board SoHO. Our measurement of ΔE = 2.29 ± 0.50 cm-1 agrees with, and improves upon, an earlier measurements by Judge et al. by decreasing its uncertainty from 80% to approximately 20%, improving the attainable accuracy of magnetic field strength measurements obtainable with the Fe X 257.26 QA line.
  •  
13.
  • Nidever, David L., et al. (författare)
  • The Lazy Giants : APOGEE Abundances Reveal Low Star Formation Efficiencies in the Magellanic Clouds
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 895:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first APOGEE metallicities and alpha-element abundances measured for 3600 red giant stars spanning a large radial range of both the Large (LMC) and Small Magellanic Clouds, the largest Milky Way (MW) dwarf galaxies. Our sample is an order of magnitude larger than that of previous studies and extends to much larger radial distances. These are the first results presented that make use of the newly installed southern APOGEE instrument on the du Pont telescope at Las Campanas Observatory. Our unbiased sample of the LMC spans a large range in metallicity, from [Fe/H] = -0.2 to very metal-poor stars with [Fe/H] -2.5, the most metal-poor Magellanic Cloud (MC) stars detected to date. The LMC [alpha/Fe]-[Fe/H] distribution is very flat over a large metallicity range but rises by similar to 0.1 dex at -1.0 < [Fe/H] less than or similar to -0.5. We interpret this as a sign of the known recent increase in MC star formation activity and are able to reproduce the pattern with a chemical evolution model that includes a recent "starburst." At the metal-poor end, we capture the increase of [alpha/Fe] with decreasing [Fe/H] and constrain the "alpha-knee" to [Fe/H] less than or similar to -2.2 in both MCs, implying a low star formation efficiency of similar to 0.01 Gyr(-1). The MC knees are more metal-poor than those of less massive MW dwarf galaxies such as Fornax, Sculptor, or Sagittarius. One possible interpretation is that the MCs formed in a lower-density environment than the MW, a hypothesis that is consistent with the paradigm that the MCs fell into the MW's gravitational potential only recently.
  •  
14.
  • Pfalzner, Susanne, et al. (författare)
  • Oumuamuas Passing through Molecular Clouds
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 903:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The detections of 1I/‘Oumuamua and 2I/Borisov within just two years of each other impressively demonstrate that interstellar objects (ISOs) must be common in the Milky Way. Once released from their parent system, these ISOs travel for billions of years through interstellar space. While often imagined as empty, interstellar space contains gas and dust most prominent in the form of molecular clouds. Performing numerical simulations, we test how often ISOs cross such molecular clouds (MCs). We find that the ISOs pass through MCs amazingly often. In the solar neighborhood, ISOs typically spend 0.1%–0.2% of their journey inside MCs, for relatively slow ISOs (<5 km s−1) this can increase to 1%–2%, equivalent to 10–20 Myr per Gyr. Thus the dynamically youngest ISOs spend the longest time in MCs. In other words, MCs must mainly contain relatively young ISOs (<1–2 Gyr). Thus the half-life of the seeding process by ISOs is substantially shorter than a stellar lifetime. The actual amount of time spent in MCs decreases with distance to the Galactic center. We find that ISOs pass through MCs so often that backtracing their path to find their parent star beyond 250 Myr seems pointless. Besides, we give a first estimate of the ISO density depending on the distance to the Galactic center based on the stellar distribution.
  •  
15.
  • Ryde, Nils, et al. (författare)
  • Fluorine in the Solar Neighborhood : The Need for Several Cosmic Sources
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 893:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic origin of fluorine is still not well constrained. Several nucleosynthetic channels at different phases of stellar evolution have been suggested, but these must be constrained by observations. For this, the fluorine abundance trend with metallicity spanning a wide range is required. Our aim is to determine stellar abundances of fluorine for -1.1 < [Fe H] < +0.4. We determine the abundances from HF lines in infrared K-band spectra ( 2.3 mm) of cool giants, observed with the IGRINS and Phoenix high-resolution spectrographs. We derive accurate stellar parameters for all our observed K giants, which is important as the HF lines are very temperaturesensitive. We find that [F/Fe] is flat as a function of metallicity at [ F/Fe]0, but increases as the metallicity increases. The fluorine slope shows a clear secondary behavior in this metallicity range. We also find that the [F/ Ce] ratio is relatively flat for -0.6 < [Fe H] < 0, and that for two metal-poor ([Fe H] < - 0.8), s-process element-enhanced giants, we do not detect an elevated fluorine abundance. We interpret all of these observational constraints as indications that several major processes are at play for the cosmic budget of fluorine over time: from those in massive stars at low metallicities, through the asymptotic giant branch star contribution at -0.6 < [Fe H] < 0, to processes with increasing yields with metallicity at supersolar metallicities. The origins of the latter, and whether or not Wolf-Rayet stars and/or novae could contribute at supersolar metallicities, is currently not known. To quantify these observational results, theoretical modeling is required. More observations in the metal-poor region are required to clarify the processes there.
  •  
16.
  • Souto, Diogo, et al. (författare)
  • Stellar Characterization of M Dwarfs from the APOGEE Survey : A Calibrator Sample for M-dwarf Metallicities
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present spectroscopic determinations of the effective temperatures, surface gravities, and metallicities for 21 M dwarfs observed at high resolution (R similar to 22,500) in the H band as part of the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The atmospheric parameters and metallicities are derived from spectral syntheses with 1D LTE plane-parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H2O and FeH molecular line lists. Our sample range in T-eff from similar to 3200 to 3800 K, where 11 stars are in binary systems with a warmer (FGK) primary, while the other 10 M dwarfs have interferometric radii in the literature. We define an M-KS-radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset toward smaller values, with Delta= -0.01 +/- 0.02 R star/R-circle dot. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by similar to 5%-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, show excellent agreement, with a mean difference of [Fe/H](M dwarf - FGK primary) = +0.04 +/- 0.18 dex, confirming the APOGEE metallicity scale derived here for M dwarfs.
  •  
17.
  • Van Kooten, Elishevah, et al. (författare)
  • Hybrid Accretion of Carbonaceous Chondrites by Radial Transport across the Jupiter Barrier
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the origin of chondritic components and their accretion pathways is critical to unraveling the magnitude of mass transport in the protoplanetary disk, as well as the accretionary history of the terrestrial planet region and, by extension, its prebiotic inventory. Here we trace the heritage of pristine components from the relatively unaltered CV chondrite Leoville through their mass-independent Cr and mass-dependent Zn isotope compositions. Investigating these chondritic fractions in such detail reveals an onion-shell structure of chondrules, which is characterized by 54Cr- and 66Zn-poor cores surrounded by increasingly 54Cr- and 66Zn-rich igneous rims and an outer coating of fine-grained dust. This is interpreted as a progressive addition of 54Cr- and 66Zn-rich, CI-like material to the accretion region of these carbonaceous chondrites. Our findings show that the observed Cr isotopic range in chondrules from more altered CV chondrites is the result of chemical equilibration between the chondrules and matrix during secondary alteration. The 54Cr-poor nature of the cores of Leoville chondrules implies formation in the inner solar system and subsequent massive outward chondrule transport past the Jupiter barrier. At the same time, CI-like dust is transferred inward. We propose that the accreting Earth acquired CI-like dust through this mechanism within the lifetime of the disk. This radial mixing of the chondrules and matrix shows the limited capacity of Jupiter to act as an efficient barrier and maintain the proposed noncarbonaceous and carbonaceous chondrite dichotomy over time. Finally, also considering current astrophysical models, we explore both inner and outer solar system origins for the CV chondrite parent body.
  •  
18.
  • Xu, C. K., et al. (författare)
  • NOEMA observations of CO emission in Arp 142 and Arp 238
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 918:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have shown significant differences in the enhancement of the star formation rate (SFR) and star formation efficiency (SFE = SFR/Mmol) between spiral–spiral and spiral–elliptical mergers. In order to shed light on the physical mechanism of these differences, we present NOEMA observations of the molecular gas distribution and kinematics (linear resolutions of ∼2 kpc) in two representative close major-merger star-forming pairs: the spiral–elliptical pair Arp 142 and the spiral–spiral pair Arp 238. The CO in Arp 142 is widely distributed over a highly distorted disk without any nuclear concentration, and an off-center ringlike structure is discovered in channel maps. The SFE varies significantly within Arp 142, with a starburst region (region 1) near the eastern tip of the distorted disk showing an SFE ∼ 0.3 dex above the mean of the control sample of isolated galaxies and the SFE of the main disk (region 4) 0.43 dex lower than the mean of the control sample. In contrast, the CO emission in Arp 238 is detected only in two compact sources at the galactic centers. Compared to the control sample, Arp 238-E shows an SFE enhancement of more than 1 dex, whereas Arp 238-W has an enhancement of ∼0.7 dex. We suggest that the extended CO distribution and large SFE variation in Arp 142 are due to an expanding large-scale ring triggered by a recent high-speed head-on collision between the spiral galaxy and the elliptical galaxy, and the compact CO sources with high SFEs in Arp 238 are associated with nuclear starbursts induced by gravitational tidal torques in a low-speed coplanar interaction.
  •  
19.
  • Aartsen, M. G., et al. (författare)
  • A Search for IceCube Events in the Direction of ANITA Neutrino Candidates
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 892:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy upgoing air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here we test the hypothesis that these events are astrophysical in origin, possibly caused by a point source in the reconstructed direction. Given that any ultra-high-energy tau neutrino flux traversing the Earth should be accompanied by a secondary flux in the TeV-PeV range, we search for these secondary counterparts in 7 yr of IceCube data using three complementary approaches. In the absence of any significant detection, we set upper limits on the neutrino flux from potential point sources. We compare these limits to ANITA's sensitivity in the same direction and show that an astrophysical explanation of these anomalous events under standard model assumptions is severely constrained regardless of source spectrum.
  •  
20.
  • Aartsen, M. G., et al. (författare)
  • Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4 pi steradian field of view, and similar to 99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, as well as to provide valuable insights for other observatories and inform their observational decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these followup analyses, and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observation strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
  •  
21.
  • Abbasi, R., et al. (författare)
  • Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube
  • 2022
  • Ingår i: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities L-IR >= 10(12) L-circle dot, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100M(circle dot) yr(-1), possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z <= 0.13 using 7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E-2.5 power-law spectrum, we report an upper limit on the stacked flux Phi(90%)(nu mu+(nu) over bar mu) = 3.24 x 10(-14) TeV-1 cm(-2) S-1 (E/10 TeV)(-2.5) at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
  •  
22.
  • Abe, K., et al. (författare)
  • Supernova Model Discrimination with Hyper-Kamiokande
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 916:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokande's response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations toward a precise reproduction of the explosion mechanism observed in nature.
  •  
23.
  • Ahrens, Maryon, et al. (författare)
  • ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 892:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis, combined with the throughgoing track-like events used in the seven-year IceCube point-source search. The advantageous field of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity in the Southern Sky by a factor of similar to 2 compared to both individual analyses. In this work, the Southern Sky is scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are investigated. In addition, special focus is given to the region around the Galactic Center, whereby a dedicated search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No significant evidence for cosmic neutrino sources is found, and upper limits on the flux from the various searches are presented.
  •  
24.
  • Ahrens, Maryon, et al. (författare)
  • Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as similar to 1 TeV. Previously we showed that, even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions-especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this data set is particularly well suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment to date. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy.
  •  
25.
  • Kim, Ji Hoon, et al. (författare)
  • THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
  • 2016
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 833:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.
  •  
26.
  • Aguichine, Artyom, et al. (författare)
  • Rocklines as cradles for refractory solids in the protosolar nebula
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 901:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In our solar system, terrestrial planets and meteoritical matter exhibit various bulk compositions. To understand this variety of compositions, formation mechanisms of meteorites are usually investigated via a thermodynamic approach that neglects the processes of transport throughout the protosolar nebula. Here, we investigate the role played by rocklines (condensation/sublimation lines of refractory materials) in the innermost regions of the protosolar nebula to compute the composition of particles migrating inward toward the disk as a function of time. To do so, we utilize a one-dimensional accretion disk model with a prescription for dust and vapor transport, sublimation, and recondensation of refractory materials (ferrosilite, enstatite, fayalite, forsterite, iron sulfide, metal iron, and nickel). We find that the diversity of the bulk composition of cosmic spherules, chondrules, and chondrites can be explained by their formation close to rocklines, suggesting that solid matter is concentrated in the vicinity of these sublimation/condensation fronts. Although our model relies a lot on the number of considered species and the availability of thermodynamic data governing state changes, it suggests that rocklines played a major role in the formation of small and large bodies in the innermost regions of the protosolar nebula. Our model gives insights on the mechanisms that might have contributed to the formation of Mercury's large core.
  •  
27.
  • Arabsalmani, M., et al. (författare)
  • A Superluminous Supernova in High Surface Density Molecular Gas within the Bar of a Metal-rich Galaxy
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 882:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the Atacama Large Millimeter/submillimeter Array observations of the metal-rich host galaxy of superluminous supernova (SLSN) PTF10tpz, a barred spiral galaxy at z = 0.03994. We find the CO(1-0) emission to be confined within the bar of the galaxy. The distribution and kinematics of molecular gas in the host galaxy resemble gas flows along two lanes running from the tips of the bar toward the galaxy center. These gas lanes end in a gaseous structure in the inner region of the galaxy, likely associated with an inner Lindblad resonance. The interaction between the large-scale gas flows in the bar and the gas in the inner region plausibly leads to the formation of massive molecular clouds and consequently massive clusters. This in turn can result in formation of massive stars, and thus the likely progenitor of the SLSN in a young, massive cluster. This picture is consistent with SLSN PTF10tpz being located near the intersection regions of the gas lanes and the inner structure. It is also supported by the high molecular gas surface densities that we find in the vicinity of the SLSN, surface densities that are comparable with those in interacting galaxies or starburst regions in nearby galaxies. Our findings therefore suggest in situ formation of massive stars due to the internal dynamics of the host galaxy and also lend support to high densities being favorable conditions for formation of SLSN progenitors.
  •  
28.
  • Bergemann, Maria, et al. (författare)
  • Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and 〈3〉 Models. I. Methods and Application to Magnesium Abundances in Standard Stars
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 847:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine Mg abundances in six Gaia benchmark stars using theoretical one-dimensional (1D) hydrostatic model atmospheres, as well as temporally and spatially averaged three-dimensional (〈3D〉) model atmospheres. The stars cover a range of Teff from 4700 to 6500 K, log g from 1.6 to 4.4 dex, and [Fe H] from -3.0 dex to solar. Spectrum synthesis calculations are performed in local thermodynamic equilibrium (LTE) and in non-LTE (NLTE) using the oscillator strengths recently published by Pehlivan Rhodin et al. We find that: (a) Mg abundances determined from the infrared spectra are as accurate as the optical diagnostics, (b) the NLTE effects on Mg I line strengths and abundances in this sample of stars are minor (although for a few Mg I lines the NLTE effects on abundance exceed 0.6 dex in 〈3D〉 and 0.1 dex in 1D, (c) the solar Mg abundance is 7.56 ± 0.05 dex (total error), in excellent agreement with the Mg abundance measured in CI chondritic meteorites, (d) the 1D NLTE and 〈3D〉 NLTE approaches can be used with confidence to analyze optical Mg I lines in spectra of dwarfs and sub-giants, but for red giants the Mg I 5711 line should be preferred, (e) low-excitation Mg I lines are sensitive to the atmospheric structure; for these lines, LTE calculations with 〈3D〉 models lead to significant systematic abundance errors. The methods developed in this work will be used to study Mg abundances of a large sample of stars in the next paper in the series.
  •  
29.
  • Buchhave, Lars A., et al. (författare)
  • Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 856:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical simulations, which indicate that metal-rich stars typically form multiple Jupiters, leading to planet-planet interactions and, hence, a prevalence of either eccentric cool Jupiters or hot Jupiters with circularized orbits. Although the samples are small and exhibit variations in their metallicities, suggesting that numerous processes other than metallicity affect the formation of planetary systems, the data in hand suggests that Jupiter analogs and terrestrial-sized planets form around stars with average metallicities close to solar, whereas high-metallicity systems preferentially host eccentric cool Jupiter or hot Jupiters, indicating that higher metallicity systems may not be favorable for the formation of planetary systems akin to the Solar System.
  •  
30.
  • Carrera, Daniel, et al. (författare)
  • Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 839:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60-130 M ⊕) planetesimal belts beyond 100 au and up to ∼20 M ⊕ of planetesimals in the middle regions (3-100 au). Our most comprehensive model forms 8 M ⊕ of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.
  •  
31.
  • Cedenblad, Lukas, et al. (författare)
  • Planetesimals on Eccentric Orbits Erode Rapidly
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 921:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the possibility of erosion of planetesimals in a protoplanetary disk. We use theory and direct numerical simulations (lattice Boltzmann method) to calculate the erosion of large-much larger than the mean-free path of gas molecules-bodies of different shapes in flows. We find that erosion follows a universal power law in time, at intermediate times, independent of the Reynolds number of the flow and the initial shape of the body. Consequently, we estimate that planetesimals in eccentric orbits, of even very small eccentricity, rapidly (in about 100 yr) erodes away if the semimajor axis of their orbit lies in the inner disk-less than about 10 au. Even planetesimals in circular orbits erode away in approximately 10,000 yr if the semimajor axis of their orbits are <0.6 au.
  •  
32.
  • Cordoni, G., et al. (författare)
  • Gaia and Hubble Unveil the Kinematics of Stellar Populations in the Type II Globular Clusters ? Centauri and M22
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of multiple stellar populations in globular clusters (GCs) is one of the greatest mysteries of modern stellar astrophysics. N-body simulations suggest that the present-day dynamics of GC stars can constrain the events that occurred at high redshift and led to the formation of multiple populations. Here, we combine multiband photometry from the Hubble Space Telescope (HST) and ground-based facilities with HST and Gaia Data Release 2 proper motions to investigate the spatial distributions and the motions in the plane of the sky of multiple populations in the Type II GCs NGC 5139 (? Centauri) and NGC 6656 (M22). We first analyzed stellar populations with different metallicities. Fe-poor and Fe-rich stars in M22 share similar spatial distributions and rotation patterns and exhibit similar isotropic motions. Similarly, the two main populations with different iron abundance in ? Centauri share similar ellipticities and rotation patterns. When different radial regions are analyzed, we find that the rotation amplitude decreases from the center toward the external regions. Fe-poor and Fe-rich stars of ? Centauri are radially anisotropic in the central region and show similar degrees of anisotropy. We also investigate the stellar populations with different light-element abundances and find that their N-rich stars exhibit higher ellipticity than N-poor stars. In ? Centauri both stellar groups are radially anisotropic. Interestingly, N-rich, Fe-rich stars exhibit different rotation patterns than N-poor stars with similar metallicities. The stellar populations with different nitrogen of M22 exhibit similar rotation patterns and isotropic motions. We discuss these findings in the context of the formation of multiple populations.
  •  
33.
  • Feuillet, Diane, et al. (författare)
  • An old, metal-rich accreted stellar component in the Milky Way stellar disk
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 934:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the possibility that the Milky Ways' cool stellar disk includes mergers with ancient stars. Galaxies are understood to form in a hierarchical manner, where smaller (proto-)galaxies merge into larger ones. Stars in galaxies, like the Milky Way, contain in their motions and elemental abundance tracers of past events and can be used to disentangle merger remnants from stars that formed in the main galaxy. The merger history of the Milky Way is generally understood to be particularly easy to study in the stellar halo. The advent of the ESA astrometric satellite Gaia has enabled the detection of completely new structures in the halo such as the Gaia-Enceladus-Sausage. However, simulations also show that mergers may be important for the build-up of the cool stellar disks. Combining elemental abundances for ∼100 giant branch stars from APOGEE DR17 and astrometric data from Gaia we use elemental abundance ratios to find a hitherto unknown, old stellar component in the cool stellar disk in the Milky Way. We further identify a small sample of RR Lyrae variables with disk kinematics that also show the same chemical signature as the accreted red giant stars in the disk. These stars allow us to date the stars in the accreted component. We find that they are exclusively old.
  •  
34.
  • Finzell, Thomas, et al. (författare)
  • A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 852:2
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanisms involved in the production ofgamma-rays are still not well understood. We present here a comprehensive multiwavelength data set - from radio to X-rays - for the most gamma-ray-luminous classical nova to date, V1324 Sco. Using this data set, we show that V1324 Sco is a canonical dusty Fe ii-type nova, with a maximum ejecta velocity of 2600 km s-1 and an ejecta mass of a few × 10-5 M⊙. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324 Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324 Sco with other gamma-ray-detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma-rays in novae.
  •  
35.
  • Franchini, Mariagrazia, et al. (författare)
  • The Gaia-ESO Survey : Carbon Abundance in the Galactic Thin and Thick Disks
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 888:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on carbon, which is one of the most abundant elements in the universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. The origin of carbon and the relative importance of massive and low- to intermediate-mass stars in producing it is still a matter of debate. We aim at better understanding the origin of carbon by studying the trends of [C/H], [C/Fe], and [C/Mg] versus [Fe/H] and [Mg/H] for 2133 FGK dwarf stars from the fifth Gaia-ESO Survey internal data release (GES iDR5). The availability of accurate parallaxes and proper motions from Gaia DR2 and radial velocities from GES iDR5 allows us to compute Galactic velocities, orbits, absolute magnitudes, and, for 1751 stars, Bayesian-derived ages. Three different selection methodologies have been adopted to discriminate between thin- and thick-disk stars. In all the cases, the two stellar groups show different [C/H], [C/Fe], and [C/Mg] and span different age intervals, with the thick-disk stars being, on average, older than the thin-disk ones. The behaviors of [C/H], [C/Fe], and [C/Mg] versus [Fe/H], [Mg/H], and age all suggest that C is primarily produced in massive stars. The increase of [C/Mg] for young thin-disk stars indicates a contribution from low-mass stars or the increased C production from massive stars at high metallicities due to the enhanced mass loss. The analysis of the orbital parameters R-med and supports an "inside-out" and "upside-down" formation scenario for the disks of the Milky Way.
  •  
36.
  • Guerco, Rafael, et al. (författare)
  • Fluorine Abundances in the Galactic Disk
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 885:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical evolution of fluorine is investigated in a sample of Milky Way red giant stars that span a significant range in metallicity from [Fe/H] ? ?1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-resolution infrared spectra near 2.335 ?m. The red giants are members of the thin and thick disk/halo, with two stars being likely members of the outer disk Monoceros overdensity. At lower metallicities, with [Fe/H] < ?0.4 to ?0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] ? ?0.3 to ?0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] and displays a near-secondary behavior with respect to Fe. Comparisons with various models of chemical evolution suggest that in the low-metallicity regime (dominated here by thick-disk stars), a primary evolution of F-19 with Fe, with a subsolar [F/Fe] value that roughly matches the observed plateau, can be reproduced by a model incorporating neutrino nucleosynthesis in the aftermath of the core collapse in Type II supernovae. A primary behavior for [F/Fe] at low metallicity is also observed for a model including rapidly rotating low-metallicity massive stars, but this overproduces [F/Fe] at low metallicity. The thick-disk red giants in our sample span a large range of galactocentric distance (R-g ? 6?13.7 kpc) yet display a roughly constant value of [F/Fe], indicating a very flat gradient (with a slope of 0.02 0.03 dex kpc(?1)) of this elemental ratio over a significant portion of the Galaxy having ?Z? 300 pc away from the Galaxy midplane.
  •  
37.
  • Guerco, Rafael, et al. (författare)
  • Fluorine Abundances in the Globular Cluster M4
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 876:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present chemical abundances for the elements carbon, sodium, and fluorine in 15 red giants of the globular cluster M4, as well as six red giants of the globular cluster w Centauri. The chemical abundances were calculated in LTE via spectral synthesis. The spectra analyzed are high-resolution spectra obtained in the near-infrared region around 2.3 mu m with the Phoenix spectrograph on the 8.1 m Gemini South Telescope, the IGRINS spectrograph on the McDonald Observatory 2.7 m Telescope, and the CRIRES spectrograph on the ESO 8.2 m Very Large Telescope. The results indicate a significant reduction in the fluorine abundances when compared to previous values from the literature for M4 and w Centauri, due to a downward revision in the excitation potentials of the HF (1-0) R9 line used in the analysis. The fluorine abundances obtained for the M4 red giants are found to be anticorrelated with those of Na, following the typical pattern of abundance variations seen in globular clusters between distinct stellar populations. In M4, as the Na abundance increases by similar to+0.4 dex, the F abundance decreases by similar to-0.2 dex. A comparison with abundance predictions from two sets of stellar evolution models finds that the models predict somewhat less F depletion (similar to-0.1 dex) for the same increase of +0.4 dex in Na.
  •  
38.
  • Harper, Graham M., et al. (författare)
  • The Photospheric Temperatures of Betelgeuse during the Great Dimming of 2019/2020 : No New Dust Required
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The processes that shape the extended atmospheres of red supergiants, heat their chromospheres, create molecular reservoirs, drive mass loss, and create dust remain poorly understood. Betelgeuse's V-band "Great Dimming"event of 2019 September/2020 February and its subsequent rapid brightening provides a rare opportunity to study these phenomena. Two different explanations have emerged to explain the dimming; new dust appeared in our line of sight attenuating the photospheric light, or a large portion of the photosphere had cooled. Here we present five years of Wing three-filter (A, B, and C band) TiO and near-IR photometry obtained at the Wasatonic Observatory. These reveal that parts of the photosphere had a mean effective temperature (T eff) significantly lower than that found by Levesque & Massey. Synthetic photometry from MARCS-model photospheres and spectra reveal that the V band, TiO index, and C-band photometry, and previously reported 4000-6800 Å spectra can be quantitatively reproduced if there are multiple photospheric components, as hinted at by Very Large Telescope (VLT)-SPHERE images in Montargès et al. If the cooler component has ΔT eff ≥ 250 K cooler than 3650 K, then no new dust is required to explain the available empirical constraints. A coincidence of the dominant short-(∼430 days) and long-period (∼5.8 yr) V-band variations occurred near the time of deep minimum (Guinan et al. 2019a). This is in tandem with the strong correlation of V mag and photospheric radial velocities, recently reported by Dupree et al. (2020b). These suggest that the cooling of a large fraction of the visible star has a dynamic origin related to the photospheric motions, perhaps arising from pulsation or large-scale convective motions.
  •  
39.
  • Hasselquist, Sten, et al. (författare)
  • Exploring the stellar age distribution of the milky way bulge using APOGEE
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 901:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present stellar age distributions of the Milky Way bulge region using ages for ∼6000 high-luminosity (log(g)< 2.0), metal-rich ([Fe/H] ≥ -0.5) bulge stars observed by the Apache Point Observatory Galactic Evolution Experiment. Ages are derived using The Cannon label-transfer method, trained on a sample of nearby luminous giants with precise parallaxes for which we obtain ages using a Bayesian isochrone-matching technique. We find that the metal-rich bulge is predominantly composed of old stars (>8 Gyr). We find evidence that the planar region of the bulge (ZGC| 0.25 kpc) is enriched in metallicity, Z, at a faster rate (dZ/dt ∼ 0.0034 Gyr-1) than regions farther from the plane (dZ/dt ∼ 0.0013 Gyr-1 at | ZGC| > 1.00 kpc). We identify a nonnegligible fraction of younger stars (age ∼2-5 Gyr) at metallicities of +0.2 < [Fe/H] < +0.4. These stars are preferentially found in the plane (ZGC| ≤ 0.25 kpc) and at R cy ≈ 2-3 kpc, with kinematics that are more consistent with rotation than are the kinematics of older stars at the same metallicities. We do not measure a significant age difference between stars found inside and outside the bar. These findings show that the bulge experienced an initial starburst that was more intense close to the plane than far from the plane. Then, star formation continued at supersolar metallicities in a thin disk at 2 kpc ≲ R cy ≲ 3 kpc until ∼2 Gyr ago.
  •  
40.
  • Ida, Shigeru, et al. (författare)
  • Slowing Down Type II Migration of Gas Giants to Match Observational Data
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 864:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-Jupiter-mass planets are piled up at 1 au, while Jupiter/sub-Jupiter-mass planets are broadly distributed from ∼0.03 au to beyond 1 au. This feature has not been explained by theoretical predictions. In order to reconcile this inconsistency, we investigate evolution of gas giants with a new type II migration formula by Kanagawa et al., by comparing the migration, growth timescales of gas giants, and disk lifetime, and by population synthesis simulation. While the classical migration model assumes that a gas giant opens up a clear gap in the protoplanetary disk and the planet migration is tied to the disk gas accretion, recent high-resolution simulations show that the migration of gap-opening planets is decoupled from the disk gas accretion and Kanagawa et al. proposed that type II migration speed is nothing other than type I migration speed with the reduced disk gas surface density in the gap. We show that with this new formula, type II migration is significantly reduced for super-Jupiter-mass planets, if the disk accretion is driven by the disk wind as suggested by recent magnetohydrodynamic simulations. Population synthesis simulations show that super-Jupiter-mass planets remain at 1 au without any additional ingredient such as disk photoevaporation. Therefore, the mystery of the pile-up of gas giants at 1 au will be theoretically solved if the new formula is confirmed and wind-driven disk accretion dominates.
  •  
41.
  • Imig, Julie, et al. (författare)
  • A Tale of Two Disks : Mapping the Milky Way with the Final Data Release of APOGEE
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 954:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]), alpha-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-a disk, high-alpha disk, and total population independently. The low-alpha disk exhibits a negative radial metallicity gradient of -0.06 +/- 0.001 dex kpc(-1), which flattens with distance from the midplane. The high-alpha disk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]-[Fe/H] plane and in the [Mg/Fe]-age relation persist across the entire disk. The age estimates have typical uncertainties of similar to 0.15 in log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.
  •  
42.
  •  
43.
  • Jones, O. C., et al. (författare)
  • Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 841:1, s. Article Number: 15-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (GRAMS), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.
  •  
44.
  • Landi, E., et al. (författare)
  • Hinode/EIS Coronal Magnetic Field Measurements at the Onset of a C2 Flare
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 913:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study Hinode/EIS observations of an active region taken before, during, and after a small C2.0 flare in order to monitor the evolution of the magnetic field and its relation to the flare event. We find that while the flare left the active region itself unaltered, the event included a large magnetic field enhancement (MFE), which consisted of a large magnetic field strength increase to values just short of 500 G in a rather small region where no magnetic field was measured before. This MFE is observed during the impulsive phase of the flare at the footpoints of flare loops, its magnetic energy is sufficient to power the radiative losses of the entire flare, and has completely dissipated after the flare. We argue that the MFE might occur at the location of the reconnection event triggering the flare, and note that it formed within 22 minutes of the flare start (as given by the EIS raster return time). These results open the door to a new line of studies aimed at determining whether MFEs can be flare precursor events or used for Space Weather forecasts, what advance warning time they could provide and if this time is long enough to allow for mitigation procedures to be implemented; as well as to explore which physical processes lead to MFE formation and dissipation, whether such processes are the same in both long-duration and impulsive flares, and whether they can be predicted by theoretical models.
  •  
45.
  • Lee, Elspeth K.H., et al. (författare)
  • 3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT : A GPU-accelerated MCRT Code
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 929:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiative transfer (RT) is a key component for investigating atmospheres of planetary bodies. With the 3D nature of exoplanet atmospheres being important in giving rise to their observable properties, accurate and fast 3D methods are required to be developed to meet future multidimensional and temporal data sets. We develop an open-source GPU RT code, gCMCRT, a Monte Carlo RT forward model for general use in planetary atmosphere RT problems. We aim to automate the post-processing pipeline, starting from direct global circulation model (GCM) output to synthetic spectra. We develop albedo, emission, and transmission spectra modes for 3D and 1D input structures. We include capability to use correlated-k and high-resolution opacity tables, the latter of which can be Doppler-shifted inside the model. We post-process results from several GCM groups, including ExoRad, SPARC/MITgcm THOR, UK Met Office UM, Exo-FMS, and the Rauscher model. Users can therefore take advantage of desktop and HPC GPU computing solutions. gCMCRT is well suited for post-processing large GCM model grids produced by members of the community and for high-resolution 3D investigations.
  •  
46.
  • Li, Daohai, et al. (författare)
  • Metal Pollution of the Solar White Dwarf by Solar System Small Bodies
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 924:2
  • Tidskriftsartikel (refereegranskat)abstract
    • White dwarfs (WDs) often show metal lines in their spectra, indicating accretion of asteroidal material. Our Sun is to become a WD in several gigayears. Here, we examine how the solar WD accretes from the three major small body populations: the main belt asteroids (MBAs), Jovian Trojan asteroids (JTAs), and trans-Neptunian objects (TNOs). Owing to the solar mass loss during the giant branch, 40% of the JTAs are lost but the vast majority of MBAs and TNOs survive. During the WD phase, objects from all three populations are sporadically scattered onto the WD, implying ongoing accretion. For young cooling ages ≲100 Myr, accretion of MBAs predominates; our predicted accretion rate ∼106 g s-1 falls short of observations by two orders of magnitude. On gigayear timescales, thanks to the consumption of the TNOs that kicks in ⪆100 Myr, the rate oscillates around 106-107 g s-1 until several gigayears and drops to ∼105 g s-1 at 10 Gyr. Our solar WD accretion rate from 1 Gyr and beyond agrees well with those of the extrasolar WDs. We show that for the solar WD, the accretion source region evolves in an inside-out pattern. Moreover, in a realistic small body population with individual sizes covering a wide range as WD pollutants, the accretion is dictated by the largest objects. As a consequence, the accretion rate is lower by an order of magnitude than that from a population of bodies of a uniform size and the same total mass and shows greater scatter.
  •  
47.
  • Li, W., et al. (författare)
  • A Theoretical Investigation of the Magnetic-field-induced Transition in Fe X, of Importance for Measuring Magnetic Field Strengths in the Solar Corona
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 913:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of the magnetic-field-induced transition (MIT) in Fe X for the measurement of the magnetic field strength in the solar corona has been discussed and demonstrated in a number of recent studies. This diagnostic technique depends on, among other conditions, the accuracy of the atomic data for Fe X. In the present work, we carry out a large-scale calculation for the atomic properties needed for the determination of the MIT rate using the multiconfiguration Dirac-Hartree-Fock method. Four computational schemes are employed to study the convergence of the atomic properties of interest. Comparison with other experimental and theoretical sources are performed and recommended values are suggested for important properties, e.g., the magnetic induced transition probabilities as a function of magnetic field strengths. The present calculations affect magnetic field measurements by decreasing the magnetic field strengths by 10%-15%, leading to differences in magnetic energy up to 30%. We recommend that the current data should be employed in magnetic field measurements in the future.
  •  
48.
  • Lyra, Wladimir, et al. (författare)
  • An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 946:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1-2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1-2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10−6 to 10−4 M ⊕, over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.
  •  
49.
  • Mousis, Olivier, et al. (författare)
  • Jupiter's Formation in the Vicinity of the Amorphous Ice Snowline
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Argon, krypton, xenon, carbon, nitrogen, sulfur, and phosphorus have all been measured and found to be enriched by a quasi uniform factor in the 2-4 range, compared to their protosolar values, in the atmosphere of Jupiter. To elucidate the origin of these volatile enrichments, we investigate the possibility of an inward drift of particles made of amorphous ice and adsorbed volatiles, and their ability to enrich in heavy elements the gas phase of the protosolar nebula, once they cross the amorphous-to-crystalline ice transition zone, following the original idea formulated by Monga & Desch. To do so, we use a simple accretion disk model coupled to modules depicting the radial evolution of icy particles and vapors, assuming growth, fragmentation, and crystallization of amorphous grains. We show that it is possible to accrete supersolar gas from the nebula onto proto-Jupiter's core to form its envelope, and allowing it to match the observed volatile enrichments. Our calculations suggest that nebular gas, with a metallicity similar to that measured in Jupiter, can be accreted by its envelope if the planet is formed in the ∼0.5-2 Myr time range and in the 0.5-20 au distance range from the Sun, depending on the adopted viscosity parameter of the disk. These values match a wide range of Jupiter's formation scenarios, including in situ formation and migration/formation models.
  •  
50.
  • Price-Whelan, Adrian, et al. (författare)
  • The Astropy Project : Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package*
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 935:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 1696
Typ av publikation
tidskriftsartikel (1687)
forskningsöversikt (9)
Typ av innehåll
refereegranskat (1684)
populärvet., debatt m.m. (8)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ackermann, M. (148)
Reimer, O. (117)
Reimer, A. (113)
Johannesson, G. (110)
Longo, F. (109)
Ajello, M. (108)
visa fler...
Guiriec, S. (107)
Ciprini, S. (106)
Giglietto, N. (106)
Bellazzini, R. (105)
Morselli, A. (105)
Bastieri, D. (105)
Kuss, M. (105)
Sgrò, C. (105)
Barbiellini, G. (104)
Fusco, P. (104)
Loparco, F. (104)
Mazziotta, M. N. (104)
Piron, F. (104)
Raino, S. (104)
Spinelli, P. (104)
Bregeon, J. (103)
Cameron, R. A. (103)
Giordano, F. (103)
Lubrano, P. (103)
Nuss, E. (103)
Orlando, E. (103)
Bruel, P. (102)
Gargano, F. (102)
Mizuno, T. (102)
Pesce-Rollins, M. (102)
Baldini, L. (101)
Moskalenko, I. V. (101)
de Palma, F. (100)
Razzano, M. (100)
Johnson, A. S. (100)
Torres, D. F. (99)
Michelson, P. F. (99)
Fukazawa, Y. (99)
Cohen-Tanugi, J. (98)
Favuzzi, C. (98)
Spandre, G. (98)
Grenier, I. A. (97)
Monzani, M. E. (96)
Rando, R. (96)
Caraveo, P. A. (95)
Porter, T. A. (95)
Thayer, J. B. (95)
Paneque, D. (94)
Lovellette, M. N. (94)
visa färre...
Lärosäte
Stockholms universitet (886)
Kungliga Tekniska Högskolan (332)
Chalmers tekniska högskola (274)
Uppsala universitet (257)
Lunds universitet (147)
Linnéuniversitetet (64)
visa fler...
Malmö universitet (34)
Göteborgs universitet (15)
Umeå universitet (12)
Högskolan i Halmstad (6)
Linköpings universitet (6)
Högskolan Dalarna (5)
Luleå tekniska universitet (3)
Mittuniversitetet (2)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (1690)
Odefinierat språk (5)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1576)
Teknik (21)
Samhällsvetenskap (3)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy