SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0014 4886 OR L773:1090 2430 "

Sökning: L773:0014 4886 OR L773:1090 2430

  • Resultat 1-50 av 325
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Povlsen, Bo, et al. (författare)
  • Functional evaluation of regenerated and misrouted axons to glabrous and hairy skin of the rat hind foot after sciatic neurotomy and suture
  • 1995
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 132:1, s. 99-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The function of misrouted regenerated polymodal nociceptor C-fibers and low-threshold mechanoreceptive axons in the lateral plantar nerve (LPN) and in the foot branch of the superficial peroneal nerve (fSPN) was evaluated 3 months after unilateral sciatic neurotomy and suture. Two weeks before evaluation the tibial fascicle (or the peroneal fascicle) above the neurotomy was cut and tied off. In this way only functional regeneration of misrouted axons was tested in the LPN (or the fSPN). In regenerated animals the glabrous skin area had no functional fSPN-related low-threshold mechanoreceptive axons. However, the hairy fSPN skin area showed function of misrouted LPN-related low-threshold mechanoreceptive axons. In both the glabrous skin domain innervated by the LPN and the hairy skin area supplied by the fSPN, functional regeneration of misrouted polymodal nociceptor C-fibers was found. We conclude that functional regeneration of misrouted axons related to polymodal nociceptive units and low-threshold mechanoreceptive units is more efficient in hairy skin of the rat foot whereas only misrouted polymodal nociceptor C-fibers recover function in glabrous skin.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Andersson, Daniel, et al. (författare)
  • Motor activity-induced dopamine release in the substantia nigra is regulated by muscarinic receptors.
  • 2010
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 221:1, s. 251-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Nigro-striatal neurons release dopamine not only from their axon terminals in the striatum, but also from somata and dendrites in the substantia nigra. Somatodendritic dopamine release in the substantia nigra can facilitate motor function by mechanisms that may act independently of axon terminal dopamine release in the striatum. The dopamine neurons in the substantia nigra receive a cholinergic input from the pedunculopontine nucleus. Despite recent efforts to introduce this nucleus as a potential target for deep brain stimulation to treat motor symptoms in Parkinson's disease; and the well-known antiparkinsonian effects of anticholinergic drugs; the cholinergic influence on somatodendritic dopamine release is not well understood. The aim of this study was to investigate the possible regulation of locomotor-induced dopamine release in the substantia nigra by endogenous acetylcholine release. In intact and 6-OHDA hemi-lesioned animals alike, the muscarinic antagonist scopolamine, when perfused in the substantia nigra, amplified the locomotor-induced somatodendritic dopamine release to approximately 200% of baseline, compared to 120-130% of baseline in vehicle-treated animals. A functional importance of nigral muscarinic receptor activation was demonstrated in hemi-lesioned animals, where motor performance was significantly improved by scopolamine to 82% of pre-lesion performance, as compared to 56% in vehicle-treated controls. The results indicate that muscarinic activity in the substantia nigra is of functional importance in an animal Parkinson's disease model, and strengthen the notion that nigral dopaminergic regulation of motor activity/performance is independent of striatal dopamine release.
  •  
6.
  • Barry, Melissa, et al. (författare)
  • Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model
  • 2014
  • Ingår i: Experimental Neurology. - : Academic Press. - 0014-4886 .- 1090-2430. ; 261, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Following a cerebral cortex injury such as stroke, excessive inhibition around the core of the injury is thought to reduce the potential for new motor learning. In part, this may be caused by an imbalance of interhemispheric inhibition (IHI); therefore, treatments that relieve the inhibitory drive from the healthy hemisphere to the peri-lesional area may enhance motor recovery. Theta burst stimulation delivered by transcranial magnetic stimulation has been tested as a means of normalizing IHI, but clinical results have been variable. Here we use a new rat model of synaptic IHI to demonstrate that electrical intracranial theta burst stimulation causes long-lasting changes in motor cortex excitability. Further, we show that contralateral intermittent theta burst stimulation (iTBS) blocks IHI via a mechanism involving cannabinoid receptors. Finally, we show that contralesional iTBS applied during recovery from cortical injury in rats improves the recovery of motor function. These findings suggest that theta burst stimulation delivered through implanted electrodes may be a promising avenue to explore for augmenting rehabilitation from brain injury.
  •  
7.
  • Berg, A., et al. (författare)
  • Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3
  • 2012
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 237:1, s. 8-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement proteins C1q and C3 play a critical role in synaptic elimination during development. Axotomy of spinal motoneurons triggers removal of synaptic terminals from the cell surface of motoneurons by largely unknown mechanisms. We therefore hypothesized that the complement system is involved also in synaptic stripping of injured motoneurons. In the sciatic motor pool of wild type (WT) mice, the immunoreactivity (IR) for both C1q and C3 was increased after sciatic nerve transection (SNT). Mice deficient in C3 (C3(-/-)) showed a reduced loss of synaptic terminals from injured motoneurons at one week after SNT, as assessed by immunoreactivity for synaptic markers and electron microscopy. In particular, the removal of putative inhibitory terminals, immunopositive for vesicular inhibitory amino acid transporter (VIAAT) and ultrastructurally identified as type F synapses, was reduced in C3(-/-) mice. In contrast, lesion-induced removal of nerve terminals in C1q(-/-) mice appeared similar to WT mice. Growth associated protein (GAP)-43 mRNA expression in lesioned motoneurons increased much more in C3(-/-) compared to WT mice after SNT. After sciatic nerve crush (SNC), the C3(-/-) mice showed a faster functional recovery, assessed as grip strength, compared to WT mice. No differences were detected regarding nerve inflammation at the site of injury or pattern of muscle reinnervation. These data indicate that a non-classical pathway of complement activation is involved in axotomy-induced adult synapse removal, and that its inhibition promotes functional recovery. (c) 2012 Elsevier Inc. All rights reserved.
  •  
8.
  •  
9.
  • Berglöf, Elisabet, et al. (författare)
  • Locus coeruleus promotes survival of dopamine neurons in ventral mesencephalon : An in oculo grafting study
  • 2009
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 216:1, s. 158-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease is a neurodegenerative disorder where dopamine neurons in the substantia nigra of ventral mesencephalon undergo degeneration. In addition to the loss of dopamine neurons, noradrenaline neurons in the locus coeruleus degenerate, actually to a higher extent than the dopamine neurons. The interaction between these two nuclei is yet not fully known, hence this study was undertaken to investigate the role of locus coeruleus during development of dopamine neurons utilizing the intraocular grafting model. Fetal ventral mesencephalon and locus coeruleus were implanted either as single grafts or co-grafts, placed in direct contact or at a distance. The results revealed that the direct attachment of locus coeruleus to ventral mesencephalon enhanced graft volume and number of tyrosine hydroxylase (TH)-positive neurons in ventral mesencephalic grafts. Cell counts of subpopulations of TH-positive neurons also immunoreactive for aldehyde dehydrogenase 1-A1 (ALDH1) or calbindin, revealed improved survival of ALDH1/TH-positive neurons. However, the number of calbindin/TH-positive neurons was not affected. High density of dopamine-beta-hydroxylase (DBH)-positive innervation in the ventral mesencephalon placed adjacent to locus coeruleus was correlated to the improved survival. Ventral mesencephalic tissue, implanted at a distance to locus coeruleus, did not demonstrate improved survival, although DBH-positive nerve fibers were detected. In conclusion, the direct contact of locus coeruleus resulting in dense noradrenergic innervation of ventral mesencephalon is beneficial for the survival of ventral mesencephalic grafts. Thus, when trying to rescue dopamine neurons in Parkinson's disease, improving the noradrenergic input to the substantia nigra might be worth considering.
  •  
10.
  •  
11.
  • Brys, Ivani, et al. (författare)
  • Neurophysiological effects in cortico-basal ganglia-thalamic circuits of antidyskinetic treatment with 5-HT1A receptor biased agonists
  • 2018
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 302, s. 155-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, the biased and highly selective 5-HT1A agonists, NLX-112, F13714 and F15599, have been shown to alleviate dyskinesia in rodent and primate models of Parkinson's disease, while marginally interfering with antiparkinsonian effects of levodopa. To provide more detailed information on the processes underlying the alleviation of dyskinesia, we have here investigated changes in the spectral contents of local field potentials in cortico-basal ganglia-thalamic circuits following treatment with this novel group of 5-HT1A agonists or the prototypical agonist, 8-OH-DPAT. Dyskinetic symptoms were consistently associated with 80 Hz oscillations, which were efficaciously suppressed by all 5-HT1A agonists and reappeared upon co-administration of the antagonist, WAY100635. At the same time, the peak-frequency of fast 130 Hz gamma oscillations and their cross-frequency coupling to low-frequency delta oscillations were modified to a different extent by each of the 5-HT1A agonists. These findings suggest that the common antidyskinetic effects of these drugs may be chiefly attributable to a reversal of the brain state characterized by 80 Hz gamma oscillations, whereas the differential effects on fast gamma oscillations may reflect differences in pharmacological properties that might be of potential relevance for non-motor symptoms.
  •  
12.
  • Bueters, Tjerk, et al. (författare)
  • Degeneration of newly formed CA1 neurons following global ischemia in the rat
  • 2008
  • Ingår i: Experimental Neurology. - New York, USA : Academic Press. - 0014-4886 .- 1090-2430. ; 209:1, s. 114-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The pyramidal neurons of the hippocampal CA1 region are essential for spatial learning and memory and are almost entirely destroyed 7-14 days after transient cerebral ischemia (DAI). Recently, we found that CA1 neurons reappeared at 21-90 DAI, in association with a recovery of ischemia-induced deficits in spatial learning and memory. However, at 125 DAI the number of neurons was fewer than at 90 DAI, suggesting that the new nerve cells undergo neurodegeneration during this time period. We therefore investigated whether neuronal degeneration occurred between 90 and 250 DAI and how this related to learning and memory performance. We found that many of the new CA1 neurons previously seen at 90 DAI had disappeared at 250 DAI. In parallel, large mineralized calcium deposits appeared in the hippocampus and thalamus, in association with neuroinflammatory and astroglial reactions. In spite of the extensive CA1 damage, the ischemic rats showed no deficiencies in spatial learning and memory, as analyzed in the Morris water maze and a complimentary water maze test based on sequential left-right choices. However, ischemia rats showed a general increase in swim length in the Morris water maze suggesting altered search behaviour. Taken together, these results indicate that the CA1 neurons that reappear after transient global ischemia to a large extent degenerate at 125-250 DAI, in parallel with the appearance of a less efficient search strategy.
  •  
13.
  • Büki, Andras, 1966-, et al. (författare)
  • Moderate Posttraumatic Hypothermia Decreases Early Calpain-Mediated Proteolysis and Concomitant Cytoskeletal Compromise in Traumatic Axonal Injury
  • 1999
  • Ingår i: Experimental Neurology. - : Academic Press. - 0014-4886 .- 1090-2430. ; 159:1, s. 319-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) in animals and man generates widespread axonal injury characterized by focal axolemmal permeability changes, induction of calpain-mediated proteolysis, and neurofilament side-arm modification associated with neurofilament compaction (NFC) evolving to axonal disconnection. Recent observations have suggested that moderate hypothermia is neuroprotective in several models of TBI. Nevertheless, the pathway by which hypothermia prevents traumatic axonal injury (TAI) is still a matter of debate. The present study was conducted to evaluate the effects of moderate, early posttraumatic hypothermia on calpain-mediated spectrin proteolysis (CMSP), implicated in the pathogenesis of TAI. Using moderate (32 degrees C) hypothermia of 90 min duration without rewarming, the density of CMSP immunoreactive/damaged axons was quantified via LM analysis in vulnerable brain stem fiber tracts of hypothermic and normothermic rats subjected to impact acceleration TBI (90 min postinjury survival). To assess the influence of posthypothermic rewarming, a second group of animals was subjected to 90 min of hypothermia followed by 90 min of rewarming to normothermic levels when CMSP was analyzed to detect if any purported CMSP prevention persisted (180 min postinjury survival). Additionally, to determine if this protection translated into comparable cytoskeletal protection in the same foci showing decreased CMSP, antibodies targeting altered/compacted NF subunits were also employed. Moderate hypothermia applied in the acute postinjury period drastically reduced the number of damaged axons displaying CMSP at both time points and significantly reduced NFC immunoreactivity at 180 min postinjury. These results suggest that the neuroprotective effects of hypothermia in TBI are associated with the inhibition of axonal/cytoskeletal damage. 
  •  
14.
  • Caudal, D, et al. (författare)
  • Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.
  • 2015
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 273, s. 243-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to alterations in proteins involved in synaptic plasticity.
  •  
15.
  •  
16.
  • Echaniz-Laguna, Andoni, et al. (författare)
  • Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops : A temporal study in man
  • 2006
  • Ingår i: Experimental Neurology. - San Diego, USA : Elsevier. - 0014-4886 .- 1090-2430. ; 198:1, s. 25-30
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed repeated analysis of mitochondrial respiratory function in skeletal muscle (SM) of patients with early-stage sporadic amyotrophic lateral sclerosis (SALS) to determine whether mitochondrial function was altered as the disease advanced. SM biopsies were obtained from 7 patients with newly diagnosed SALS, the same 7 patients 3 months later, and 7 sedentary controls. Muscle fibers were permeabilized with saponin, then skinned and placed in an oxygraphic chamber to measure basal and maximal adenosine diphosphate (ADP)-stimulated respiration rates and to assess mitochondrial regulation by ADP. We found that the maximal oxidative phosphorylation capacity of muscular mitochondria significantly increased, and muscular mitochondrial respiratory complex IV activity significantly decreased as the disease advanced. This temporal study demonstrates for the first time that mitochondrial function in SM in human SALS is progressively altered as the disease develops.
  •  
17.
  • Ekegren, Titti, et al. (författare)
  • Methionine adenosyltransferase activity in erythrocytes and spinal cord of patients with sporadic amyotrophic lateral sclerosis
  • 1999
  • Ingår i: Experimental Neurology. - 0014-4886 .- 1090-2430. ; 158:2, s. 422-427
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of transmethylation mechanisms in the etiology of amyotrophic lateral sclerosis (ALS) is hitherto unexplored. The activity of L-methionine S-adenosyltransferase (MAT), a regulatory enzyme of S-adenosylmethionine biosynthesis, was investigated in erythrocytes of 21 patients with ALS, spinal cord specimens of 7 ALS patients, and matched controls. In ALS patients the activity of MAT in erythrocytes was sex-dependent. In comparison with controls, the male group presented a 33% higher Vmax (PF0.05) and a 41% decrease in the affinity of MAT for methionine (Km, PF0.05). The type of ALS onset (limb or bulbar), age, or duration of the disease did not influence erythrocyte MAT activity. In the spinal cord, the activity of MAT was homogeneously distributed through dorsal horn, ventral horn, and white matter. Comparisons between data from controls and ALS patients and analysis of sex effect showed no significant differences. The kinetic difference of erythrocyte MAT in the male group of ALS patients might be interesting to explore since it is well known that there is a male predominance of 1.5 to 2.5:1 inALS.
  •  
18.
  •  
19.
  • Englund Johansson, Ulrica, et al. (författare)
  • Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections.
  • 2002
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 173:1, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we examined the ability of human neural progenitors from the embryonic forebrain, expanded for up to a year in culture in the presence of growth factors, to respond to environmental signals provided by the developing rat brain. After survival times of up to more than a year after transplantation into the striatum, the hippocampus, and the subventricular zone, the cells were analyzed using human-specific antisera and the reporter gene green fluorescent protein (GFP). From grafts implanted in the striatum, the cells migrated extensively, especially within white matter structures. Neuronal differentiation was most pronounced at the striatal graft core, with axonal projections extending caudally along the internal capsule into mesencephalon. In the hippocampus, cells migrated throughout the entire hippocampal formation and into adjacent white matter tracts, with differentiation into neurons both in the dentate gyrus and in the CA1-3 regions. Directed migration along the rostral migratory stream to the olfactory bulb and differentiation into granule cells were observed after implantation into the subventricular zone. Glial differentiation occurred at all three graft sites, predominantly at the injection sites, but also among the migrating cells. A lentiviral vector was used to transduce the cells with the GFP gene prior to grafting. The reporter gene was expressed for at least 15 weeks and the distribution of the gene product throughout the entire cytoplasmic compartment of the expressing cells allowed for a detailed morphological analysis of a portion of the grafted cells. The extensive integration and differentiation of in vitro-expanded human neural progenitor cells indicate that multipotent progenitors are capable of responding in a regionally specific manner to cues present in the developing rat brain.
  •  
20.
  • Erlandsson, Anna, et al. (författare)
  • Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 230:1, s. 48-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent work has demonstrated that self-repair in the adult brain can be augmented by the infusion of growth factors to activate endogenous neural precursor cells that contribute to new tissue formation and functional recovery in a model of stroke. Using both a genetic model and drug treatment, we demonstrate that immunosuppression mimics the effects of growth factor activation, including tissue regeneration, neural precursor cell migration and functional recovery following ischemic injury. In the absence of growth factor treatment, mice with a functional immune system develop a prominent cavity in the cortex underlying the ischemic injury. In untreated immunodeficient NOD/SCID mice, however, the cortical cavity forms but is then filled with regenerated cortical tissue containing glial cells and subependyma derived neural stem and progenitor cells that migrate from their niche lining the lateral ventricles. The daily administration of Cyclosporine A also results in endogenous neural precursor cell migration and regenerated cortical tissue at the site of the cortical injury. Different from growth factor-treated animals is the finding that the regenerated cortical tissue in immunosuppressed animals is devoid of new neurons. Interestingly, both the growth factor and immunosuppressed (NOD/SCID and Cyclosporine A) treated animals displayed functional behavioural recovery despite the lack of neurogenesis within the regenerated cortical tissue. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."
  •  
21.
  • Errico, Francesco, et al. (författare)
  • Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate 1-DOPA-induced dyskinesia
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 232:2, s. 240-250
  • Tidskriftsartikel (refereegranskat)abstract
    • In Parkinson's disease (PD) progressive alteration of striatal N-methyl-D-aspartate receptors (NMDARs) signaling has emerged as a considerable factor for the onset of the adverse motor effects of long-term levodopa (L-DOPA) treatment. In this regard, the NMDAR channel blocker amantadine is so far the only drug available for clinical use that attenuates L-DOPA-induced dyskinesia (LID). In this study, we examined the influence of a basal corticostriatal hyper-glutamatergic transmission in the appearance of dyskinesia, using a genetic mouse model lacking D-Aspartate Oxidase (DDO) enzyme (Ddo(-/-)mice). We found that, in Ddo(-/-)mice, non-physiological, high levels of the endogenous free D-amino acids D-aspartate (D-Asp) and NMDA, known to stimulate NMDAR transmission, resulted in the loss of corticostriatal synaptic depotentiation and precocious expression of LID. Interestingly, the block of depotentiation precedes any change in dopaminergic transmission associated to 6-OHDA lesion and L-DOPA treatment. Indeed, lesioned mutant mice display physiological L-DOPA-dependent enhancement of striatal D1 receptor/PKA/protein phosphatase-1 and ERK signaling. Moreover, in line with synaptic rearrangements of NMDAR subunits occurring in dyskinetic animal models, a short L-DOPA treatment produces a dramatic and selective reduction of the NR2B subunit in the striatal post-synaptic fraction of Ddo(-/-) lesioned mutants but not in controls. These data indicate that a preexisting hyper-glutamatergic tone at NMDARs in Ddo(-/-) mice produce abnormal striatal synaptic changes that, in turn, facilitate the onset of LID. (C) 2011 Elsevier Inc. All rights reserved.
  •  
22.
  •  
23.
  • Eusebio, Alexandre, et al. (författare)
  • Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson's disease.
  • 2008
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 209:1, s. 125-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive synchronization of basal ganglia neural activity at low frequencies is considered a hallmark of Parkinson's disease (PD). However, few studies have unambiguously linked this activity to movement impairment through direct stimulation of basal ganglia targets at low frequency. Furthermore, these studies have varied in their methodology and findings, so it remains unclear whether stimulation at any or all frequencies < or = 20 Hz impairs movement and if so, whether effects are identical across this broad frequency band. To address these issues, 18 PD patients chronically implanted with deep brain stimulation (DBS) electrodes in both subthalamic nuclei were stimulated bilaterally at 5, 10 and 20 Hz after overnight withdrawal of their medication and the effects of the DBS on a finger tapping task were compared to performance without DBS (0 Hz). Tapping rate decreased at 5 and 20 Hz compared to 0 Hz (by 11.8+/-4.9%, p=0.022 and 7.4+/-2.6%, p=0.009, respectively) on those sides with relatively preserved baseline task performance. Moreover, the coefficient of variation of tap intervals increased at 5 and 10 Hz compared to 0 Hz (by 70.4+/-35.8%, p=0.038 and 81.5+/-48.2%, p=0.043, respectively). These data suggest that the susceptibility of basal ganglia networks to the effects of excessive synchronization may be elevated across a broad low-frequency band in parkinsonian patients, although the nature of the consequent motor impairment may depend on the precise frequencies at which synchronization occurs.
  •  
24.
  •  
25.
  • Fisone, G (författare)
  • Monitoring dyskinesia with Zif
  • 2010
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 226:1, s. 11-14
  • Tidskriftsartikel (refereegranskat)
  •  
26.
  • Fowler, Christopher J, et al. (författare)
  • Modulation of the endocannabinoid system : neuroprotection or neurotoxicity?
  • 2010
  • Ingår i: Experimental Neurology. - : Elsevier. - 0014-4886 .- 1090-2430. ; 224:1, s. 37-47
  • Forskningsöversikt (refereegranskat)abstract
    • There is now a large volume of data indicating that compounds activating cannabinoid CB(1) receptors, either directly or indirectly by preventing the breakdown of endogenous cannabinoids, can protect against neuronal damage produced by a variety of neuronal "insults". Given that such neurodegenerative stimuli result in increased endocannabinoid levels and that animals with genetic deletions of CB(1) receptors are more susceptible to the deleterious effects of such stimuli, a case can be made for an endogenous neuroprotective role of endocannabinoids. However, this is an oversimplification of the current literature, since (a) compounds released together with the endocannabinoids can contribute to the neuroprotective effect; (b) other proteins, such as TASK-1 and PPARalpha, are involved; (c) the CB(1) receptor antagonist/inverse agonist rimonabant has also been reported to have neuroprotective properties in a number of animal models of neurodegenerative disorders. Furthermore, the CB(2) receptor located on peripheral immune cells and activated microglia are potential targets for novel therapies. In terms of the clinical usefulness of targeting the endocannabinoid system for the treatment of neurodegenerative disorders, data are emerging, but important factors to be considered are windows of opportunity (for acute situations such as trauma and ischemia) and the functionality of the target receptors (for chronic neurodegenerative disorders such as Alzheimer's disease).
  •  
27.
  •  
28.
  •  
29.
  • Friedman, W J, et al. (författare)
  • Differential actions of neurotrophins in the locus coeruleus and basal forebrain.
  • 1993
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 119:1, s. 72-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurotrophin gene family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/NT-5, supports the survival of distinct peripheral neurons, however, actions upon central neurons are relatively undefined. In this study we have compared different neurotrophins in the regulation of neuronal survival and function using dissociated embryonic cell cultures from two brain regions, the basal forebrain (BF) and locus coeruleus (LC). In the BF, NGF increased choline acetyl transferase (ChAT) activity, but did not influence cholinergic cell survival. In contrast to NGF, BDNF, NT-3, and the novel neurotrophin, NT-4, all increased ChAT activity and cholinergic cell survival. We also examined embryonic LC neurons in culture. LC neurons are unresponsive to NGF. In contrast, NT-3 and NT-4 elicited significant increases in survival of noradrenergic LC neurons, the first demonstration of trophic effects in this critical brain region. Identification of factors supporting coeruleal and basal forebrain neuronal survival may provide insight into mechanisms mediating degeneration of these disparate structures in clinical disorders.
  •  
30.
  •  
31.
  • Hampel, Harald, et al. (författare)
  • Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.
  • 2010
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 223:2, s. 334-46
  • Forskningsöversikt (refereegranskat)abstract
    • Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer's disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Jerregård, Helena, et al. (författare)
  • Sorting of Regenerating Rat Sciatic Nerve Fibers with Target-Derived Molecules
  • 2001
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 169:2, s. 298-306
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional outcome of microsurgical repair of divided nerves is disappointing since many regenerating axons fail to reach appropriate targets. Sorting of regenerating axons according to target tissue might be used to improve functional regeneration. The aim of the present study is to see if regenerating axons can be sorted into functionally different bundles with target-derived molecules. The proximal stump of the adult rat sciatic nerve was sutured into the inlet of a silicon Y-tube. The two branches of the Y-tube were filled with agarose primed with filtrates prepared from skin and muscle homogenates from the operated rat. The tibial and sural nerves were inserted in the two branches of the Y-tube. Six weeks later the sciatic nerve axons showed vigorous regeneration into both branches. Electron microscopic examination of regenerated nerve segments showed numerous myelinated and unmyelinated axons. The proportion of myelinated axons was significantly larger in the muscle-gel branch than in the skin-gel branch. Retrograde tracing from the nerve regenerates with Fast Blue and Fluoro-Ruby showed that ventral horn neurons at L4–L5 segmental levels were preferentially labeled from the muscle-gel branch. Neurons in corresponding dorsal root ganglia were labeled from both Y-tube branches (no significant numerical difference). A few neurons of both types contained both tracers. Measurements revealed that sensory neurons labeled from the muscle-gel branch were significantly larger (mean perikaryal area 870 μm2) than neurons labeled from the skin-gel branch (mean area 580 μm2). We conclude that regenerating motor and sensory axons can be sorted with target-derived molecules.
  •  
36.
  • Jiao, Yu, et al. (författare)
  • Olfactory ensheathing cells promote neurite outgrowth from co-cultured brain stem slice
  • 2011
  • Ingår i: EXPERIMENTAL NEUROLOGY. - : Elsevier Science B.V., Amsterdam. - 0014-4886 .- 1090-2430. ; 229:1, s. 65-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell therapy aiming at the replacement of degenerated neurons is a very attractive approach. By using an established in vitro organotypic brain stem (BS) slice culture we screen for candidate donor cells, some of them being further functionally assessed in in vivo models of sensorineural hearing loss. Both in vitro and in vivo systems show that implanted cells face challenges of survival, targeted migration, differentiation and functional integration with the host tissue. Low success rates are possibly due to the lack of necessary neurotrophic factors, adhesion molecules and guiding cues. Olfactory ensheathing cells (OECs) have been shown to express a number of neurotrophic factors and to promote axonal growth through cell to cell interactions. In the present study we co-cultured OECs with organotypic BS slice in order to see if OECs can serve as a facilitator when screening candidate donor cells in an organotypic culture setup. Here we show that OECs when co-cultured with the auditory BS slice not only promote neurite outgrowth from the cochlear nucleus (CN) region of the BS slice but also support cells by having BS slice axons growing along their processes. These findings further suggest that OECs may enhance survival and targeted migration of candidate donor cells suitable for cell therapy in vitro and in vivo. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
  •  
37.
  •  
38.
  • Jorgensen, Jesper Roland, et al. (författare)
  • Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo
  • 2012
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 233:1, s. 172-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurotrophic factors are secreted proteins responsible for migration, growth and survival of neurons during development, and for maintenance and plasticity of adult neurons. Here we present a novel secreted protein named Cometin which together with Meteorin defines a new evolutionary conserved protein family. During early mouse development, Cometin is found exclusively in the floor plate and from E13.5 also in dorsal root ganglions and inner ear but apparently not in the adult nervous system. In vitro, Cometin promotes neurite outgrowth from dorsal root ganglion cells which can be blocked by inhibition of the Janus or MEK kinases. In this assay, additive effects of Cometin and Meteorin are observed indicating separate receptors. Furthermore, Cometin supports migration of neuroblasts from subventricular zone explants to the same extend as stromal cell derived factor la. Given the neurotrophic properties in vitro, combined with the restricted inner ear expression during development, we further investigated Cometin in relation to deafness. In neomycin deafened guinea pigs, two weeks intracochlear infusion of recombinant Cometin supports spiral ganglion neuron survival and function. In contrast to the control group receiving artificial perilymph, Cometin treated animals retain normal electrically-evoked brainstem response which is maintained several weeks after treatment cessation. Neuroprotection is also evident from stereological analysis of the spiral ganglion. Altogether, these studies show that Cometin is a potent new neurotrophic factor with therapeutic potential. (C) 2011 Elsevier Inc. All rights reserved.
  •  
39.
  • Kalliomäki, Maija, et al. (författare)
  • Structural and functional differences between neuropathy with and without pain?
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 231:2, s. 199-206
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to find functional and structural differences in neuropathy between patients with and without chronic pain following nerve injury. We included 30 patients requiring hand surgery after a trauma, with 21 reporting chronic pain for more than one year after the injury, while 9 did not suffer from injury-related chronic pain. We assessed mechanical sensitivity, thermal thresholds, electrically induced pain and axon reflex erythema and cutaneous nerve fiber density in skin biopsies of the injured site and its contralateral control. Epidermal fiber density of the injured site was reduced similarly in both patient groups. Thresholds for cold and heat pain and axon reflex areas were reduced in the injured site, but did not differ between the patient groups. Only warmth thresholds were better preserved in the pain patients (35.2 vs. 38.4 degrees C). Neuronal CGRP staining did not reveal any difference between pain and non-pain patients. Epidermal innervation density correlated best to warmth detection thresholds and deeper dermal innervation density to the area of the axon reflex erythema. No specific pattern of subjective, functional or structural parameters was detected that would separate the neuropathy patients into pain and non-pain patients. Specific staining of additional targets may help to improve our mechanistic understanding of pain development.
  •  
40.
  • Kalm, Marie, 1981, et al. (författare)
  • Loss of hippocampal neurogenesis, increased novelty-induced activity, decreased home cage activity, and impaired reversal learning one year after irradiation of the young mouse brain
  • 2013
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 247, s. 402-409
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy is a major cause of long-term complications in survivors of pediatric brain tumors. These complications include intellectual and memory impairments as well as perturbed growth and puberty. We investigated the long-term effects of a single 8Gy irradiation dose to the brains of 14-day-old mice. Behavior was assessed one year after irradiation using IntelliCage and open field, followed by immunohistochemical investigation of proliferation and neurogenesis in the dentate gyrus of the hippocampus. We found a 61% reduction in proliferation and survival (BrdU incorporation 4weeks prior to sacrifice), 99% decrease in neurogenesis (number of doublecortin-positive cells) and gliosis (12% higher astrocyte density) one year following irradiation. Irradiated animals displayed increased activity in a novel environment but decreased activity in their home cage. Place learning in the IntelliCage was unaffected by irradiation but reversal learning was impaired. Irradiated animals persevered in visiting previously correct corners to a higher extent compared to control animals. Hence, despite the virtual absence of neurogenesis in these old mice, spatial learning could take place. Reversal learning however, where a previous memory was replaced with a new one, was partly impaired. This model is useful to study the so called late effects of radiotherapy to the young brain and to evaluate possible interventions.
  •  
41.
  • Kanoke, Atsushi, et al. (författare)
  • The effect of type 2 diabetes on CD36 expression and the uptake of oxLDL Diabetes affects CD36 and oxLDL uptake
  • 2020
  • Ingår i: Experimental Neurology. - : Academic Press. - 0014-4886 .- 1090-2430. ; 334
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether type 2 diabetes mellitus (T2DM), a risk factor of stroke, affects the level of scavenger receptor CD36 and the uptake of its ligand, oxidized LDL (oxLDL); and whether pioglitazone, a drug that enhances CD36, promotes oxLDL uptake. Compared to normoglycemic db/+ mice, adult db/db mice showed a pronounced reduction in surface CD36 expression on myeloid cells from the blood, brain, and bone marrow as detected by flow cytometry, which correlated with elevated plasma soluble-CD36 as determined by ELISA. Increased CD36 expression was found in brain macrophages and microglia of both genotypes 7 days after ischemic stroke. In juvenile db/db mice, prior to obesity and hyperglycemia, only a mild reduction of surface CD36 was found in blood neutrophils, while all other myeloid cells showed no difference relative to the db/+ strain. In vivo, oral pioglitazone treatment for four weeks increased CD36 levels on myeloid cells in db/db mice. In vitro, uptake of oxLDL by bone marrow derived macrophages (BMDMs) of db/db mice was reduced relative to db/+ mice in normal glucose medium. OxLDL uptake inversely correlated with glucose levels in the medium in db/+ BMDMs. Furthermore, pioglitazone restored oxLDL uptake by BMDMs from db/db mice cultured in high glucose. Our data suggest that T2DM is associated with reduced CD36 on adult myeloid cells, and pioglitazone enhances CD36 expression in db/db cells. T2DM or high glucose reduces oxLDL uptake while pioglitazone enhances oxLDL uptake. Our findings provide new insight into the mechanism by which pioglitazone may be beneficial in the treatment of insulin resistance.
  •  
42.
  • Kawa, Lizan, et al. (författare)
  • Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury
  • 2016
  • Ingår i: Experimental Neurology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0014-4886 .- 1090-2430. ; 279, s. 159-167
  • Tidskriftsartikel (refereegranskat)abstract
    • The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI. (C) 2016 Elsevier Inc. All rights reserved.
  •  
43.
  •  
44.
  • Lindgren, H. S., et al. (författare)
  • The effect of additional noradrenergic and serotonergic depletion on a lateralised choice reaction time task in rats with nigral 6-OHDA lesions
  • 2014
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 253, s. 52-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) patients often suffer from visuospatial deficits, which have been considered a disruption of the representation of external space. The lateralised choice reaction time (CRT) task is an operant task for rodents in which similar deficits can be assessed. It has been demonstrated that specific parameters in this task is disrupted after unilateral injections of 6-hydroxydopamine (6-OHDA), which have been associated with the dopamine (DA) depletion that inevitably follows this type of lesion. However, studies have demonstrated that this type of lesion also affects the serotonergic (5HT) and noradrenergic (NA) systems. However, the impact of these systems on parameters in the CRT task had not yet been investigated.To this end, rats were pretrained on the CRT task before receiving selective lesions of the DAergic system, either alone or in combination with depletion of the NA or 5HT system. All rats with a 6-OHDA lesion displayed a gradual decline in the selection, initiation and execution of lateralised movements compared to sham-lesion controls on the side contralateral to the lesion. They also displayed a reduced number of useable trials as well as an increased number of procedural errors. Interestingly, the group with an additional noradrenergic lesion was significantly slower in reacting to lateralised stimuli throughout the testing period compared to the other two groups with a 6-OHDA lesion. There was however no difference between the three different lesion groups in the other parameters assessed in the task.These data confirm previous findings demonstrating that the majority of the parameters assessed in the lateralised CRT task are strongly dependent on DA. However, this study has also shown that the NAergic system may play an important role in contributing to the attentive performance influencing the capacity to react to the presented lateralised stimuli. © 2013 Elsevier Inc.
  •  
45.
  • Liu, Li, et al. (författare)
  • Clusterin upregulation following rubrospinal tract lesion in the adult rat
  • 1999
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 157:1, s. 69-76
  • Tidskriftsartikel (refereegranskat)abstract
    • We have examined the expression of the multifunctional protein clusterin in the axotomized red nucleus, at the lesion site in the lateral funiculus of C3, as well as along the Wallerian degeneration in the lateral funiculus of T1. There was a marked increase in clusterin-immunoreactivity (IR) and clusterin mRNA in red nucleus nerve cell bodies. An early, transient occurrence of large, heavily clusterin-IR globules were found in axons in the spinal cord at the lesion site in C3 as well as a marked upregulation of mRNA for clusterin, presumably associated with reactive astrocytes and oligodendrocytes from 1 to 4 weeks postoperatively. Clusterin-IR and its mRNA were markedly increased in the zone of Wallerian degeneration at T1, where some strongly expressing cells were identified as oligodendrocytes. Taken together with previous changes in clusterin expression following peripheral nerve and dorsal root injury, we suggest that this protein is involved in regenerative as well as degenerative neural responses.
  •  
46.
  • Luis-Ravelo, Diego, et al. (författare)
  • Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease
  • 2018
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 299, s. 137-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal expansion of the polyglutamine tract in the huntingtin protein (HTT). The toxicity of mutant HTT (mHTT) is associated with intermediate mHTT soluble oligomers that subsequently form intranuclear inclusions. Thus, interventions promoting the clearance of soluble mHTT are regarded as neuroprotective. Striatal neurons are particularly vulnerable in HD. Their degeneration underlies motor symptoms and striatal atrophy, the anatomical hallmark of HD. Recent studies indicate that autophagy may be activated by dopamine D-2 and D-3 receptor (D2R/D3R) agonists. Since autophagy plays a central role in the degradation of misfolded proteins, and striatal neurons express D2R and D3R, D2R/D3R agonists may promote the clearance of mHTT in striatal neurons. Here, this hypothesis was tested by treating 8 week old R6/1 mice with the D2R/D3R agonist pramipexole for 4 weeks. Pramipexole reduced striatal levels of soluble mHTT and increased the size of intranuclear inclusions in R6/1 mice. Furthermore, striatal DARPP-32 levels and motor functions were recovered. These effects were accompanied by an increase in LC3-II and a decrease in p62 in the striatum. Tollip, a selective adaptor of ubiquitinated polyQ proteins to LC3, was also reduced in the striata of R6/lmice but not in their wild-type littermates. No changes were detected in the cerebral cortex where D3R expression is very low, and behavioral and biochemical effects in the striatum were prevented by a D3R antagonist. The findings indicate that PPX protects striatal neurons by promoting the clearance of soluble mHTT through a D3R-mediated mechanism. The evidence of autophagy markers suggests that autophagy is activated, although it is not efficient at removing all mHTT recruited by the autophagic machinery as indicated by the increase in the size of intranuclear inclusions.
  •  
47.
  • Lundberg, Cecilia, et al. (författare)
  • Differentiation of the RN33B Cell Line into Forebrain Projection Neurons after Transplantation into the Neonatal Rat Brain.
  • 2002
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 175:2, s. 370-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The rat neural cell line RN33B has a remarkable ability to undergo region-specific neuronal differentiation after transplantation into the CNS. To further study its neurogenic properties in vivo, we used a recombinant lentiviral vector to genetically label the cells with the Green Fluorescent Protein (GFP) gene before implantation into the striatum/cortex, hippocampus, or mesencephalon of newborn rats. Three weeks after implantation, about 1-2% of the GFP-expressing cells had developed morphologies typical of neurons, astrocytes, or oligodendrocytes, the rest remained as either immature or undifferentiated nestin-positive cells. At 15-17 weeks postgrafting, the immature cells had disappeared in most graft recipients and only cells with neuronal or glial morphologies remained in similar numbers as at 3 weeks. The GFP distributed throughout the expressing cells, revealing fine morphological details, including dendrites with spines and extensive axonal projections. In all forebrain regions, the grafted cells differentiated into neurons with morphologies characteristic for each site, including large numbers of pyramidal-like cells in the cortex and the hippocampus, giving rise to dense projections to normal cortical target regions and to the contralateral hippocampus, respectively. In lower numbers, it was also possible to identify GFP-positive granulelike cells in the hippocampus, as well as densely spiny neurons in the striatum. In the mesencephalon by contrast, cells with astrocytic features predominated. The ability of the grafted RN33B cells to undergo region-specific differentiation into highly specialized types of forebrain projection neurons and establish connections with appropriate targets suggests that cues present in the microenvironment of the neonatal rat brain can effectively guide the development of immature progenitors, also in the absence of ongoing neurogenesis. (c) 2002 Elsevier Science (USA).
  •  
48.
  •  
49.
  •  
50.
  • Malmlof, Torun, et al. (författare)
  • Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias
  • 2010
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 225:2, s. 408-415
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of Parkinson's disease is complicated by a high incidence of L-DOPA-induced dyskinesias (LID). Strategies to prevent the development of LID aim at providing more stable dopaminergic stimulation. We have previously shown that deuterium substitutions in the L-DOPA molecule (D3-L-DOPA) yield dopamine that appears more resistant to enzymatic breakdown. We here investigated the effects of D3-L-DOPA on motor performance and development of dyskinesias in a rodent model of Parkinson's disease. Through acute experiments, monitoring rotational behavior, dose effect curves were established for D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA was estimated to be 60% of L-DOPA. Subsequently, animals were treated with either the equipotent dose of D3-L-DOPA (5 mg/kg), the equivalent dose of D3-L-DOPA (8 mg/kg), L-DOPA (8 mg/kg) or vehicle. The equivalent dose of D3-L-DOPA produced superior anti-akinetic effects compared to L-DOPA in the cylinder test (p<0.05), whereas the equipotent dose of D3-L-DOPA produced an anti-akinetic effect similar to L-DOPA. Dyskinesias developed to the same degree in the groups treated with equivalent doses of D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA induced fewer dyskinesias than L-DOPA (p<0.05). In conclusion, our study provides evidence for improved potency and reduced side-effects of L-DOPA by deuterium substitutions in the molecule. These results are of clinical interest since the occurrence of LID is related to the total L-DOPA dose administered. D3-L-DOPA may thus represent a novel strategy to reduce the total dose requirement and yet achieve an effective control of parkinsonian symptoms. (C) 2010 Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 325
Typ av publikation
tidskriftsartikel (306)
konferensbidrag (13)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (308)
övrigt vetenskapligt/konstnärligt (17)
Författare/redaktör
Olson, L (25)
Brundin, Patrik (20)
Björklund, Anders (16)
Lindvall, Olle (16)
STROMBERG, I (14)
Kokaia, Zaal (12)
visa fler...
Kokaia, Merab (10)
Seiger, A (10)
Spenger, C (9)
Zhu, J. (8)
Cenci Nilsson, Angel ... (8)
Hokfelt, T (7)
Winblad, B (6)
Mix, E (6)
Zetterberg, Henrik, ... (5)
Ogren, SO (5)
von Euler, Mia, 1967 ... (5)
Limousin, Patricia (5)
Sundstrom, E (5)
Andersson, K (4)
Blennow, Kaj, 1958 (4)
Holmberg, L (4)
Widenfalk, J (4)
Adem, A (4)
Bjorklund, L (4)
Mattsson, Bengt (4)
Fuxe, K (4)
Hansson, Oskar (4)
Ekdahl Clementson, C ... (4)
Hariz, Marwan (4)
Akesson, E (4)
Li, Jia-Yi (4)
Chen, Y. (3)
Svenningsson, P (3)
Zhang, XM (3)
Bjelke, B (3)
Chen, ZG (3)
Wiesenfeld-Hallin, Z (3)
Josephson, A (3)
BOGDANOVIC, N (3)
Herlenius, E (3)
Parmar, Malin (3)
Bazan, NG (3)
Blennow, K (3)
Risling, M (3)
Kehr, J (3)
Englund Johansson, U ... (3)
Ernfors, Patrik (3)
Snyder, EY (3)
Nennesmo, I (3)
visa färre...
Lärosäte
Karolinska Institutet (171)
Lunds universitet (112)
Göteborgs universitet (23)
Uppsala universitet (23)
Umeå universitet (16)
Linköpings universitet (8)
visa fler...
Örebro universitet (7)
Linnéuniversitetet (3)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (324)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (153)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy