SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0016 7606 "

Sökning: L773:0016 7606

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alwmark, Carl, et al. (författare)
  • An Early Ordovician 40Ar-39Ar age for the ∼50 km Carswell impact structure, Canada
  • 2017
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 129:11/12, s. 1442-1449
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation age of the large (∼50 km) Carswell impact structure, Canada, has been a matter of debate ever since its discovery five decades ago, with proposed ages ranging from Mesoproterozoic to Early Cretaceous. Here, we present new 40Ar-39Ar data for aliquots of euhedral adularia, separated from vesicles in an impact melt rock from the central uplift of the structure. The analyses of the adularia yielded a statistically robust Early Ordovician crystallization age of 481.5 ± 0.8 Ma (2σ, mean square of weighted deviates = 1.06, P = 0.30). The most plausible explanation for the formation of vesicle-filling adularia is through low-temperature mineral precipitation during residual hydrothermal circulation that followed the impact, as no other known major intrusive, extrusive, or thermal events have occurred in the Carswell region in the Phanerozoic. The new age of the Carswell impact structure overlaps within uncertainty with the most precise Ar-Ar ages proposed for the L-chondrite parent body breakup event, but not with the age of the stratigraphic sequence from which the meteorites and micrometeorites from this event were recovered. Thus, either the Carswell impact represents a separate, unrelated impact event, or the dynamic evolution of the L-chondrite parent body breakup is more complicated than presently understood, and Carswell represents one of the earliest and largest known impacts of this event on Earth.
  •  
2.
  • Alwmark, Carl, et al. (författare)
  • The mid-Ordovician Osmussaar breccia in Estonia linked to the disruption of the L-chondrite parent body in the asteroid belt
  • 2010
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 122:7-8, s. 1039-1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The Middle Ordovician (466 Ma) Osmussaar breccia, situated along the northwestern coast of Estonia, is rich in angular chromite grains of extraterrestrial origin (>13 grains kg(-1)) and shocked quartz. The angularity of the chromite grains implies that they have not been transported or reworked to any large extent, connoting that the brecciation is the result of a contemporary impactor, either as a direct consequence of the impact or as a result of an earthquake triggered by the impact, and thus is not, as previously suggested, redeposited material from the nearby similar to 70 m.y. older Neugrund impact structure. The chemical composition of the chromite indicates that the impactor was an ordinary chondrite of L-type, which concurs well with the hypothesis that the influx of large bodies to Earth increased during this period due to the breakup of the L-chondrite parent body. This in turn gives support to the recent suggestion that abundant coeval mega-breccias worldwide are impact triggered. The presence of extraterrestrial chromite also strengthens the theory that physical pieces of a large celestial body can survive upon impact with Earth.
  •  
3.
  • Bedard, Jean H., et al. (författare)
  • Basaltic sills emplaced in organic-rich sedimentary rocks : Consequences for organic matter maturation and Cretaceous paleo-climate
  • 2024
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of London. - 0016-7606 .- 1943-2674. ; 136:5-6, s. 1982-2006
  • Tidskriftsartikel (refereegranskat)abstract
    • Many continental large igneous provinces coincide with climate perturbations and mass extinctions. When basaltic plumbing systems traverse carbon-rich sedimentary rocks, large volumes of greenhouse gases may be generated. We document how intrusive sills of the Mesozoic High Arctic Large Igneous Province affected surrounding fine-grained, organic-rich siliciclastic rocks of the Sverdrup Basin in the Canadian Arctic Archipelago. Petrographic and X-ray diffraction data from samples located near sills show the presence of high-temperature metamorphic phases (diopside, andalusite, garnet, and cordierite). Raman thermometry on organic matter yields peak temperatures of 385-400 degrees C near sill contacts, tailing off to far-field temperatures of <= 230 degrees C. Samples located >20 m from sills show no systematic change in vitrinite reflectance and have a VRo eq% value of similar to 2.5%, which indicates a temperature of similar to 210 degrees C. The finite element thermal modeling tool SUTRAHEAT was applied to the 17-m-thick Hare Sill, emplaced at 3 km depth at 1105 degrees C. SUTRAHEAT results show that contact-proximal rocks attain temperatures of >700 degrees C for a brief period (similar to 1 year). By 5 years, the Hare Sill is completely solidified (<730 degrees C), and the temperature anomaly collapses rapidly thereafter as the thermal pulse propagates outward. By 10 years, all rocks within 10 m of the Hare Sill are between 450 degrees C and 400 degrees C, rocks at 20 m from the contact attain 200 degrees C, yet far-field temperatures (>50 m) have barely changed. When multiple sills are emplaced between 4 km and 6 km depth, all rocks between sills reach similar to 250 degrees C after 100 years, showing that it is possible to raise regional-scale background temperatures by similar to 150 degrees C for the observed High Arctic Large Igneous Province sill density. Vitrinite reflectance data and pyrolysis results, together with SILLi thermal modeling, indicate that much of the hydrocarbon-generating potential was eliminated by High Arctic Large Igneous Province intrusions. The SILLi model yields similar to 20 tonnes/m(2) of organic equivalent CO2 (all carbon gas is reported as CO2) from the Hare Sill alone when emplaced into Murray Harbour Formation rocks with 5.7 wt% organic carbon, and similar to 226 tonnes/m(2) by emplacement of multiple sills throughout the 2-km-thick Blaa Mountain Group with 3 wt% organic carbon. On a basin scale, this yields a total of similar to 2550 Gt CO2 from the Hare Sill, with similar to 13,000 Gt CO2 being generated by the multiple sill scenario, similar to estimates from other large igneous provinces. Much of the Blaa Mountain Group rocks now have organic carbon contents of <1 wt%, which is consistent with large volumes of carbon-species gas having been generated, likely a mixture of CO2, CH4, and other species. However, organic-rich Murray Harbour Formation rocks show no obvious reduction in organic carbon content toward the Hare Sill intrusive contacts, which suggests that not all of the carbon was lost from the sedimentary package hosting High Arctic Large Igneous Province magmas. We suggest that some of the gas generated by contact metamorphism failed to drain out for lack of high-permeability conduits, and then back-reacted to form calcite cements and pyrobitumen during cooling.
  •  
4.
  • Beranek, Luke P., et al. (författare)
  • Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides
  • 2020
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of America. - 0016-7606 .- 1943-2674. ; 132:9-10, s. 1987-2003
  • Tidskriftsartikel (refereegranskat)abstract
    • Detrital zircon provenance studies of Mesoproterozoic basement and overlying Old Red Sandstone strata in northwestern Svalbard, Arctic Norway, were conducted to test competing models for Caledonian paleogeography and tectonics and constrain the magnitude of orogen-parallel, Silurian to Devonian strike-slip faulting following the Laurentia-Baltica collision. Mesoproterozoic basement strata, cut by earliest Tonian orthogneiss units, mostly yielded 1640-1050 Ma detrital zircon populations that are consistent with pre-Caledonian locations near northeast Greenland. Basal Old Red Sandstone deposits that filled pull-apart basins showed basement-derived signatures but also contained 530-450 Ma and 670-570 Ma populations with slightly subchondritic (epsilon(Hf[t]) = -4 to -2) Hf isotope compositions. These results are consistent with late Silurian-Early Devonian proximity to the northeast Greenland Caledonides and Pearya, which indicates limited (<200 km) strike-slip displacement of Svalbard's Caledonian allochthons after the Laurentia-Baltica collision. Previously interpreted connections between the Svalbard Old Red Sandstone and British Caledonides are incompatible with these detrital zircon results. Lochkovian Old Red Sandstone strata were deposited after a second episode of strike-slip faulting and show recycled basement signatures. The lack of 530-450 Ma and 670-570 Ma populations suggests that the second deformation episode reorganized local drainages. Pragian-Givetian strata have provenance from local Old Red Sandstone sources that were uplifted during a third and final episode of strike-slip deformation. The results indicate that northern Caledonian (Svalbard, Pearya) crustal evolution was characterized by the reworking of Mesoproterozoic-Paleoproterozoic sources and mostly <600 m.y. crustal residence times, whereas the southern Caledonides (UK, Ireland) show evidence for the reworking of older basement and mostly >600 m.y. crustal residence times.
  •  
5.
  • Burchardt, Steffi, et al. (författare)
  • The Slaufrudar pluton, southeast Iceland : An example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping
  • 2011
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 124:1-2, s. 213-227
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tertiary Slaufrudalur pluton is the largest granitic intrusion exposed in Iceland. Five glacial valleys cut through the uppermost 900 m of the pluton, exposing spectacular sections through its roof, walls, and interior. The wall contacts are subvertical and sharp. Only in the northeast and southwest is the wall contact characterized by brittle faulting. The pluton roof is smooth at map scale, so that the overall cross-sectional shape of the pluton and its internal layering indicate emplacement by incremental floor sinking through cauldron subsidence. A pronounced elongation of the pluton, parallel to the trend of regional fissure swarms, and its angular shape in map view indicate strong tectonic control on horizontal ring-fault propagation, whereas faulted wall contacts represent step-over structures between the earlier-formed ring faults. On outcrop scale, the roof contact exhibits numerous steps, faults, and apophyses associated with conjugate fracture sets that are parallel and perpendicular to the strike of the length of the pluton. These structures were presumably formed by sequential inflation and deflation of the pluton during episodic magma intrusion and therefore are closely coupled to cauldron subsidence. As a result of roof fracturing and magma injection along the fractures, roof material is found partly or completely detached within the granite. The Slaufrudalur pluton therefore provides new insight into the coupling of the emplacement mechanisms of cauldron subsidence and magmatic stoping in the upper crust.
  •  
6.
  • Carracedo, J. C., et al. (författare)
  • Evolution of ocean-island rifts : The northeast rift zone of Tenerife, Canary Islands
  • 2011
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 123:3-4, s. 562-584
  • Tidskriftsartikel (refereegranskat)abstract
    • The northeast rift zone of Tenerife presents a superb opportunity to study the entire cycle of activity of an oceanic rift zone. Field geology, isotopic dating, and magnetic stratigraphy provide a reliable temporal and spatial framework for the evolution of the NE rift zone, which includes a period of very fast growth toward instability (between ca. 1.1 and 0.83 Ma) followed by three successive large landslides: the Micheque and Guimar collapses, which occurred approximately contemporaneously at ca. 830 ka and on either side of the rift, and the La Orotava landslide (between 690 +/- 10 and 566 +/- 13 ka). Our observations suggest that Canarian rift zones show similar patterns of development, which often includes overgrowth, instability, and lateral collapses. Collapses of the rift flanks disrupt established fissural feeding systems, favoring magma ascent and shallow emplacement, which in turn leads to magma differentiation and intermediate to felsic nested eruptions. Rifts and their collapses may therefore act as an important factor in providing architectural and petrological variability to oceanic volcanoes. Conversely, the presence of substantial felsic volcanism in rift settings may indicate the presence of earlier landslide scars, even if concealed by postcollapse volcanism. Comparative analysis of the main rifts in the Canary Islands outlines this general evolutionary pattern: (1) growth of an increasingly high and steep ridge by concentrated basaltic fissure eruptions; (2) flank collapse and catastrophic disruption of the established feeder system of the rift; (3) postcollapse centralized nested volcanism, commonly evolving from initially ultramafic-mafic to terminal felsic compositions (trachytes, phonolites); and (4) progressive decline of nested eruptive activity.
  •  
7.
  • Cawood, Peter A., et al. (författare)
  • Neoproterozoic to early Paleozoic extensional and compressional history of East Laurentian margin sequences : The Moine Supergroup, Scottish Caledonides
  • 2015
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127:3-4, s. 349-371
  • Tidskriftsartikel (refereegranskat)abstract
    • Neoproterozoic siliciclastic-dominated sequences are widespread along the eastern margin of Laurentia and are related to rifting associated with the breakout of Laurentia from the supercontinent Rodinia. Detrital zircons from the Moine Supergroup, NW Scotland, yield Archean to early Neoproterozoic U-Pb ages, consistent with derivation from the Grenville-Sveconorwegian orogen and environs and accumulation post–1000 Ma. U-Pb zircon ages for felsic and associated mafic intrusions confirm a widespread pulse of extension-related magmatism at around 870 Ma. Pegmatites yielding U-Pb zircon ages between 830 Ma and 745 Ma constrain a series of deformation and metamorphic pulses related to Knoydartian orogenesis of the host Moine rocks. Additional U-Pb zircon and monazite data, and 40Ar/39Ar ages for pegmatites and host gneisses indicate high-grade metamorphic events at ca. 458–446 Ma and ca. 426 Ma during the Caledonian orogenic cycle.The presence of early Neoproterozoic siliciclastic sedimentation and deformation in the Moine and equivalent successions around the North Atlantic and their absence along strike in eastern North America reflect contrasting Laurentian paleogeography during the breakup of Rodinia. The North Atlantic realm occupied an external location on the margin of Laurentia, and this region acted as a locus for accumulation of detritus (Moine Supergroup and equivalents) derived from the Grenville-Sveconorwegian orogenic welt, which developed as a consequence of collisional assembly of Rodinia. Neoproterozoic orogenic activity corresponds with the inferred development of convergent plate-margin activity along the periphery of the supercontinent. In contrast in eastern North America, which lay within the internal parts of Rodinia, sedimentation did not commence until the mid-Neoproterozoic (ca. 760 Ma) during initial stages of supercontinent fragmentation. In the North Atlantic region, this time frame corresponds to a second pulse of extension represented by units such as the Dalradian Supergroup, which unconformably overlies the predeformed Moine succession.
  •  
8.
  • Cawood, P. A., et al. (författare)
  • Orogenesis without collision : Stabilizing the Terra Australis accretionary orogen, eastern Australia
  • 2011
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 123:11-12, s. 2240-2255
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neoproterozoic to end-Paleozoic Terra Australis orogen extended along the Gondwana margin of the paleo–Pacific Ocean, and it now provides a detailed record of orogenic activity and continental stabilization within an ongoing convergent, accretionary plate margin. New geochronological data from end-Paleozoic plutonic and volcanic rocks associated with the Gondwanide orogeny in the New England region of eastern Australia, integrated with information on the nature and timing of associated sedimentation, deformation, and metamorphism, allow resolution of a high-fidelity record of orogenesis.At the end of the Carboniferous, around 305 Ma, convergent margin magmatism, which had been active along the western margin of the New England region, terminated and was followed by a short pulse of regional compressional deformation and metamorphism, marking the commencement of the Tablelands phase of Gondwanide orogenesis. Deformation was almost immediately followed by the onset of clastic sedimentation and local calc-alkaline volcanism, dated at 293 Ma, in the extensional Barnard Basin. Emplacement of the two New England S-type granitic suites, the Bundarra and the Hillgrove suites, along with localized high-temperature, low-pressure metamorphism, was essentially contemporaneous, ranging in age from 296 to 288 Ma, and overlapped in time with I-type magmatism and the switch from regional compression to extension and Barnard Basin rifting.The Hunter-Bowen phase of the Gondwanide orogeny commenced with contractional deformation, resulting in termination of sedimentation in the Barnard Basin and regional deformation and metamorphism across New England and into the Sydney and Gunnedah basins to the west at around 265–260 Ma. Contractional loading of the Sydney and Gunnedah basins resulted in their conversion from extensional to foreland basins, which received ongoing pulses of sediment from the New England orogenic welt until 230 Ma. The Hunter-Bowen phase was associated with widespread I-type plutonism and volcanic activity in New England that ceased around 230 Ma, marking the termination of Gondwanide orogenesis.Orogenesis occurred in an evolving convergent plate-margin setting. S- and I-type magmatic activity ranging in age from ca. 300 to 230 Ma represents a stepping out of arc magmatism from the western margin of New England (prior to 305 Ma) into the preexisting arc-trench gap. There is no evidence that deformation was related to the collision of the convergent margin with a major lithospheric mass, and the widespread development of extensional basins in the eastern third of Australia in the Early Permian indicates control by phenomena acting on a continental scale, probably changing plate kinematics associated with the amalgamation of Pangea.
  •  
9.
  • Chew, David M., et al. (författare)
  • Timing of ophiolite obduction in the Grampian orogen
  • 2010
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 122:11-12, s. 1787-1799
  • Tidskriftsartikel (refereegranskat)abstract
    • This study addresses the timing and pressure-temperature (P-T) conditions of ophiolite obduction, one of the proposed causes of the ca. 470 Ma Grampian orogeny of Scotland and Ireland. This event gave rise to the main structural and metamorphic characteristics of the Grampian terrane-the type area for Barrovian metamorphism, the cause of which remains enigmatic despite a century of research. Zircons from the Highland Border ophiolite, Scotland, define a 499 +/- 8 Ma U-Pb concordia age, which is interpreted as dating magmatism. Its metamorphism is dated by a 490 +/- 4 Ma Ar-40-Ar-39 hornblende age, and a 488 +/- 1 Ma Ar-40-Ar-39 muscovite age from a metasedimentary xenolith within it, from which P-T estimates of 5.3 kbar and 580 degrees C relate to ophiolite obduction. Metamorphism of the Deerpark complex ophiolitic melange (Irish correlative of the Highland Border ophiolite) is constrained by a 514 +/- 3 Ma Ar-40-Ar-39 hornblende age, while mica schist slivers within it yield detrital zircon U-Pb ages consistent with Laurentian provenance and Rb-Sr and Ar-40-Ar-39 muscovite ages of ca. 482 Ma. P-T values of 3.3 kbar and 580 degrees C for the mica schist constrain the conditions of ophiolite obduction. Metamorphic mineral ages from the Grampian terrane (Dalradian Supergroup) are substantially younger (ca. 475-465 Ma) than those from the ophiolites. If conductive heating in overthickened crust was the cause of Barrovian metamorphism, then collisional thickening must have started soon after ophiolite obduction at ca. 490 Ma in order to generate the ca. 470 Ma metamorphic peak in the Grampian terrane.
  •  
10.
  • Cramer, Bradley D., et al. (författare)
  • Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (<500 k.y.) integrated conodont, graptolite, and carbon isotope (delta C-13(carb)) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?
  • 2010
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 122:9-10, s. 1700-1716
  • Tidskriftsartikel (refereegranskat)abstract
    • The resolution and fidelity of global chronostratigraphic correlation are direct functions of the time period under consideration. By virtue of deep-ocean cores and astrochronology, the Cenozoic and Mesozoic time scales carry error bars of a few thousand years (k.y.) to a few hundred k. y. In contrast, most of the Paleozoic time scale carries error bars of plus or minus a few million years (m. y.), and chronostratigraphic control better than +/- 1 m. y. is considered "high resolution." The general lack of Paleozoic abyssal sediments and paucity of orbitally tuned Paleozoic data series combined with the relative incompleteness of the Paleozoic stratigraphic record have proven historically to be such an obstacle to intercontinental chronostratigraphic correlation that resolving the Paleozoic time scale to the level achieved during the Mesozoic and Cenozoic was viewed as impractical, impossible, or both. Here, we utilize integrated graptolite, conodont, and carbonate carbon isotope (delta C-13 carb) data from three paleocontinents (Baltica, Avalonia, and Laurentia) to demonstrate chronostratigraphic control for upper Llandovery through middle Wenlock (TelychianSheinwoodian, similar to 436-426 Ma) strata with a resolution of a few hundred k.y. The interval surrounding the base of the Wenlock Series can now be correlated globally with precision approaching 100 k.y., but some intervals (e. g., uppermost Telychian and upper Shein-woodian) are either yet to be studied in sufficient detail or do not show sufficient biologic speciation and/or extinction or carbon isotopic features to delineate such small time slices. Although producing such resolution during the Paleozoic presents an array of challenges unique to the era, we have begun to demonstrate that erecting a Paleozoic time scale comparable to that of younger eras is achievable.
  •  
11.
  • Cramer, Bradley D., et al. (författare)
  • U-Pb (zircon) age constraints on the timing and duration of Wen lock (Silurian) paleocommunity collapse and recovery during the "Big Crisis"
  • 2012
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 124:11-12, s. 1841-1857
  • Tidskriftsartikel (refereegranskat)abstract
    • High-precision isotope-dilution U-Pb (zircon) dating was conducted on three volcanic ash fall (bentonite) samples from the Swedish island of Gotland, and on a fourth bentonite from the West Midlands, England. Zircons from the Ireviken, Grotlingbo, Djupvik (Gotland), and Wren's Nest Hill-15 (West Midlands) bentonites yielded weighted mean Pb-206/U-238 ages of 431.83 +/- 0.23/0.67 Ma, 428.45 +/- 035/0.73 Ma, 428.06 +/- 0.2110.66 Ma, and 427.86 +/- 032/0.71 Ma, respectively (analytical/total uncertainties). These biostratigraphically well-controlled age dates effectively bracket the Wenlock Epoch of the Silurian Period and provide control for the duration of one of the major Paleozoic biotic events and associated perturbations to the global carbon cycle (the "Big Crisis" or lundgreni event- graptolites; the NIulde Event-conodonts; the Mulde excursion-carbon isotopes). These new data suggest an older and shorter duration for the recalibration of the Wenlock Series and demonstrate that the cascade of biological and chemical events that took place during the Big Crisis happened on time scales of tens to hundreds of thousands of years.
  •  
12.
  •  
13.
  • Greenwood, Sarah L., et al. (författare)
  • Ice-flow switching and East/West Antarctic Ice Sheet roles in glaciation of the western Ross Sea
  • 2012
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 124:11-12, s. 1736-1749
  • Tidskriftsartikel (refereegranskat)abstract
    • The long-term behavior of the East and West Antarctic Ice Sheets, and their respective responses to forcing provide essential context for assessment of modern dynamic changes in ice-flow regimes and ice-sheet and shelf margins. The western Ross Sea discharges ice from both the East and West Antarctic Ice Sheets, and the paleoglacial record from this region is therefore valuable in unraveling their long-term behavior. New, high-resolution multibeam bathymetric data reveal snapshots of well-preserved glacial landforms on the seafloor around Ross Island and McMurdo Sound. Glacial lineations, grounding zone wedges, draped recessional moraines, and meltwater channels record a series of different ice-flow events in the region, contradictions between which require major phases of ice-flow reorganization. From the glacial geomorphology, we reconstruct a four-stage model of ice-flow evolution for the last glacial cycle, consisting of: (1) northeastward flow into the Ross Sea from McMurdo Sound; (2) westward flow from the Ross Sea, around Ross Island, and onto the Victoria Land coast and coastal seafloor trough; (3) a deglacial phase of ice-sheet thinning, minor shifts in flow, and grounding line retreat into McMurdo Sound; and (4) grounding line pinning on Ross Island during regional retreat, uncoupling of a remnant Ross Island ice cap, and local oscillation of Victoria Land outlet glaciers. We find that East Antarctic Ice Sheet ice discharge had a strong influence on ice-flow geometry in this part of the Ross Sea during the last glacial stage, but that it was not necessarily in phase with the behavior of the West Antarctic Ice Sheet. It is similarly evident that the ice streams that drained the Ross Sea over the continental shelf at the Last Glacial Maximum did not all operate synchronously, and exerted different drawdown power at different times. Finally, we conclude that Ross Island acts as an important pinning point in the Ross Sea ice-sheet-shelf system, stabilizing grounding line retreat and encouraging lasting ice-shelf development.
  •  
14.
  • Gumsley, Ashley, et al. (författare)
  • Neoarchean large igneous provinces on the Kaapvaal Craton in southern Africa re-define the formation of the Ventersdorp Supergroup and its temporal equivalents
  • 2020
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 132:9-10, s. 1829-1844
  • Tidskriftsartikel (refereegranskat)abstract
    • U-Pb geochronology on baddeleyite is a powerful technique that can be applied effectively to chronostratigraphy. In southern Africa, the Kaapvaal Craton hosts a well-preserved Mesoarchean to Paleoproterozoic geological record, including the Neoarchean Ventersdorp Supergroup. It overlies the Witwatersrand Supergroup and its world-class gold deposits. The Ventersdorp Supergroup comprises the Klipriviersberg Group, Platberg Group, and Pniel Group. However, the exact timing of formation of the Ventersdorp Supergroup is controversial. Here we present 2789 ± 4 Ma and 2787 ± 2 Ma U-Pb isotope dilution- thermal ionization mass spectrometry (ID-TIMS) baddeleyite ages and geochemistry on mafic sills intruding the Witwatersrand Supergroup, and we interpret these sills as feeders to the overlying Klipriviersberg Group flood basalts. This constrains the age of the Witwatersrand Supergroup and gold mineralization to at least ca. 2.79 Ga. We also report 2729 ± 5 Ma and 2724 ± 7 Ma U-Pb ID-TIMS baddeleyite ages and geochemistry from a mafic sill intruding the Pongola Supergroup and on an east-northeast-trending mafic dike, respectively. These new ages distinguish two of the Ventersdorp Supergroup magmatic events: the Klipriviersberg and Platberg. The Ventersdorp Supergroup can now be shown to initiate and terminate with two large igneous provinces (LIPs), the Klipriviersberg and Allanridge, which are separated by Platberg volcanism and sedimentation. The age of the Klipriviersberg LIP is 2791-2779 Ma, and Platberg volcanism occurred at 2754-2709 Ma. The Allanridge LIP occurred between 2709-2683 Ma. Klipriviersberg, Platberg, and Allanridge magmatism may be genetically related to mantle plume(s). Higher heat flow and crustal melting resulted as a mantle plume impinged below the Kaapvaal Craton lithosphere, and this was associated with rifting and the formation of LIPs.
  •  
15.
  • Lescoutre, Rodolphe, et al. (författare)
  • Large-scale, flat-lying mafic intrusions in the Baltican crust and their influence on basement deformation during the Caledonian orogeny
  • 2022
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of America. - 0016-7606 .- 1943-2674. ; 134:11-12, s. 3022-3048
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fennoscandian Shield in central Sweden displays a complex structural and compositional architecture that is mainly related to the Proterozoic history of the Baltica paleocontinent. In its western parts, the Precambrian basement is covered by the allochthonous rocks of the Caledonide orogen, and direct information about the underlying crust is restricted to a few unevenly distributed basement windows in western Sweden and Norway. In this study, we use preliminary results from the second borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-2), new gravity data, forward gravity, and magnetic modeling and interpretation of seismic reflection profiles to assess the 3-D architecture of the basement. Our results reveal a wide (∼100 km) and dense network of mainly flat-lying and saucer-shaped dolerites intruding the volcanic and granitic upper crustal rocks of the Transscandinavian Igneous Belt. Similar intrusion geometries related to 1.2 Ga dolerites can be recognized in the Fennoscandian Shield. We discuss that the formation of these sill complexes occurred in a lithologically and structurally heterogeneous crust during transtension, which is in disagreement with the current understanding of sill emplacement that involves crustal shortening, layering, or anisotropy of the host rock. Our seismic interpretation and the structural observations from the COSC-2 drilling show that part of the Caledonian-related basement deformation was localized along the margins of the dolerite sheets. We propose that the dolerite intrusion geometry, akin to a flat-ramp geometry, guided the basement deformation during the Caledonian orogeny.
  •  
16.
  • Mays, Chris, 1983-, et al. (författare)
  • Refined Permian-Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems
  • 2020
  • Ingår i: Geological Society of America Bulletin. - Boulder : Geological Society of America. - 0016-7606 .- 1943-2674. ; 132, s. 1489-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near continuous, age-constrained succession of high southern paleolatitude (∼65–75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian–Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian–Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian–Spathian floral overturn event in high southern latitudes.
  •  
17.
  • Morgan, L. A., et al. (författare)
  • The dynamic floor of Yellowstone Lake, Wyoming, USA : The last 14 k.y. of hydrothermal explosions, venting, doming, and faulting
  • 2023
  • Ingår i: Bulletin of the Geological Society of America. - 0016-7606. ; 135:3-4, s. 547-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrothermal explosions are significant potential hazards in Yellowstone National Park, Wyoming, USA. The northern Yellowstone Lake area hosts the three largest hydrothermal explosion craters known on Earth empowered by the highest heat flow values in Yellowstone and active seismicity and deformation. Geological and geochemical studies of eighteen sublacustrine cores provide the first detailed synthesis of the age, sedimentary facies, and origin of multiple hydrothermal explosion deposits. New tephrochronology and radiocarbon results provide a four-dimensional view of recent geologic activity since recession at ca. 15–14.5 ka of the >1-km-thick Pinedale ice sheet. The sedimentary record in Yellowstone Lake contains multiple hydrothermal explosion deposits ranging in age from ca. 13 ka to ~1860 CE. Hydrothermal explosions require a sudden drop in pressure resulting in rapid expansion of high-temperature fluids causing fragmentation, ejection, and crater formation; explosions may be initiated by seismicity, faulting, deformation, or rapid lake-level changes. Fallout and transport of ejecta produces distinct facies of subaqueous hydrothermal explosion deposits. Yellowstone hydrothermal systems are characterized by alkaline-Cl and/or vapor-dominated fluids that, respectively, produce alteration dominated by silica-smectite-chlorite or by kaolinite. Alkaline-Cl liquids flash to steam during hydrothermal explosions, producing much more energetic events than simple vapor expansion in vapor-dominated systems. Two enormous explosion events in Yellowstone Lake were triggered quite differently: Elliott’s Crater explosion resulted from a major seismic event (8 ka) that ruptured an impervious hydrothermal dome, whereas the Mary Bay explosion (13 ka) was triggered by a sudden drop in lake level stimulated by a seismic event, tsunami, and outlet channel erosion.
  •  
18.
  • Ng, S.W.-P., et al. (författare)
  • Petrogenesis of Malaysian granitoids in the Southeast Asian Tin Belt: Part 1. Geochemical and Sr-Nd isotopic characteristics.
  • 2015
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127, s. 1209-1237
  • Tidskriftsartikel (refereegranskat)abstract
    • The Malaysian granitoids of the Southeast Asian tin belt have been traditionally divided into a Permian to Late Triassic “I-type”–dominated arc-related Eastern province (Indochina terrane) and a Late Triassic “S-type”–dominated collision-related Main Range province (Sibumasu terrane), separated by the Bentong-Raub Paleo-Tethyan suture that closed in the Late Triassic. The present study, however, shows that this model is oversimplified and that the direct application of Chappell and White’s (1974) I- and S-type classification cannot account for many of the characteristics shared by Malaysian granitoids. Despite being commonly hornblende bearing, as is typical for I-type granites, the roof zones of the Eastern province granites are hornblende free. In addition, the Main Range province granitoids contain insignificant primary muscovite, and are dominated by biotite granites, mineralogically similar to many of the plutons of the Eastern province. In general, the Malaysian granitoids from both provinces are more enriched in high field strength elements than typical Cordilleran I- and S-type granitoids. The mineralogy and geochemistry of the Eastern province granitoids, and their relationship with contemporaneous volcanics, confirm their I-type nature. The bulk liquid lines of descent of both granitic provinces largely overlap with one another. Sr-Nd isotopic data further demonstrate that the Malaysian granitoids, especially those of the Main Range, were hybridized melts derived from two “end-member” source regions, one of which is isotopically similar to the Kontum orthoamphibolites and the other akin to the Kontum paragneisses of the Indochina block. However, there are differences in the source rocks for the two provinces, and it is suggested in this paper that these are related to differing proportions of igneous and sedimentary protoliths. The incorporation of sedimentary-sourced melts in the Eastern province is insignificant, which allowed the granites in this belt to maintain their I-type nature. The presence of minor primary tin mineralization in the Eastern province compared to the much more significant tin endowment in the Main Range is considered to reflect the incorporation of a smaller proportion of sedimentary protolith in the melt products of the former.                  
  •  
19.
  • Ng, S.W.--P., et al. (författare)
  • Petrogenesis of Malaysian granitoids in the Southeast Asian Tin Belt: Part 2. U-Pb zircon geochronology and tectonic model.
  • 2015
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127, s. 1238-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • In our complementary geochemical study (Part 1), the Malaysian granitoids of the Southeast Asian tin belt were divided into a Middle Permian to Late Triassic I-type–dominated Eastern province (Indochina terrane) and a Triassic to Early Jurassic transitional I/S-type Main Range province (Sibumasu terrane), separated by the Bentong-Raub suture zone which closed in the Late Triassic. Previous geochronology has relied on only a few U-Pb zircon ages together with K-Ar and whole rock Rb-Sr ages that may not accurately record true magmatic ages. We present 39 new high-precision U-Pb zircon ion microprobe ages from granitoids and volcanics across the Malay Peninsula. Our results show that ages from the Eastern province granitoids span 289–220 Ma, with those from the Main Range province granitoids being entirely Late Triassic, spanning 227–201 Ma. A general westerly younging magmatic trend across the Malay Peninsula is considered to reflect steepening and roll-back of the Bentong-Raub subduction zone during progressive closure of Paleo-Tethys. The youngest ages of subduction-related granites in the Eastern province roughly coincide with the youngest ages of marine sedimentary rocks along the Paleo-Tethyan suture zone. Our petrogenetic and U-Pb zircon age data support models that relate the Eastern province granites to pre-collisional Andean-type magmatism and the western Main Range province granites to syn- and post-collisional crustal melting of Sibumasu crust during the Late Triassic. Tin mineralization was mainly associated with the latter phase of magmatism. Two alternative tectonic models are discussed to explain the Triassic evolution of the Malay Peninsula. The first involves a second Late Triassic to Jurassic or Early Cretaceous east-dipping subduction zone west of Sibumasu where subduction-related hornblende and biotite–bearing granites along Sibumasu are paired with Main Range crustal-melt tin-bearing granites, analogous to the Bolivia Cordilleran tin-bearing granite belt. The second model involves westward underthrusting of Indochina beneath the West Malaya Main Range province, resulting in crustal thickening and formation of tin-bearing granites of the Main Ranges. Cretaceous granitoids are also present locally in Singapore (Ubin diorite), on Tioman Island, in the Noring pluton, of the Stong complex (Eastern Province), and along the Sibumasu terrane in southwest Thailand and Burma (Myanmar), reflecting localized crustal melting.                  
  •  
20.
  • O’Brien, Timothy M., et al. (författare)
  • Provenance, U-Pb detrital zircon geochronology, Hf isotopic analyses, and Cr-spinel geochemistry of the northeast Yukon-Koyukuk Basin : Implications for interior basin development and sedimentation in Alaska
  • 2018
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 130:5-6, s. 825-847
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yukon-Koyukuk Basin is a large depression that covers ∼118,000 km2 in western interior Alaska and is divided into two subbasins by a volcanic arc assemblage. Interpretations of the depositional setting of the northern Kobuk Koyukuk subbasin vary from a syncollisional forearc basin to a postorogenic successor basin formed by lithospheric extension. New results from sandstones and conglomerates collected from the Kobuk Koyukuk subbasin provide evidence for the timing of basin development, insight into the provenance of coarse siliciclastic sediments, and understanding of the nature of Cretaceous paleogeography and paleodrainage of Arctic Alaska.Early sedimentary rocks of the Kobuk Koyukuk subbasin contain abundant mafic to ultramafic volcanic and plutonic lithic fragments and mafic heavy minerals (e.g., spinel, clinopyroxene, and amphibole). They also contain abundant Middle Triassic to early Late Jurassic zircons (240−160 Ma; peak maximum ca. 200 Ma) that yield highly juvenile Hf isotopic compositions. Geochemistry of chromium spinels (Cr# = 0.17−0.86) suggests crystallization in an immature arc setting that likely developed over mid-ocean-ridge basalt−type crust. These early sediments originated from the mafic and ultramafic rocks of the Angayucham terrane, which was once much more extensive. These results suggest that the Angayucham terrane consists of an obducted Middle Triassic to early Late Jurassic oceanic arc complex that was coeval with oceanic- to continental-margin mafic arc magmatism in the Canadian Cordillera.Our generalized stratigraphy, along with U-Pb ages and Lu-Hf isotope analyses of zircons from sedimentary rocks of the Kobuk Koyukuk subbasin, reflects the tectonic and/or erosional unroofing of the adjacent southern Brooks Range and Ruby terrane. U-Pb ages of detrital zircons collected from the stratigraphically lowest mafic- to ultramafic-rich strata yield maximum depositional ages (107 Ma) that reflect initial erosion of the structurally highest Angayucham terrane and initiation of basin formation and deposition in the late Early Cretaceous. Continued uplift and erosion exposed structurally deeper metamorphic rocks, as revealed by incorporation of low-grade phyllites and eventually higher-grade metamorphic schistose lithic detritus and intermediate-composition (e.g., biotite) to metamorphic (e.g., chloritoid and xenotime) heavy mineral suites into the basin sediments. Differences in detrital zircon signatures between similar-age strata in the Colville foreland basin to the north of the Brooks Range and the Kobuk Koyukuk subbasin indicate that the sediments within the two basins were derived from two different sources, and the Brooks Range orogen acted as a drainage divide during late Early Cretaceous deposition.
  •  
21.
  • Penn-Clarke, Cameron R., et al. (författare)
  • Early–Middle Devonian brachiopod provincialism and bioregionalization at high latitudes : A case study from southwestern Gondwana
  • 2021
  • Ingår i: Bulletin of the Geological Society of America. - 0016-7606. ; 133:3-4, s. 819-836
  • Tidskriftsartikel (refereegranskat)abstract
    • The paleobiogeography of Early–Middle Devonian (Pragian–Eifelian) brachiopods from West Gondwana was assessed to determine any potential controls (regional climatic differences or global eustasy) that may have driven bioregionalization. The Pragian–Eifelian interval of West Gondwana was examined because work by previous authors suggested that this was a period when regionally extensive areas of provincialism among marine invertebrates were present and most pronounced. Factors of particular interest in this study were the controls over brachiopod bioregionalization at high (60°–90°) southern latitudes, which the Malvinokaffric Realm is thought to have entirely occupied. A large presence-absence data matrix was compiled consisting of the occurrences of 206 genera from 17 localities across West Gondwana, and an array of multivariate methods (cluster analysis, nonmetric multidimensional scaling, and network analysis) was employed to assess regional bioregionalization trends. The results of our study suggest that regional climatic differences brought on by latitudinal effects were the determining driver for bioregionalism of brachiopods during the Pragian–Eifelian, and these trends were coincident with a global cooling period during the Early–Middle Devonian. Our study further suggests that of the three regional paleobiogeographic realms thought to be present in West Gondwana during the Early–Middle Devonian (Eastern Americas, Old World, and Malvinokaffric), only the Malvinokaffric Realm is valid as a single biogeographic area.Its area, however, is reduced; it is interpreted to have been a second-order biogeographic area and not a first-order area as suggested by previous authors. Given these factors, we suggest a new demonym for this area, the “Malvinoxhosan,” given the racially charged connotations of “Malvinokaffric.” We present a new biogeographic framework for West Gondwana that is free of preconceived biogeographic area and rank biases, with the understanding that a more globally expansive study should be undertaken to elucidate these areas and their rank within the correct hierarchy. Two first-order paleobiogeographic areas are recognized in West Gondwana and are named according to their latitudinal extent, namely, the high-latitude (60°S–90°S) and temperate-latitude (30°S–60°S) bioregions. The temperate-latitude bioregion consists of a single second-order paleobiogeographic area, the “Colombian–West African” bioregion. Two second-order bioregions are present in the high-latitude bioregion, namely, the Amazonian and Malvinoxhosan bioregions. Here, the Amazonian (~50°S–70°S), compositionally, was an intermediate region between the Colombian–West African (~30°S–50°S) and Malvinoxhosan (70°S–90°S) end members. Latitudinal effects may also have been responsible for dividing the Malvinoxhosan bioregion into two tentative third-order paleobiogeographic areas, namely, the Andeo– South African (~70°S–80°S) and the Paraná (~80°S–90°S) bioregions.
  •  
22.
  • Riley, Teal R., et al. (författare)
  • Episodicity within a mid-Cretaceous magmatic flare-up in West Antarctica : U-Pb ages of the Lassiter Coast intrusive suite, Antarctic Peninsula, and correlations along the Gondwana margin
  • 2018
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 130:7-8, s. 1177-1196
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-lived continental margin arcs are characterized by episodes of large-volume magmatism (or flare-ups) that can persist for ∼30 m.y. before steady-state arc conditions resume. Flare-up events are characterized by the emplacement of large-volume granodiorite-tonalite batholiths and sometimes associated rhyodacitic ignimbrites. One of the major flare-up events of the West Gondwana margin occurred during the mid-Cretaceous and was temporally and spatially associated with widespread deformation and Pacific plate reorganization. New U-Pb geochronology from the Lassiter Coast intrusive suite in the southern Antarctic Peninsula identifies a major magmatic event in the interval 130–102 Ma that was characterized by three distinct peaks in granitoid emplacement at 130–126 Ma, 118–113 Ma, and 108–102 Ma, with clear lulls in between. Mid-Cretaceous magmatism from elsewhere in West Antarctica, Patagonia, and New Zealand also featured marked episodicity during the mid-Cretaceous and recorded remarkable continuity along the West Gondwana margin. The three distinct magmatic events represent second-order episodicity relative to the primary episodicity that occurred on a cordillera scale and is a feature of the North and South American Pacific margin. Flare-up events require the development of a highly fusible, lower-crustal layer resulting from the continued underplating of hydrous mineralogies in the melt-fertile lower crust as a result of long-lived subduction. However, the actual trigger for melting is likely to result from external, potentially tectonic factors, e.g., rifting, plate reorganization, continental breakup, or mantle plumes.
  •  
23.
  • Robinson, Frank A., et al. (författare)
  • U-Pb and oxygen isotope characteristics of Timanian- and Caledonian-age detrital zircons from the Brooks Range, Arctic Alaska, USA
  • 2019
  • Ingår i: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 131:9-10, s. 1459-1479
  • Tidskriftsartikel (refereegranskat)abstract
    • The Devonian connection between the Brooks Range of Alaska, USA, with the continental margin of Arctic Canada and its subsequent Jurassic-Cretaceous counterclockwise rotation to form the Amerasian Basin, is a highly debated topic in Arctic tectonics. This resource-rich region was assembled from terranes that formed part of Laurentia or Baltica, or were juvenile oceanic arcs in the early Paleozoic that were brought together during Caledonian Orogenesis and the subsequent collision that formed Pangea (Uralide Orogeny). Elements of these orogens, as well as older ones, are predicted to occur in the Brooks Range of Arctic Alaska. This study presents the first combined zircon U-Pb and oxygen data from six Brooks Range metasedimentary units with assumed Neoproterozoic to Devonian ages. Three distinct detrital zircon patterns are identified in these units: (1) those with Neoproterozoic maximum depositional ages characteristic of the Timanide Orogen of northern Baltica and adjacent parts of Siberia, (2) an almost unimodal Siluro-Ordovician (443.5 +/- 2.3 Ma) detrital zircon population consistent with the oceanic Apoon arc believed to have existed off shore of northern Laurentia and to have accreted to the North Slope subterrane during the Caledonian event, and (3) those with Middle Devonian maximum depositional ages consistent with postaccretion extension during the final (Scandian) phase of Caledonian Orogenesis. Oxygen isotopes from the same zircons reveal minor to significant crustal contamination with approximately two thirds (n = 255/405) having delta O-18 values >5.9 parts per thousand (above the mantle field of 5.3 +/- 0.6 parts per thousand). Pattern 1 units exhibit a progressive increase in delta O-18 values throughout the Proterozoic (5.99 to 9.29 parts per thousand indicative of increasing crustal growth and Timanide age zircons yield average delta O-18 values of 7.18 +/- 0.64 parts per thousand (n = 26) suggestive of more crustal influence than Caledonian age zircons, possibly reflecting northern Baltica signatures. The unimodal population in Pattern 2 yields average delta O-18 values of 5.49 +/- 0.66 parts per thousand (n = 17) and 6.02 +/- 0.27 parts per thousand (n = 23) prior to and during, respectively, the main Caledonian event and suggest derivation from Devonian juvenile arc sources possibly representing the initiation of the collision between Laurentia and Baltica. Similar to Pattern 1, the delta O-18 values associated with Pattern 3 show a progressive increase in delta O-18 values throughout the Proterozoic (5.00 to 9.39 parts per thousand. However, Pattern 3 also exhibits a distinct juvenile fingerprint (6.13 +/- 0.24 parts per thousand, n = 51) during the main Caledonian event and a slight increase to 7.12 +/- 1 parts per thousand (n = 7) in post-Caledonian zircons possibly suggest correlating with a postaccretion phase in which proximally sourced zircon-bearing detritus was deposited in extension-related basins marking the joining of Laurentia and Baltica.
  •  
24.
  •  
25.
  • Silva-Tamayo, Juan Carlos, et al. (författare)
  • Global perturbation of the marine calcium cycle during the Permian-Triassic transition
  • 2018
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 130:7-8, s. 1323-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • A negative shift in the calcium isotopiccomposition of marine carbonate rocksspanning the end-Permian extinction horizonin South China has been used to arguefor an ocean acidification event coincidentwith mass extinction. This interpretationhas proven controversial, both because theexcursion has not been demonstrated acrossmultiple, widely separated localities, and becausemodeling results of coupled carbon andcalcium isotope records illustrate that calciumcycle imbalances alone cannot accountfor the full magnitude of the isotope excursion.Here, we further test potential controlson the Permian-Triassic calcium isotoperecord by measuring calcium isotope ratiosfrom shallow-marine carbonate successionsspanning the Permian-Triassic boundary inTurkey, Italy, and Oman. All measured sectionsdisplay negative shifts in δ44/40Ca of upto 0.6‰. Consistency in the direction, magnitude,and timing of the calcium isotope excursionacross these widely separated localitiesimplies a primary and global δ44/40Ca signature.Based on the results of a coupled boxmodel of the geological carbon and calciumcycles, we interpret the excursion to reflect aseries of consequences arising from volcanicCO2 release, including a temporary decreasein seawater δ44/40Ca due to short-lived oceanacidification and a more protracted increasein calcium isotope fractionation associatedwith a shift toward more primary aragonitein the sediment and, potentially, subsequentlyelevated carbonate saturation statescaused by the persistence of elevated CO2delivery from volcanism. Locally, changingbalances between aragonite and calcite productionare sufficient to account for the calciumisotope excursions, but this effect alonedoes not explain the globally observed negativeexcursion in the δ13C values of carbonatesediments and organic matter as well. Onlya carbon release event and related geochemicalconsequences are consistent both withcalcium and carbon isotope data. The carbonrelease scenario can also account for oxygenisotope evidence for dramatic and protractedglobal warming as well as paleontologicalevidencefor the preferential extinction ofmarine animals most susceptible to acidification,warming, and anoxia.
  •  
26.
  •  
27.
  •  
28.
  • Walker, J. D., et al. (författare)
  • The Geological Society of America Geologic Time Scale
  • 2013
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 125:3-4, s. 259-272
  • Forskningsöversikt (refereegranskat)abstract
    • The Geological Society of America has sponsored versions of the geologic time scale since 1983. Over the past 30 years, the Geological Society of America Geologic Time Scale has undergone substantial modifications, commensurate with major advances in our understanding of chronostratigraphy, geochronology, astrochronology, chemostratigraphy, and the geomagnetic polarity time scale. Today, many parts of the time scale can be calibrated with precisions approaching less than 0.05%. Some notable time intervals for which collaborative, multifaceted efforts have led to dramatic improvements in our understanding of the character and temporal resolution of key evolutionary events include the Triassic-Jurassic, Permian-Triassic, and Neoproterozoic-Phanerozoic boundaries (or transitions). In developing the current Geological Society of America Time Scale, we have strived to maintain a consistency with efforts by the International Commission on Stratigraphy to develop an international geologic time scale. Although current geologic time scales are vastly improved over the first geologic time scale, published by Arthur Holmes in 1913, we note that Holmes, using eight numerical ages to calibrate the Phanerozoic time scale, estimated the beginning of the Cambrian Period to within a few percent of the currently accepted value. Over the past 100 years, the confluence of process-based geological thought with observed and approximated geologic rates has led to coherent and quantitatively robust estimates of geologic time scales, reducing many uncertainties to the 0.1% level.
  •  
29.
  • Weinberg, RF, et al. (författare)
  • Magma flow within the Tavares pluton, northeastern Brazil: Compositional and thermal convection
  • 2001
  • Ingår i: GEOLOGICAL SOCIETY OF AMERICA BULLETIN. - : ASSOC ENGINEERING GEOLOGISTS GEOLOGICAL SOCIETY AMER. - 0016-7606. ; 113:4, s. 508-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Crystallization coupled with gravity removal of depleted interstitial melt has long been recognized as a mechanism of magma differentiation. Similarly, heat released by synplutonic basaltic magma intrusions has long been recognized as capable of driving c
  •  
30.
  • Yu, Shiyong (författare)
  • Centennial-scale cycles in middle Holocene sea level along the southeastern Swedish Baltic coast
  • 2003
  • Ingår i: Geological Society of America Bulletin. - 0016-7606. ; 115:11, s. 1404-1409
  • Tidskriftsartikel (refereegranskat)abstract
    • Submerged sea grasses and stoneworts growing in the immediate nearshore of the Baltic Sea are sensitive indicators of sea level. The alternating changes in concentrations of sea grass and stonewort macrofossils, obtained from an ancient lagoon of the Baltic Sea, are ascribed to middle Holocene sea-level fluctuations along the southeastern Swedish coast. Abundances of stonewort and sea grass macrofossils between 7500 and 6000 cal. (calibrated) yr B.P. were lower and less variable, indicating high and relatively stable sea level. Low-frequency fluctuations of sea level with a 1470 yr period during this time may have been forced by tidal action in the millennial band. After 6000 cal. yr B.P., sea level was lower and exhibited strong fluctuations at centennial time scales, as evident in the stonewort and sea grass macrofossil records. Such a high-frequency oscillatory mode of sea level may have been regulated by centennial-scale solar activities or tidal actions, or both. The modest variation in solar irradiance is unlikely to have resulted in large-scale oscillations of sea level by directly changing the steric component. Instead, it governed sea-level fluctuations by changing the regional storminess through a North Atlantic Oscillation (NAO)-like system. Storms embedded in the NAO-induced southwesterly winds played a major role in the centennial-scale fluctuations of the Baltic Sea level by pushing saltwater from the North Sea into the Baltic basin.
  •  
31.
  • Zhang, Xiaojing, 1984-, et al. (författare)
  • Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U-Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula
  • 2016
  • Ingår i: Geological Society of America Bulletin. - : Geological Society of America. - 0016-7606 .- 1943-2674. ; 128:1-2, s. 29-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The Taimyr fold-and-thrust belt records late Paleozoic compression, presumably related to Uralian orogenesis, overprinted by Mesozoic dextral strike-slip faulting. U-Pb detrital zircon analyses of 38 sandstones from southern Taimyr were conducted using laser ablation-inductively coupled plasma-mass spectrometry to investigate late Paleo-zoic to Mesozoic sediment provenance and the tectonic evolution of Taimyr within a regional framework. The Pennsylvanian to Permian sandstones contain detrital zircon populations of 370-260 Ma, which are consistent with derivation from the late Paleozoic Uralian orogen in northern Taimyr and/or the polar Urals. Late Neoproterozoic through Silurian ages (688-420 Ma), most consistent with derivation from Timanian and Caledonian age sources, suggest an ultimate Baltica source. Southern Taimyr represents the proforeland basin of the bivergent Uralian orogen in the late Paleozoic. Triassic sedimentary rocks contain detrital zircon populations of Carboniferous-Permian (355-260 Ma), late Neoproterozoic to Early Devonian (650-410 Ma), and minor Neoproterozoic (1000-700 Ma) ages, which suggest a similar provenance as the Carboniferous to Permian strata. The addition of a Permian-Triassic (260-220 Ma) zircon population indicates derivation of detritus from Siberian Trap-related magmatism. Jurassic samples have a dominant age peak at 255 Ma and a distinct reduction in Carboniferous-Permian and late Neoproterozoic to Early Devonian input, suggesting that erosion and contributions from Uralian sources ceased while greater input from Siberian Trap-related rocks of Taimyr dominated. Comparison of these results to the published literature demonstrates that detritus from the Uralian orogen was deposited in Taimyr, Novaya Zemlya, and the New Siberian Islands in the Permian, but not in the Lisburne Hills or Wrangel Island. In the Triassic, Taimyr, Chukotka, Wrangel Island, the Kular-Dome in the northern Verkhoyansk of Siberia, Lisburne Hills, Franz Josef Land, and Svalbard shared sources from Taimyr, the Siberian Traps, and the polar Urals, indicating that there were no geographic barriers among these locations prior to opening of the Amerasia Basin. Detritus from the Uralian orogen in Taimyr was shed northward into the retroforeland basin and was then transported farther 20-30 m. y. after Uralian orogenesis. The widespread distribution of material eroded from Taimyr and the polar Urals during the Triassic is likely due to the arrival of, and sublithospheric spreading associated with, the Siberian mantle plume head at ca. 250 Ma. The subsequent motion of the lithosphere relative to the plume-swell likely caused a northwestward migration of the uplifted regions. Taimyr and the polar Urals were probably affected. In the Jurassic, detrital-zircon spectra from Taimyr, Chukotka, the Kular Dome, and Svalbard show great differences, suggesting that these locations no longer shared the same provenance from Taimyr and the Urals. The restricted distribution of detritus from Taimyr and the Urals indicates that erosion of the Uralian orogen was reduced. In the Late Jurassic, the depositional setting of southern Taimyr probably changed from a foreland to an intracratonic basin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy