SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0079 6611 "

Search: L773:0079 6611

  • Result 1-38 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baltar, Federico, et al. (author)
  • Mesoscale variability modulates seasonal changes in the trophic structure of nano- and picoplankton communities across the NW Africa-Canary Islands transition zone
  • 2009
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 83:1-4, s. 180-188
  • Journal article (peer-reviewed)abstract
    • The variability of picoplankton and nanoplankton autotrophic (A) and heterotrophic (H) communities was studied along a zonal gradient extending from the NW African shelf to 500 km offshore in two contrasting seasons of the year: early spring (spring) and summer (summer). Plankton abundance was significantly higher in summer than in spring. In particular, heterotrophic prokaryotes (HP) and Prochlorococcus (Proc) were an order of magnitude more abundant in summer, presumably due to a higher loading of dissolved organic matter and higher temperatures. The average ratio of A to H biomass was lower during the summer. Over the African shelf, picoplankton was lowest during summer, while both the autotrophic and heterotrophic nanoflagellates (ANF and HNF) showed the highest abundances. In contrast, in spring, the highest abundance of Picoeukaryotes (PE) and Synechococcus (Syn) was found over or close to the shelf. The offshore sampling sections intersected a complex area of strong mesoscale variability, which affected the plankton distribution. In summer, the entrainment of an upwelling filament around a cyclonic eddy provoked the increase of HP and Syn abundances by about one order of magnitude over the surrounding waters, while PE were more abundant over the core of the eddy (probably due to nutrient pumping). In spring, HP and Syn were more abundant at the boundaries of an anticyclonic eddy and in the filament (where PE also increased). Proc abundance increased up to one order of magnitude in the core of the eddy and in the eddy-oceanic waters front. ANF and HNF showed the highest abundances in the filament and the eddy. in summary, although seasonality affects the background variability in microplankton communities, the mesoscale variability found in the Canary Islands transition zone strongly modulates the patterns of distribution, abundances and changes in community structure, altering the A to H ratio and concomitantly playing a key role modifying the carbon pathways within the food web in the region. 
  •  
2.
  • Bergström, Ulf (author)
  • Spatio-temporal dynamics of cod nursery areas in the Baltic Sea
  • 2017
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 155, s. 28-40
  • Journal article (peer-reviewed)abstract
    • In this study the drift of eastern Baltic cod larvae and juveniles spawned within the historical eastern Baltic cod spawning grounds was investigated by detailed drift model simulations for the years 1971-2010, to examine the spatio-temporal dynamics of environmental suitability in the nursery areas of juvenile cod settlement. The results of the long-term model scenario runs, where juvenile cod were treated as simulated passively drifting particles, enabled us to find strong indications for long-term variations of settlement and potentially the reproduction success of the historically important eastern Baltic cod nursery grounds. Only low proportions of juveniles hatched in the Arkona Basin and in the Gotland Basin were able to settle in their respective spawning ground. Ocean currents were either unfavorable for the juveniles to reach suitable habitats or transported the juveniles to nursery grounds of neighboring subdivisions. Juveniles which hatched in the Bornholm Basin were most widely dispersed and showed the highest settlement probability, while the second highest settlement probability and horizontal dispersal was observed for juveniles originating from the Gdansk Deep. In a long-term perspective, wind-driven transport of larvae/juveniles positively affected the settlement success predominately in the Bornholm Basin and in the Bay of Gdansk. The Bornholm Basin has the potential to contribute on average 54% and the Bay of Gdansk 11% to the production of juveniles in the Baltic Sea. Furthermore, transport of juveniles surviving to the age of settlement with origin in the Bornholm Basin contributed on average 13 and 11% to the total settlement in the Arkona Basin and in the Gdansk Deep, respectively. The time-series of the simulated occupied juvenile cod habitat in the Bornholm Basin and in the Gdansk Deep showed a similar declining trend as the Fulton's K condition factor of demersal 1-group cod, which may confirm the importance of oxygen-dependent habitat availability and its effect on density dependence as a process relevant for recruitment success. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
3.
  • Brüchert, Volker, et al. (author)
  • Hydrogen sulphide and methane emissions on the central Namibian shelf
  • 2009
  • In: Progress in Oceanography. - : Elsevier. - 0079-6611 .- 1873-4472. ; 83:1-4, s. 169-179
  • Journal article (peer-reviewed)abstract
    • Hydrogen sulphide occurs frequently in the waters of the inner shelf coastal upwelling area off central Namibia. The area affected coincides with hatching grounds of commercially important pelagic fish, whose recruitment may be severely affected by recurring toxic sulphidic episodes. Both episodic biogenic methane gas-driven advective and molecular diffusive flux of hydrogen sulphide have been implicated as transport mechanisms from the underlying organic-matter-rich diatomaceous mud. To test hypotheses on the controls of hydrogen sulphide transport from the sediments on the inner Namibian shelf, water column and sediment data were acquired from four stations between 27 and 72 m water depth over a 3 year long period. On 14 cruises, temperature, salinity, dissolved oxygen, nitrate, methane, and total dissolved sulphide were determined from water column samples, and pore water dissolved methane, total dissolved sulphide, biomass of benthic sulphide-oxidising bacteria Beggiatoa and Thiomargarita, and bacterial sulphate reduction rates were determined from sediment cores. Superimposed on a trend of synchronous changes in water column oxygen and nutrient concentrations controlled by regional hydrographic conditions were asynchronous small-scale variations at the in-shore stations that attest to localized controls on water column chemistry. Small temporal variations in sulphate reduction rates determined with 35S-labeled sulphate do not support the interpretation that variable emissions of sulphide and methane from sediments are driven by temporal changes in the degradation rates of freshly deposited organic matter. The large temporal changes in the concentrations of hydrogen sulphide and the co-occurrence of pore water sulphate and methane support an interpretation of episodic advection of methane and hydrogen sulphide from deeper sediment depths – possibly due to gas bubble transport. Effective fluxes of hydrogen sulphide and methane to the water column, and methane and sulphide concentrations in the bottom waters were decoupled, likely due to the activity of sulphide-oxidising bacteria. While the causal mechanism for the episodic fluctuations in methane and dissolved sulphide concentrations remains unclear, this data set points to the importance of alternating advective and diffusive transport of methane and hydrogen sulphide to the water column.
  •  
4.
  • Brunnegård, Jenny, 1973, et al. (author)
  • Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic
  • 2004
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 63:4, s. 159-181
  • Journal article (peer-reviewed)abstract
    • Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with C-14-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 +/- 19 mumol m(-2) d(-1) (n = 7) and 52 +/- 30 mumol m(-2) d(-1) (n = 14), respectively, during the period 1996-2000. During the same period, the DON-flux was 11 +/- 5.6 mumol m(-2) d(-1) (n = 5) and the denitrification rate was 5.1 +/- 3.0 mumol m(-2) d(-1) (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 +/- 0.9 mumol m(-2) d(-1). On average over the sampling period, the recycling efficiency of the PON input to the sediment was similar to94% and the burial efficiency hence similar to6%. The DON flux constituted similar to14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 +/- 5 and 7 +/- 1 Tg N year(-1), respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3-12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
5.
  • Casini, Michele (author)
  • Climate variability drives anchovies and sardines into the North and Baltic Seas
  • 2012
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 96, s. 128-139
  • Journal article (peer-reviewed)abstract
    • European anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) are southern, warm water species that prefer temperatures warmer than those found in boreal waters. After about 40 years of absence, they were again observed in the 1990s in increasing quantities in the North Sea and the Baltic Sea. Whereas global warming probably played a role in these northward migrations, the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO) and the contraction of the subpolar gyre were important influences. Sardine re-invaded the North Sea around 1990, probably mainly as a response to warmer temperatures associated with the strengthening of the NAO in the late 1980s. However, increasing numbers of anchovy eggs, larvae, juveniles and adults have been recorded only since the mid-1990s, when, particularly, summer temperatures started to increase. This is probably a result of the complex dynamics of ocean-atmosphere coupling involving changes in North Atlantic current structures, such as the contraction of the subpolar gyre, and dynamics of AMO. Apparently, climate variability drives anchovies and sardines into the North and Baltic Seas. Here, we elucidate the climatic background of the return of anchovies and sardines to the northern European shelf seas and the changes in the North Sea fish community in the mid-1990s in response to climate variability. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
6.
  • Chambault, Philippine, et al. (author)
  • The influence of oceanographic features on the foraging behavior of the olive ridley sea turtle Lepidochelys olivacea along the Guiana coast
  • 2016
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 142, s. 58-71
  • Research review (peer-reviewed)abstract
    • The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.
  •  
7.
  • Cunliffe, Michael, et al. (author)
  • Sea surface microlayers : A unified physicochemical and biological perspective of the air-ocean interface
  • 2013
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 109, s. 104-116
  • Research review (peer-reviewed)abstract
    • The sea surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air-sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air-sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.
  •  
8.
  • Dudarev, Oleg, et al. (author)
  • East Siberian Sea : Interannual heterogeneity of the suspended particulate matter and its biogeochemical signature
  • 2022
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 208
  • Research review (peer-reviewed)abstract
    • The East Siberian Sea (ESS) is the largest, shallowest and most icebound Arctic marginal sea. It receives substantial input of terrigenous material and climate-vulnerable old organic carbon from both coastal erosion and rivers draining the extensive permafrost-covered watersheds. This study focuses on the interannual variability and spatial distribution of suspended particulate matter (SPM) in the surface and bottom waters of the ESS during the ice-free period in 2000, 2003, 2004, 2005 and 2008. We report on the composition and variability of particulate organic carbon (POC), total nitrogen (TN), POC/TN ratios, carbon and nitrogen isotopes (δ13C, δ15N) and provide estimates of the contribution of terrestrial organic carbon (terrOC) based on the δ13C isotopic values.The results show that interannual SPM distribution and elemental-isotopic characteristics of POC differ significantly between the western biogeochemical province (WBP; West of 165oE) and the eastern biogeochemical province (EBP; East of 165oE) of the ESS. The SPM mean concentration in the WBP is almost an order of magnitude higher than in the EBP. From west-to-east of the ESS, SPM tends to become more depleted in δ15N, while the δ13C becomes isotopically heavier. This trend can be explained by a shift in organic matter sources from terrigenous origin (erosion of the coastal ice complex and riverine POC) to becoming dominantly from marine plankton.The maximum contribution of terrOC to POC reached 99% in parts of the WBP, but accounts for as low as 1% in parts of the EBP. At the same time, the type of atmospheric circulation and its associated regime of both water circulation and ice transport control a displacement of the semi-stable biogeochemical border between WBP and EBP to the east or to the west if compared to its long-term average position near 165oE. Our multi-year investigation provides a robust observational basis for better understanding of the transport and fate of terrigenous material upon entering the ESS shelf waters. Our results also provide deeper insights into the interaction in the land-shelf sea system of the largest shelf sea system of the World Ocean, the East Siberian Arctic Shelf system.
  •  
9.
  • Fonseca, Gustavo, et al. (author)
  • Variation in nematode assemblages over multiple spatial scales and environmental conditions in Arctic deep seas
  • 2010
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 84:3-4, s. 174-184
  • Journal article (peer-reviewed)abstract
    • Although the comparison of relevant scales of variation is a prerequisite for understanding processes structuring benthic communities, deep-sea studies have traditionally examined spatial patterns of distribution of assemblages along a single scale or environmental gradient. A multiple-scale approach identifying which spatial-scale and associated environmental gradient is the most important in structuring the deep-sea benthos has never been attempted. To answer this question this study merged three independent data sets of nematodes from the Arctic deep seas. The data set included 300 samples and covered both margins of the Arctic Seas (Greenland and Norway–Spitsbergen, ca. 103 km distant apart), seven degrees of latitude (72–79°N), 2700 m depth differences (656–3350 m), horizontal distances between cores (20 cm) and vertical distances within the uppermost sediment layers (1–5 cm). Results showed that for abundance (N) and generic composition, differences between margins (M) and between cores (C) were the most important sources of variability, followed by water depth (D), vertical distribution within the sediment (VD) and latitude (L). For species and genera diversity, measured as ES(50) and EG(50), the order was slightly different. For species, C was the most important source of variability, followed by D, M and L, while for genera VD was the most important. Relationships between environmental variables and the fauna were highly dependent on scale indicating that, at least for the deep-sea environment, we cannot predict the structure of nematode assemblages by scaling up or down results obtained on one or another scale. The only consistent pattern across different spatial scales was that higher abundances were associated with higher number and lower turnover of species. This raises the hypothesis that the most abundant species are also the most widespread and that abundance is the best predictor of nematode diversity patterns in deep-sea ecosystems.
  •  
10.
  • Gasol, Josep M., et al. (author)
  • Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone
  • 2009
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 83, s. 189-196
  • Journal article (peer-reviewed)abstract
    • Mesopelagic prokaryotic communities have often been assumed to be relatively inactive in comparison to those from epipelagic waters, and therefore unresponsive to the presence of nearby upwelled waters. We have studied the zonal (shelf-ocean), latitudinal, and depth (epipelagic-mesopelagic) variability of microbial assemblages in the NW Africa-Canary Islands coastal-transition zone (CTZ). Vertical profiles of bacterial bulk and single-cell activity through the epi- and mesopelagic waters were combined with point measurements of bacterial respiration, leucine-to-carbon conversion factors and leucine-to-thymidine incorporation ratios. The overall picture that emerges from our study is that prokaryotes in the mesopelagic zone of this area are less abundant than in the epipelagic but have comparable levels of activity. The relationship between prokaryotes and heterotrophic nanoflagellates, their main predators, remains constant throughout the water column, further contradicting the assumption that deep ocean bacterial communities are mostly inactive. Both bulk and single-cell activity showed clear differences between stations, with higher mesopelagic activities closer to the shelf or affected by upwelling features. We also tested whether differences in microbial function between stations could be related to differences in bacterial community structure, and conclude that bacterial communities are very similar at similar depths in the deep ocean, even if the stations present order-of-magnitude differences in bacterial function. 
  •  
11.
  • Ghinter, Leopold, et al. (author)
  • Microbial functional structure and stable isotopic variation of leptocephali across three current zones in the western South Pacific
  • 2020
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 182
  • Journal article (peer-reviewed)abstract
    • The ecology of leptocephali remains poorly known but they appear to feed on marine snow that can vary spatially and temporally according to the food web dynamics. This study provided new information about the position of leptocephali within the functional structure of microbial plankton and other food web components of the western South Pacific (WSP) region at a large geographic scale including the New Caledonia, Fiji, and Samoa islands. The hydrographic structure varied with latitude, and nutrient levels were generally low but somewhat variable. Stable isotopic signatures were examined in relation to the 3 current zones of the eastward flowing South Equatorial Countercurrent (SECC; north), the westward South Equatorial Current (SEC; mid-latitudes), and the eastward South Tropical Countercurrent (STCC; south), and all zones were found to be primarily based on a heterotrophic planktonic functioning that were co-limited by inorganic nitrogen and phosphorus, with biomasses of planktonic groups varying with depth. Isotopic signatures of leptocephali were compared to the signatures of other mesozoplankton, micronekton, and Trichodesmium components of the food web, and in relation to the signatures of particulate organic matter (POM) that varied among the 3 collection depths. The isotopic signatures of six taxa of leptocephali, other taxonomic groups and POM showed interesting variability according to latitude and among some stations. The presence of Trichodesmium at the surface in the STCC zone influenced the isotopic signatures of POM and thus the signatures of leptocephali. The signatures of leptocephali were therefore linked with the overall food web and were consistent with the larvae feeding on marine snow components of POM. The two apparent groups of leptocephali with different isotopic signatures that have also been observed in other oceanic areas may be explained by feeding behavior at different depths or on different types of marine snow.
  •  
12.
  • Hátún, Hjálmar, et al. (author)
  • An inflated subpolar gyre blows life toward the northeastern Atlantic
  • 2016
  • In: Progress in Oceanography. - 0079-6611. ; 147, s. 49-66
  • Journal article (peer-reviewed)abstract
    • Deep convection in the Labrador and Irminger Seas inflates the cold and low-saline subpolar gyre, which is a rich nutrient and zooplankton source for the surrounding warmer waters of subtropical origin. The zooplankton abundances on the south Iceland shelf show characteristic sub-decadal variability, which closely reflect the oceanic abundances of the ecologically most important zooplankton species – Calanus finmarchicus. Much higher abundances of this species are observed during years when the winter mixed layer depths (MLD) in the Labrador-Irminger Sea, and over the Reykjanes Ridge are deep. Furthermore, a tight relationship is identified between on-shelf zooplankton abundances and lateral shifts of the biologically productive subarctic front southwest of Iceland. Thus, we suggest that northeastward expansion of the subpolar gyre results in biologically productive periods in the waters southwest of Iceland – both oceanic and on the shelf. In addition to local atmospheric forcing, we find that the MLD and frontal position are also impacted by remote heat losses and convection in the Labrador Sea, through northward advection of unstable mode waters. The sub-decadal oceanic and on-shelf biological production peaks are possibly predictable by half a year (local winter convection to subsequent summer production), and the advective time-lag from the Labrador Sea might induce an even longer predictability horizon (up to 1.5 years).
  •  
13.
  • Hinrichsen, H-H, et al. (author)
  • Spawning areas of eastern Baltic cod revisited : Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns
  • 2016
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 143, s. 13-25
  • Research review (peer-reviewed)abstract
    • In the highly variable environment of the Baltic Sea two genetically distinct cod stocks exist, one west of the island of Bornholm, which is referred to as the western stock, and one to the east of Bornholm, the eastern stock. A hydrodynamic model combined with a Lagrangian particle tracking technique was utilised to provide spatially and temporally resolved long-term information on environmentally-related (i) spawning habitat size, (ii) egg/yolk-sac larval survival, (iii) separation of causes of mortality, and (iv) connectivity between spawning areas of eastern Baltic cod. Simulations were performed to quantify processes generating heterogeneity in spatial distribution of cod eggs and yolk sac larvae up to the first feeding stage. The spatial extent of cod eggs represented as virtual drifters is primarily determined by oxygen and salinity conditions at spawning, which define the habitat requirement to which cod's physiology is suited for egg development. The highest habitat suitability occurred in the Bornholm Basin, followed by the Gdansk Deep, while relatively low habitat suitability was obtained for the Arkona and the Gotland Basin. During drift egg and yolk sac larval survival is to a large extent affected by sedimentation. Eggs initially released in the western spawning grounds (Arkona and Bornholm Basin) were more affected by sedimentation than those released in the eastern spawning grounds (Gdansk Deep and Gotland Basin). Highest relative survival of eastern Baltic cod eggs occurred in the Bornholm Basin, with a pronounced decrease towards the Gdansk Deep and the Gotland Basin. Relatively low survival rates in the Gdansk Deep and in the Gotland Basin were attributable to oxygen-dependent mortality. Low oxygen content had almost no impact on survival in the Arkona Basin. For all spawning areas temperature dependent mortality was only evident after severe winters. Egg buoyancy in relation to topographic features like bottom sills and strong bottom slopes could appear as a barrier for the transport of Baltic cod eggs and yolk sac larvae and could potentially limit the connectivity of Baltic cod early life stages between the different basins in the western and eastern Baltic Sea. The possibility of an eastward directed transport up to the first-feeding larval stage exists only for eggs and yolk sac larvae at high buoyancy levels, suggesting that dispersal of early life stages between these spawning areas is limited.
  •  
14.
  • Jeansson, Emil, 1972, et al. (author)
  • Sources to the East Greenland Current and its contribution to the Denmark Strait Overflow
  • 2008
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 78:1, s. 12-28
  • Journal article (peer-reviewed)abstract
    • Data from the East Greenland Current in 2002 are evaluated using optimum multiparameter analysis. The current is followed from north of Fram Strait to the Denmark Strait Sill and the contributions of different source waters, in mass fractions, are deduced. From the results it can be concluded that, at least in spring 2002, the East Greenland Current was the main source for the waters found at the Denmark Strait Sill, contributing to the overflow into the North Atlantic. The East Greenland Current carried water masses from different source regions in the Arctic Ocean, the West Spitsbergen Current and the Greenland Sea. The results agree well with the known circulation of the western Nordic Seas but also add knowledge both to the quantification and to the mixing processes, showing the importance of the locally formed Greenland Sea Arctic Intermediate Water for the East Greenland Current and the Denmark Strait.
  •  
15.
  • Jones, Daniel O.B., et al. (author)
  • Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific)
  • 2021
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 197:September-October 2021
  • Journal article (peer-reviewed)abstract
    • To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached >2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
  •  
16.
  • Jones, E.P., et al. (author)
  • Sources and distribution of fresh water in the East Greenland Current
  • 2008
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 78:1, s. 37-44
  • Journal article (peer-reviewed)abstract
    • Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate–phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S 32 cf. Atlantic source water S 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.
  •  
17.
  •  
18.
  • Jutterström, Sara, 1975, et al. (author)
  • Evaluation of anthropogenic carbon in the Nordic Seas using observed relationships of N, P and C versus CFCs
  • 2008
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 78:1, s. 78-84
  • Journal article (peer-reviewed)abstract
    • Several methods to compute the anthropogenic component of total dissolved inorganic carbon () in the ocean have been reported, all in some way deducing (a) the effect by the natural processes, and (b) the background concentration in the pre-industrial scenario. In this work we present a method of calculating using nutrient and CFC data, which takes advantage of the linear relationships found between nitrate (N), phosphate (P) and CFC-11 in the Nordic Seas sub-surface waters. The basis of the method is that older water has lower CFC-11 concentration and also has been exposed to more sinking organic matter that has decayed, resulting in the slopes of P versus CFC-11 and N versus CFC-11 being close to the classic Redfield ratio of 1:16. Combining this with the slope in total alkalinity (AT) versus CFC-11 to correct for the dissolution of metal carbonates gives us the possibility to deduce the concentration of anthropogenic CT in the Nordic Seas. This further allowed us to compute the inventory of anthropogenic CT below 250 m in the Nordic Seas in spring 2002, to 1.2 Gt C.
  •  
19.
  • Labrousse, Sara, et al. (author)
  • Winter use of sea ice and ocean water mass habitat by southern elephant seals : The length and breadth of the mystery
  • 2015
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 137, s. 52-68
  • Research review (peer-reviewed)abstract
    • Understanding the responses of animals to the environment is crucial for identifying critical foraging habitat. Elephant seals (Mirounga leonine) from the Kerguelen Islands (49 degrees 20'S, 70 degrees 20'E) have several different foraging strategies. Why some individuals undertake long trips to the Antarctic continent while others utilize the relatively close frontal zones is poorly understood. Here, we investigate how physical properties within the sea ice zone are linked to foraging activities of southern elephant seals (SES). To do this, we first developed a new approach using indices of foraging derived from high temporal resolution dive and accelerometry data to predict foraging behaviour in an extensive, low resolution dataset from CTD-Satellite Relay Data Loggers (CTD-SRDLs). A sample of 37 post-breeding SES females were used to construct a predictive model applied to demersal and pelagic dive strategies relating prey encounter events (PEE) to dive parameters (dive duration, bottom duration, hunting-time, maximum depth, ascent speed, descent speed, sinuosity, and horizontal speed) for each strategy. We applied these models to a second sample of 35 seals, 20 males and 15 females, during the post-moult foraging trip to the Antarctic continental shelf between 2004 and 2013, which did not have fine-scale behavioural data. The females were widely distributed with important foraging activity south of the Southern Boundary Front, while males predominately travelled to the south-eastern part of the East Antarctica region. Combining our predictions of PEE with environmental features (sea ice concentration, water masses at the bottom phase of dives, bathymetry and slope index) we found higher foraging activity for females over shallower seabed depths and at the boundary between the overlying Antarctic Surface Water (AASW) and the underlying Modified Circumpolar Deep Water (MCDW). Increased biological activity associated with the upper boundary of MCDW, may provide overwintering areas for SES prey. Male foraging activity was strongly associated with pelagic dives within the Antarctic Slope Front where upwelling of nutrient rich Circumpolar Deep Water onto surface water may enhance and concentrate resources. A positive association between sea ice and foraging activity was found for both sexes where increased biological activity may sustain an under-ice ecosystem. Variability of the East Antarctic sea ice season duration is likely a crucial element to allow air-breathing predators to benefit from profitable prey patches within the pack ice habitat.
  •  
20.
  • Linders, Johanna, et al. (author)
  • On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009
  • 2017
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 159, s. 99-114
  • Journal article (peer-reviewed)abstract
    • Hydrographic and velocity data from three high-resolution shipboard surveys of Herald Canyon in the northwest Chukchi Sea, in 2004, 2008, and 2009, are used to investigate the water masses in the canyon and their possible source regions. Both summer and winter Pacific waters were observed in varying amounts in the different years, although in general the summer waters resided on the eastern side of the canyon while the winter waters were located on the western flank. The predominant summer water was Bering summer water, although some Alaskan coastal water resided in the canyon in the two later years likely due to wind forcing. Both newly ventilated and remnant winter waters were found in the canyon, but the amount lessened in each successive survey. Using mooring data from Bering Strait it is shown that a large amount of Bering summer water in the western channel of the strait follows a relatively direct route into Herald Canyon during the summer months, with an estimated advective speed of 10–20 cm/s. However, while the winter water observed in 2004 was consistent with a Bering Strait source (with a slower advective speed of 5–8 cm/s), the dense water in the canyon during 2008 and 2009 was more in line with a northern source. This is consistent with sections to the west of the canyon and with previously reported measurements implying winter water formation on the East Siberian shelf. Large-scale wind patterns and polynya activity on the shelf are also investigated. It was found that the former appears to impact more strongly the presence of dense water in Herald Canyon. © 2017 Elsevier Ltd
  •  
21.
  •  
22.
  • Marnela, M, et al. (author)
  • Transports of Nordic Seas water masses and excess SF6 through Fram Strait to the Arctic Ocean
  • 2008
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 78:1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • To determine the exchanges between the Nordic Seas and the Arctic Ocean through Fram Strait is one of the most important aspects, and one of the major challenges, in describing the circulation in the Arctic Mediterranean Sea. Especially the northward transport of Arctic Intermediate Water (AIW) from the Nordic Seas into the Arctic Ocean is little known. In the two-ship study of the circulation in the Nordic Seas, Arctic Ocean – 2002, the Swedish icebreaker Oden operated in the ice-covered areas in and north of Fram Strait and in the western margins of Greenland and Iceland seas, while RV Knorr of Woods Hole worked in the ice free part of the Nordic Seas. Here two hydrographic sections obtained by Oden, augmented by tracer and velocity measurements with Lowered Acoustic Doppler Current Profiler (LADCP), are examined. The first section, reaching from the Svalbard shelf across the Yermak Plateau, covers the region north of Svalbard where inflow to the Arctic Ocean takes place. The second, western, section spans the outflow area extending from west of the Yermak Plateau onto the Greenland shelf. Geostrophic and LADCP derived velocities are both used to estimate the exchanges of water masses between the Nordic Seas and the Arctic Ocean. The geostrophic computations indicate a total flow of 3.6 Sv entering the Arctic on the eastern section. The southward flow on the western section is found to be 5.1 Sv. The total inflow to the Arctic Ocean obtained using the LADCP derived velocities is much larger, 13.6 Sv, and the southward transport on the western section is 13.7 Sv, equal to the northward transport north of Svalbard. Sulphur hexafluoride (SF6) originating from a tracer release experiment in the Greenland Sea in 1996 has become a marker for the circulation of AIW. From the geostrophic velocities we obtain 0.5 Sv and from the LADCP derived velocities 2.8 Sv of AIW flowing into the Arctic. The annual transport of SF6 into the Arctic Ocean derived from geostrophy is 5 kg/year, which is of the same magnitude as the observed total annual transport into the North Atlantic, while the LADCP measurements (19 kg/year) imply that it is substantially larger. Little SF6 was found on the western section, confirming the dominance of the Arctic Ocean water masses and indicating that the major recirculation in Fram Strait takes place farther to the south.
  •  
23.
  • Messias, M. J, et al. (author)
  • The Greenland Sea tracer experiment 1996–2002: Horizontal mixing and transport of Greenland Sea Intermediate Water
  • 2008
  • In: Progress In Oceanography. - : Elsevier BV. - 0079-6611. ; 78:1, s. 85-105
  • Journal article (peer-reviewed)abstract
    • In summer 1996, a tracer release experiment using sulphur hexafluoride (SF6) was launched in the intermediate-depth waters of the central Greenland Sea (GS), to study the mixing and ventilation processes in the region and its role in the northern limb of the Atlantic overturning circulation. Here we describe the hydrographic context of the experiment, the methods adopted and the results from the monitoring of the horizontal tracer spread for the 1996–2002 period documented by 10 shipboard surveys. The tracer marked “Greenland Sea Arctic Intermediate Water” (GSAIW). This was redistributed in the gyre by variable winter convection penetrating only to mid-depths, reaching at most 1800 m depth during the strongest event observed in 2002. For the first 18 months, the tracer remained mainly in the Greenland Sea. Vigorous horizontal mixing within the Greenland Sea gyre and a tight circulation of the gyre interacting slowly with the other basins under strong topographic influences were identified. We use the tracer distributions to derive the horizontal shear at the scale of the Greenland Sea gyre, and rates of horizontal mixing at 10 and 300 km scales. Mixing rates at small scale are high, several times those observed at comparable depths at lower latitudes. Horizontal stirring at the sub-gyre scale is mediated by numerous and vigorous eddies. Evidence obtained during the tracer release suggests that these play an important role in mixing water masses to form the intermediate waters of the central Greenland Sea. By year two, the tracer had entered the surrounding current systems at intermediate depths and small concentrations were in proximity to the overflows into the North Atlantic. After 3 years, the tracer had spread over the Nordic Seas basins. Finally by year six, an intensive large survey provided an overall synoptic documentation of the spreading of the tagged GSAIW in the Nordic Seas. A circulation scheme of the tagged water originating from the centre of the GS is deduced from the horizontal spread of the tracer. We present this circulation and evaluate the transport budgets of the tracer between the GS and the surroundings basins. The overall residence time for the tagged GSAIW in the Greenland Sea was about 2.5 years. We infer an export of intermediate water of GSAIW from the GS of 1 to 1.85 Sv (1 Sv = 106 m3 s−1) for the period from September 1998 to June 2002 based on the evolution of the amount of tracer leaving the GS gyre. There is strong exchange between the Greenland Sea and Arctic Ocean via Fram Strait, but the contribution of the Greenland Sea to the Denmark Strait and Iceland Scotland overflows is modest, probably not exceeding 6% during the period under study.
  •  
24.
  • Nilsson, Johan, et al. (author)
  • Liquid freshwater transport and Polar Surface Water characteristics in the East Greenland Current during the AO-02 Oden expedition
  • 2008
  • In: Progress In Oceanography. - : Elsevier BV. - 0079-6611. ; 78:1, s. 45-57
  • Journal article (peer-reviewed)abstract
    • Dynamical features of the East Greenland Current (EGC) are synthesized from a survey conducted by the Swedish icebreaker Oden during the International Arctic Ocean – 02 expedition (AO-02) in May 2002 with emphasis on the liquid freshwater transport and Polar Surface Water. The data include hydrography and lowered acoustic doppler current profiler (LADCP) velocities in eight transects along the EGC, from the Fram Strait in the north to the Denmark Strait in the south. The survey reveals a strong confinement of the low-salinity polar water in the EGC to the continental slope/shelf—a feature of relevance for the stability of the thermohaline circulation in the Arctic Mediterranean. The southward transport of liquid freshwater in the EGC was found to vary considerably between the sections, ranging between 0.01 and 0.1 Sverdrup. Computations based on geostrophic as well as LADCP velocities give a section-averaged southward freshwater transport of 0.06 Sverdrup in the EGC during May 2002. Furthermore, Oden data suggest that the liquid freshwater transport was as large north of the Fram Strait as it was south of the Denmark Strait.
  •  
25.
  • Olli, Kalle, et al. (author)
  • The fate of production in the central Arctic ocean - top-down regulation by zooplankton expatriates?
  • 2007
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 72:1, s. 84-113
  • Research review (peer-reviewed)abstract
    • We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89 88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50 150 mg C m‑2 d‑1 (mean 93 mg C m‑2 d‑1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03 0.3 mg Chl m‑3 in the upper 20 m and <0.02 mg Chl m‑3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7 5.3 × 105, mean 4.1 × 105 cells ml‑1 in the upper 20 m and 1.3 3.7 × 105, mean 1.9 × 105 cells ml‑1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l‑1, 0.45 μmol PO4 l‑1, 4 5 μmol SiO4 l‑1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ˜30 105 (mean 53) mg C m‑3 and PON ˜5.4 14.9 (mean 8.2) mg N m‑3 with no clear vertical trend. The vertical flux of POC in the upper 30 100 m water column was ˜37 92 (mean 55) mg C m‑2 d‑1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m‑2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m‑2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m‑2 d‑1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.
  •  
26.
  • Omstedt, Anders, 1949, et al. (author)
  • Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes
  • 2004
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 63:1-2, s. 1-28
  • Journal article (peer-reviewed)abstract
    • Review is given about the main results of the oceanographic component of the BALTEX research programme (one of the six continental scale experiments within GEWEX-WCRP to study water and energy cycles in the regional climate system) and related programmes/projects over the last 10 years. Working closely together with two other components regional meteorology and hydrology of the Baltic Sea drainage basin - oceanographic research has considerably improved the understanding of and ability to model the Baltic Sea marine system. In the Baltic Sea physics seven different broad topics are identified where knowledge has significantly improved. These are reviewed together with a discussion of gaps in knowledge. The focus is on the water and energy cycles of the Baltic Sea, but various aspects of forcing and validation data and modelling are also discussed. The major advances achieved through BALTEX and related programmes are: Meteorological, hydrological, ocean and ice data are now available for the research community. Progress in understanding of the strong impact of large-scale atmospheric circulation on Baltic Sea circulation, water mass exchange, sea ice evolution, and changes in the ocean conditions of the Baltic Sea. Progress in understanding of the importance of strait flows in the exchange of water into and within the Baltic Sea. Progress in understanding of intra-basin processes. Ocean models introduced into Baltic Sea water and energy studies. Development of turbulence models and 3D ocean circulation models for application to the Baltic Sea. Improved Baltic Sea ice modelling and increased understanding of the need for coupled atmosphere-ice-ocean-land models. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
27.
  • Omstedt, Anders, 1949, et al. (author)
  • Progress in physical oceanography of the Baltic Sea during the 2003–2014 period
  • 2014
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 128, s. 139-171
  • Journal article (peer-reviewed)abstract
    • We review progress in Baltic Sea physical oceanography (including sea ice and atmosphere–land interactions) and Baltic Sea modelling, focusing on research related to BALTEX Phase II and other relevant work during the 2003–2014 period. The major advances achieved in this period are: Meteorological databases are now available to the research community, partly as station data, with a growing number of freely available gridded datasets on decadal and centennial time scales. The free availability of meteorological datasets supports the development of more accurate forcing functions for Baltic Sea models. In the last decade, oceanographic data have become much more accessible and new important measurement platforms, such as FerryBoxes and satellites, have provided better temporally and spatially resolved observations. Our understanding of how large-scale atmospheric circulation affects the Baltic Sea climate, particularly in winter, has improved. Internal variability is strong illustrating the dominant stochastic behaviour of the atmosphere. The heat and water cycles of the Baltic Sea are better understood. The importance of surface waves in air–sea interaction is better understood, and Stokes drift and Langmuir circulation have been identified as likely playing an important role in surface water mixing in sea water. We better understand sea ice dynamics and thermodynamics in the coastal zone where sea ice interaction between land and sea is crucial. The Baltic Sea’s various straits and sills are of increasing interest in seeking to understand water exchange and mixing. There has been increased research into the Baltic Sea coastal zone, particularly into upwelling, in the past decade. Modelling of the Baltic Sea–North Sea system, including the development of coupled land–sea–atmosphere models, has improved. Despite marked progress in Baltic Sea research over the last decade, several gaps remain in our knowledge and understanding. The current understanding of salinity changes is limited, and future projections of salinity evolution are uncertain. In addition, modelling of the hydrological cycle in atmospheric climate models is severely biased. More detailed investigations of regional precipitation and evaporation patterns (including runoff), atmospheric variability, highly saline water inflows, exchange between sub-basins, circulation, and especially turbulent mixing are still needed. Furthermore, more highly resolved oceanographic models are necessary. In addition, models that incorporate more advanced carbon cycle and ecosystem descriptions and improved description of water–sediment interactions are needed. Thereoceanographic coupled model systems. These and other research challenges are addressed by the recently formed Baltic Earth research programme, the successor of the BALTEX programme, which ended in 2013. Baltic Earth will treat anthropogenic changes and impacts together with their natural drivers. Baltic Earth will serve as a network for earth system sciences in the region, following in the BALTEX tradition but in a wider context.
  •  
28.
  • Pasqual, Catalina, et al. (author)
  • Composition and provenance of terrigenous organic matter transported along submarine canyons in the Gulf of Lion (NW Mediterranean Sea)
  • 2013
  • In: Progress in Oceanography. - : Pergamon Press. - 0079-6611. ; 118:SI, s. 81-94
  • Research review (peer-reviewed)abstract
    • Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean's interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as ligninderived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 mu g VP g(-1) lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.
  •  
29.
  •  
30.
  • Pinones, A., et al. (author)
  • Hydrographic variability along the inner and mid-shelf region of the western Ross Sea obtained using instrumented seals
  • 2019
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 174, s. 131-142
  • Journal article (peer-reviewed)abstract
    • Temperature and salinity measurements obtained from sensors deployed on Weddell seals (Leptonychotes weddellii) between late austral summer and the following spring for 2010-2012 were used to describe the temporal and spatial variability of hydrographic conditions in the western Ross Sea, with particular emphasis on the inner-shelf region off Victoria Land and McMurdo Sound. Potential temperature-salinity diagrams constructed for regions where the seals remained for extended periods showed four water masses on the continental shelf: Modified Circumpolar Deep Water, Antarctic Surface Water, Shelf Water and Modified Shelf Water. Depth-time distributions of potential density and buoyancy frequency showed the erosion of the upper water column stratification associated with the transition from summer to fall/winter conditions. The within-year and interannual variability associated with this transition was related to wind speed. Changes in upper water column density were positively correlated with cross-shelf wind speeds > 5.5 m s(-1) with a 3-4 day lag. A range of wind speeds was required to erode the density structure because of different levels of stratification in each year. A comparison of wind mixing potential versus stratification (Wedderburn number) showed that synoptic scale wind events during 2012 with speeds of 5.5 and 6.5 m s(-1) were needed to erode the summer stratification for Ross Island and Victoria Land regions, respectively. Stronger winds ( > 8.5 m s(-1) ) were required during 2010 and 2011. The interannual variability in total heat content accumulated during summer (about 20%) was related to the duration of open water, with the largest heat content occurring in 2012, which was characterized by a summer sea ice minimum stronger than other years and relatively higher mCDW influence over the mid and outer-shelf regions. The heat content was lost after mid-April and reached a minimum in winter as a result of deep winter convection. The quantitative analysis of hydrographic variability of the inner-shelf region of the western Ross Sea obtained from the seal-derived measurements provides a baseline for assessing future changes.
  •  
31.
  • Pitcher, Grant C., et al. (author)
  • System controls of coastal and open ocean oxygen depletion
  • 2021
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 197
  • Research review (peer-reviewed)abstract
    • The epoch of the Anthropocene, a period during which human activity has been the dominant influence on climate and the environment, has witnessed a decline in oxygen concentrations and an expansion of oxygen-depleted environments in both coastal and open ocean systems since the middle of the 20th century. This paper provides a review of system-specific drivers of low oxygen in a range of case studies representing marine systems in the open ocean, on continental shelves, in enclosed seas and in the coastal environment. Identification of similar and contrasting responses within and across system types and corresponding oxygen regimes is shown to be informative both in understanding and isolating key controlling processes and provides a sound basis for predicting change under anticipated future conditions. Case studies were selected to achieve a balance in system diversity and global coverage. Each case study describes system attributes, including the present-day oxygen environment and known trends in oxygen concentrations over time. Central to each case study is the identification of the physical and biogeochemical processes that determine oxygen concentrations through the tradeoff between ventilation and respiration. Spatial distributions of oxygen and time series of oxygen data provide the opportunity to identify trends in oxygen availability and have allowed various drivers of low oxygen to be distinguished through correlative and causative relationships. Deoxygenation results from a complex interplay of hydrographic and biogeochemical processes and the superposition of these processes, some additive and others subtractive, makes attribution to any particular driver challenging. System-specific models are therefore required to achieve a quantitative understanding of these processes and of the feedbacks between processes at varying scales.
  •  
32.
  • Priou, Pierre, et al. (author)
  • Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun
  • 2021
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 196
  • Journal article (peer-reviewed)abstract
    • Changes in vertical and spatial distributions of zooplankton and small pelagic fish impact the biological carbon pump and the distribution of larger piscivorous fish and marine mammal species. However, their distribution and abundance remain poorly documented at high latitudes because of the difficulties inherent to sampling relatively fast-moving organisms in ice-covered waters. This study documents the under-ice distribution of epipelagic and mesopelagic organisms at the Arctic-Atlantic gateway in spring, during the midnight sun period, using ice-tethered and ship-based echosounders. An epipelagic surface scattering layer composed of copepods consistently occupied the top 60 m and was associated with cold polar surface water (mean temperature of -1.5°C). A mesopelagic deep scattering layer (DSL), partly composed of fish, persisted between 280 m and 600 m and was associated with modified Atlantic water. Backscattering strength within the DSL was higher than previously reported in the Arctic and north Atlantic, and increased by two orders of magnitude over the continental slope where one of the Atlantic water pathways enters the Arctic Ocean. Mesopelagic organisms did not perform diel vertical migrations. The consistent segregation between copepods at the surface and their predators at mesopelagic depths suggests limited predator-prey interactions during the midnight sun period, even under the ice cover. Predation on copepods by mesopelagic organisms, including fish, could thus be limited to very pulsed events during the seasonal vertical migration of copepods to and from overwintering depths. This suggests that the arctic mesopelagic food web may be decoupled from secondary production in the epipelagic layer throughout most of the year.
  •  
33.
  • Snoeijs-Leijonmalm, Pauline, et al. (author)
  • A deep scattering layer under the North Pole pack ice
  • 2021
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 194
  • Journal article (peer-reviewed)abstract
    • The 3.3 million km marine ecosystem around the North Pole, defined as the Central Arctic Ocean (CAO), is a blind spot on the map of the world's fish stocks. The CAO essentially comprises the permanently ice-covered deep basins and ridges outside the continental shelves, and is only accessible by ice-breakers. Traditional trawling for assessing fish stocks is impossible under the thick pack ice, and coherent hydroacoustic surveys are unachievable due to ice-breaking noise. Consequently, nothing is known about the existence of any pelagic fish stocks in the CAO, although juveniles of Boreogadus saida richly occur at the surface associated with the sea ice and ice-associated Arctogadus glacialis has been reported as well. We here present a first indication of a possible mesopelagic fish stock in the CAO. We had the opportunity to analyse a geophysical hydroacoustic data set with 13 time windows of usable acoustic data over a transect from 84.4 °N in the Nansen Basin, across the North Pole (90.0 °N), to 82.4 °N in the Canada Basin. We discovered a deep scattering layer (DSL), suggesting the presence of zooplankton and fish, at 300–600 m of depth in the Atlantic water layer of the CAO. Maximum possible fish abundance and biomass was very low; values of ca. 2,000 individuals km and ca. 50 kg km were calculated for the DSL in the North-Pole area according to a model assuming that all acoustic backscatter represents 15-cm long B. saida and/or A. glacialis. The true abundance and biomass of fish is even lower than this, but cannot be quantified from this dataset due to possible backscatter originating from pneumatophores of physonect siphonophores that are known to occur in the area. Further studies on the DSL of the CAO should include sampling and identification of the backscattering organisms. From our study we can conclude that if the central Arctic DSL contains fish, their biomass is currently too low for any sustainable fishery.
  •  
34.
  • Swalethorp, Rasmus, et al. (author)
  • Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom
  • 2019
  • In: Progress in Oceanography. - : Elsevier. - 0079-6611 .- 1873-4472. ; 170, s. 1-10
  • Journal article (peer-reviewed)abstract
    • In Antarctica, summer is a time of extreme environmental shifts resulting in large coastal phytoplankton blooms fueling the food web. Despite the importance of the microbial loop in remineralizing biomass from primary production, studies of how microzooplankton communities respond to such blooms in the Southern Ocean are rather scarce. Microzooplankton (ciliate and dinoflagellate) communities were investigated combining microscopy and 18S rRNA sequencing analyses in the Amundsen Sea Polynya during an extensive summer bloom of Phaeocystis antarctica. The succession of microzooplankton was further assessed during a 15-day induced bloom microcosm experiment. Dinoflagellates accounted for up to 59 % of the microzooplankton biomass in situ with Gymnodinium spp., Protoperidiwn spp. and Gyrodinium spp. constituting 89 % of the dinoflagellate biomass. Strobilidium spp., Strombidium spp. and tintinids represented 90 % of the ciliate biomass. Gymnodiniwn, Gyrodinium and tintinnids are known grazers of Phaeocystis, suggesting that this prymnesiophyte selected for the key microzooplankton taxa. Availability of other potential prey, such as diatoms, heterotrophic nanoflagellates and bacteria, also correlated to changes in microzooplankton community structure. Overall, both heterotrophy and mixotrophy appeared to be key trophic strategies of the dominant microzooplankton observed, suggesting that they influence carbon flow in the microbial food web through top-down control on the phytoplankton community.
  •  
35.
  • Taucher, Jan, et al. (author)
  • In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom
  • 2018
  • In: Progress in Oceanography. - : Elsevier. - 0079-6611 .- 1873-4472. ; 164, s. 75-88
  • Journal article (peer-reviewed)abstract
    • Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates.Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates >0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9–12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5–1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow.Furthermore, we combined in situ particle size distributions with measurements of particle sinking velocity to compute instantaneous (potential) vertical mass flux. However, somewhat surprisingly, we did not find a coherent relationship between our computed flux and measured vertical mass flux (collected by sediment traps in 15 m depth). Although the onset of measured vertical flux roughly coincided with the emergence of marine snow, we found substantial variability in mass flux among mesocosms that was not related to marine snow numbers, and was instead presumably driven by zooplankton-mediated alteration of sinking biomass and export of small particles (fecal pellets).Altogether, our findings highlight the role of zooplankton community composition and feeding interactions on particle size spectra and formation of marine snow aggregates, with important implications for our understanding of particle aggregation and vertical flux of organic matter in the ocean.
  •  
36.
  • Tengberg, Anders, 1962, et al. (author)
  • Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics
  • 2004
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 60:1, s. 1-28
  • Journal article (peer-reviewed)abstract
    • The hydrodynamic properties and the capability to measure secliment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the "Microcosm", the "Mississippi" and the "Coteborg" chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness LDBL thickness) shear velocity (W), and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u*, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u*. The Goteborg chamber was in between the two others regarding these properties. DBL thickness and u* were found to correlate according to the following empirical formula: DBL = 76.18(u*)(-0.933). Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-frce sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the "hydrodynamic characterizations" these mixing rates corresponded to average DBL thickness from 120 to 550 mum, to u* from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a "real" sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 +/- 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 +/- 3.0 mmol m(-2) day(-1). This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
37.
  •  
38.
  • Tremblay, J. E., et al. (author)
  • Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean
  • 2015
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 139, s. 171-196
  • Journal article (peer-reviewed)abstract
    • The main environmental factors driving spatial patterns, variability and change in primary production (PP) in the Arctic Ocean are reviewed. While instantaneous PP rates are predominantly influenced by the local factors affecting light penetration through clouds, sea ice and water, net PP (NPP) at the annual scale is conditioned by a hierarchy of remote and local processes that affect nutrient supply and light availability in general. Nutrient supply sets spatial differences in realized or potential trophic status (i.e. oligotrophic or eutrophic), whereas light availability modulates PP within each regime. Horizontal nutrient supply through Atlantic and Pacific ocean gateways differ markedly, which is explained by their position at opposite ends of the global meridional overturning circulation and imbalanced nitrogen (N) cycling in the Pacific sector. Nutrient supply by rivers is locally important, but does not appear to sustain a major portion of overall pan-Arctic NPP so far. Horizontal nutrient inputs to the surface Arctic Ocean are eventually transferred to the halocline through winter convection and the decomposition of settling organic matter. The subsequent re-injection of these nutrients to the euphotic zone varies by two orders of magnitude across sectors, depending on the strength and persistence of the vertical stratification. Such differences in nutrient delivery are commensurate with those of PP and NPP rates. Widespread N deficiency in surface waters fosters the occurrence and seasonal persistence of subsurface layers of maximum chlorophyll a (SCM) and phytoplankton carbon biomass in several sectors. The contribution of these layers to NPP is possibly higher in the Arctic than in thermally-stratified waters of the subtropical gyres due to a combination of extreme acclimation to low light and a shallow nitracline in the former. The overall impacts of SCM layers on biogeochemical fluxes remain to be quantified directly, both regionally and at the pan-Arctic scale. While CO2 intake by the Arctic Ocean should respond positively to reduced sea-ice extent, which facilitates air-sea exchange, the negative influence of rising temperatures and runoff on CO2 solubility might counteract the positive effect of modest PP increases in seasonally open waters. Overall, this review shows that local changes in light availability resulting from reduced sea-ice is only one factor in the intricate web of local and remote drivers of PP and CO2 drawdown in the Arctic Ocean. Understanding and predicting change requires an integrated biogeochemical approach that connects the small Arctic Ocean to adjacent ones and adequately resolves vertical nutrient supply processes at regional and local scales. (C) 2015 Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-38 of 38
Type of publication
journal article (29)
research review (9)
Type of content
peer-reviewed (38)
Author/Editor
Anderson, Leif G, 19 ... (5)
Jeansson, Emil, 1972 (5)
Jutterström, Sara, 1 ... (4)
Lehmann, A. (3)
Jones, E.P. (3)
Olsson, Anders, 1970 (3)
show more...
Olafsson, J (2)
Rudels, B. (2)
Bergström, Ulf (2)
Omstedt, Anders, 194 ... (2)
Tengberg, Anders, 19 ... (2)
Hall, Per, 1954 (2)
Gasol, Josep M. (2)
Swift, J.H. (2)
Michel, C. (1)
Tranvik, Lars J. (1)
Martin, G (1)
Björk, Göran, 1956 (1)
Bertilsson, Stefan (1)
Johnson, T. (1)
Nilsson, Johan (1)
Andersson, H. (1)
Gustafsson, Örjan (1)
Salvanes, Anne Gro V ... (1)
Casini, Michele (1)
Hansson, Sture (1)
Brüchert, Volker (1)
Sallée, Jean-Baptist ... (1)
Knulst, Johan (1)
Liénart, Camilla (1)
Tomczak, Maciej T. (1)
Winsor, Peter (1)
Semiletov, Igor (1)
Riebesell, Ulf (1)
Meier, H. E. Markus (1)
Riemann, Lasse (1)
Vaque, D (1)
Alonso-Saez, Laura (1)
Tremblay, J. -E (1)
Conley, Daniel J. (1)
Amon, Diva J (1)
Dahlgren, Thomas G., ... (1)
Jakobsson, Martin (1)
Lindegarth, Mats, 19 ... (1)
Carstensen, Jacob (1)
Rutgersson, Anna (1)
Gårdfeldt, Katarina, ... (1)
Moksnes, Per-Olav, 1 ... (1)
Castellani, Giulia (1)
Logares, Ramiro (1)
show less...
University
University of Gothenburg (19)
Stockholm University (12)
Uppsala University (4)
Linnaeus University (3)
Swedish University of Agricultural Sciences (3)
Umeå University (1)
show more...
Lund University (1)
Chalmers University of Technology (1)
show less...
Language
English (38)
Research subject (UKÄ/SCB)
Natural sciences (36)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view