SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0165 0173 OR L773:1872 6321 "

Sökning: L773:0165 0173 OR L773:1872 6321

  • Resultat 1-50 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aldskogius, Håkan, et al. (författare)
  • Strategies for repair of the deafferented spinal cord
  • 2002
  • Ingår i: Brain Research Reviews. - 0165-0173 .- 1872-6321. ; 40:1-3, s. 301-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Deafferentation of the spinal cord by interruption of the sensory fibers in the dorsal roots highlights the problem of regeneration failure in the central nervous system. The injured dorsal root axons regenerate steadily, albeit slowly, in the peripheral compartment of the dorsal root, but abruptly cease to elongate when confronted with the interface between the peripheral and central nervous system, the dorsal root transitional zone (DRTZ). The glial cells of the CNS and their products together form this regeneration barrier. Recent years have witnessed several successful approaches to, at least in part, overcome this barrier. Particularly promising results have been obtained by (1). the replacement of adult non-regenerating dorsal root ganglion neurons with corresponding cells from embryonic or fetal donors, (2). the implantation of olfactory ensheathing cells at the DRTZ, and (3). immediate intrathecal infusion of growth factors to which dorsal root ganglion cells respond. In all these instances, growth of sensory axons into the adult spinal cord, as well as return of spinal cord connectivity, have been demonstrated. These findings suggest routes towards treatment strategies for plexus avulsion, and contribute to our understanding of possibilities to overcome regeneration failure in the spinal cord.
  •  
3.
  •  
4.
  •  
5.
  • Anand, Praveen, et al. (författare)
  • Targeting CB2 receptors and the endocannabinoid system for the treatment of pain
  • 2009
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 0165-0173 .- 1872-6321. ; 60:1, s. 255-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The endocannabinoid system consists of the cannabinoid (CB) receptors, CB(1) and CB(2), the endogenous ligands anandamide (AEA, arachidonoylethanolamide) and 2-arachidonoylglycerol (2-AG), and their synthetic and metabolic machinery. The use of cannabis has been described in classical and recent literature for the treatment of pain, but the potential for psychotropic effects as a result of the activation of central CB(1) receptors places a limitation upon its use. There are, however, a number of modern approaches being undertaken to circumvent this problem, and this review represents a concise summary of these approaches, with a particular emphasis upon CB(2) receptor agonists. Selective CB(2) agonists and peripherally restricted CB(1) or CB(1)/CB(2) dual agonists are being developed for the treatment of inflammatory and neuropathic pain, as they demonstrate efficacy in a range of pain models. CB(2) receptors were originally described as being restricted to cells of immune origin, but there is evidence for their expression in human primary sensory neurons, and increased levels of CB(2) receptors reported in human peripheral nerves have been seen after injury, particularly in painful neuromas. CB(2) receptor agonists produce antinociceptive effects in models of inflammatory and nociceptive pain, and in some cases these effects involve activation of the opioid system. In addition, CB receptor agonists enhance the effect of mu-opioid receptor agonists in a variety of models of analgesia, and combinations of cannabinoids and opioids may produce synergistic effects. Antinociceptive effects of compounds blocking the metabolism of anandamide have been reported, particularly in models of inflammatory pain. There is also evidence that such compounds increase the analgesic effect of non-steroidal anti-inflammatory drugs (NSAIDs), raising the possibility that a combination of suitable agents could, by reducing the NSAID dose needed, provide an efficacious treatment strategy, while minimizing the potential for NSAID-induced gastrointestinal and cardiovascular disturbances. Other potential "partners" for endocannabinoid modulatory agents include alpha(2)-adrenoceptor modulators, peroxisome proliferator-activated receptor alpha agonists and TRPV1 antagonists. An extension of the polypharmacological approach is to combine the desired pharmacological properties of the treatment within a single molecule. Hopefully, these approaches will yield novel analgesics that do not produce the psychotropic effects that limit the medicinal use of cannabis.
  •  
6.
  •  
7.
  • Edvinsson, Lars, et al. (författare)
  • Neurobiology in primary headaches.
  • 2005
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 1872-6321 .- 0165-0173. ; 48:3, s. 438-456
  • Forskningsöversikt (refereegranskat)abstract
    • Primary headaches such as migraine and cluster headache are neurovascular disorders. Migraine is a painful, incapacitating disease that affects a large portion of the adult population with a substantial economic burden on society. The disorder is characterised by recurrent unilateral headaches, usually accompanied by nausea, vomiting, photophobia, and/or phonophobia. A number of hypothesis have emerged to explain the specific causes of migraine. Current theories suggest that the initiation of a migraine attack involves a primary central nervous system (CNS) event. It has been suggested that a mutation in a calcium gene channel renders the individual more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Genom wide scans have been performed in migraine with susceptibility regions on several chromosomes some are associated with altered calcium channel function. With positron emission tomography (PET), a migraine active region has been pointed out in the brainstem. In cluster headache, PET studies have implicated a specific active locus in the posterior hypothalamus. Both migraine and cluster headache involve activation of the trigeminovascular system. In support, there is a clear association between the head pain and the release of the neuropeptide calcitonin gene-related peptide (CGRP) from the trigeminovascular system. In cluster headache there is, in addition, release of the parasympathetic neuropeptide vasoactive intestinal peptide (VIP) that is coupled to facial vasomotor symptoms. Triptan administration, activating the 5-HT1B/ (ID) receptors, causes the headache to subside and the levels of neuropeptides to normalise, in part through presynaptic inhibition of the cranial sensory nerves. These data suggest a central role for sensory and parasympathetic mechanisms in the pathophysiology of primary headaches. The positive clinical trial with a CGRP receptor antagonist offers a new promising way of treatment.
  •  
8.
  • Frid, Petrea, et al. (författare)
  • Congo red and protein aggregation in neurodegenerative diseases
  • 2007
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 1872-6321 .- 0165-0173. ; 53:1, s. 60-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Congo red is a commonly used histological dye for amyloid detection. The specificity of this staining results from Congo red's affinity for binding to fibril proteins enriched in beta-sheet conformation. Unexpectedly, recent investigations indicate that the dye also possesses the capacity to interfere with processes of protein misfolding and aggregation, stabilizing native protein monomers or partially folded intermediates, while reducing concentration of more toxic protein oligomers. Inhibitory effects of Congo red upon amyloid toxicity may also range from blockade of channel formation and interference with glycosaminoglycans binding or immune functions, to the modulation of gene expression. Particularly, Congo red exhibits ameliorative effect in models of neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's and prion diseases. Another interesting application of Congo red analogues is the development of imaging probes. Based on their small molecular size and penetrability through blood-brain barrier, Congo red congeners can be used for both antemortem and in vivo visualization and quantification of brain amyloids. Therefore, understanding mechanisms involved in dye-amyloidal fibril binding and inhibition of aggregation will provide instructive guides for the design of future compounds, potentially useful for monitoring and treating neurodegenerative diseases.
  •  
9.
  • Fuxe, K., et al. (författare)
  • Receptor-receptor interactions within receptor mosaics : Impact on neuropsychopharmacology
  • 2008
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 0165-0173 .- 1872-6321. ; 58:2, s. 415-452
  • Forskningsöversikt (refereegranskat)abstract
    • Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D-2 receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D-2 RM, located in the dorsal striatopallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D-2 interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D-2/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D-2 signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D-2-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably representing a compensatory up-regulation to counteract the cocaine-induced increases in dopamine D-2 and D-3 signaling. Therefore, A(2A) agonists, through antagonizing D-2 and D-3 signaling within A(2A)/D-2 and A(2)/D-3 RM heteromers in the nucleus accumbens, may be found useful as a treatment for cocaine dependence. Furthermore, antagonistic cannabinoid CB1/D-2 interactions requiring A(2A) receptors have also been discovered and possibly operate in CB1/D-2/A(2A) RM located principally on striatal glutamate terminals but also on some ventral striato-pallidal GABA neurons, thereby opening up a new mechanism for the integration of endocannabinoid, DA and adenosine mediated signals. Thus, A(2A), mGluR5 and/or CB1 receptors can form integrative units with D-2 receptors within RM displaying different compositions, topography and localization. Also galaninR/5-HT1A RM probably participates in the transmission of the ascending 5-hydroxytryptamine neurons, where galanin receptors antagonize 5-HT1A recognition and signaling. Subtype specific galanin receptor antagonists may therefore represent novel antidepressant drugs. These results suggest the importance of a complete understanding of the function of these RM with regard to disease. Ultimately receptor-recepor interactions within RM that modify dopaminergic and serotonergic signaling may give new strategies for treatment of a wide range of diseases associated with altered dopaminergic and serotonergic signaling.
  •  
10.
  • Grillner, Sten, et al. (författare)
  • Neural basis of goal-directed locomotion : An overview
  • 2007
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 0165-0173 .- 1872-6321. ; 57:1, s. 2-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The different neural control systems involved in goal-directed vertebrate locomotion are reviewed. They include not only the central pattern generator networks in the spinal cord that generate the basic locomotor synergy and the brainstem command systems for locomotion but also the control systems for steering and control of body orientation (posture) and finally the neural structures responsible for determining which motor programs should be turned on in a given instant. The role of the basal ganglia is considered in this context. The review summarizes the available information from a general vertebrate perspective, but specific examples are often derived from the lamprey, which provides the most detailed information when considering cellular and network perspectives.
  •  
11.
  • Olszewski, Pawel K., et al. (författare)
  • Ghrelin in the CNS : from hunger to a rewarding and memorable meal?
  • 2008
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 0165-0173 .- 1872-6321. ; 58:1, s. 160-170
  • Forskningsöversikt (refereegranskat)abstract
    • Ghrelin, the endogenous agonist of the growth hormone secretagogue receptor, has been shown to induce robust feeding responses in numerous experimental models. Although ghrelin comes from both peripheral and central sources, its hyperphagic properties, to a large extent, arise from activity at the brain level. The current review focuses on describing central mechanisms through which this peptide affects consumption. We address the issue of whether ghrelin serves just as a signal of energy needs of the organism or - as suggested by the most recent findings - also affects food intake via other feeding-related mechanisms, including reward and memory. Complexity of ghrelin's role in the regulation of ingestive behavior is discussed by characterizing its influence on consumption, reward and memory as well as by defining its function within the brain circuitry and interplay with other neuropeptides.
  •  
12.
  • Rask-Andersen, Mattias, et al. (författare)
  • Molecular mechanisms underlying anorexia nervosa : focus on human gene association studies and systems controlling food intake
  • 2010
  • Ingår i: Brain Research Reviews. - : Elsevier. - 0165-0173 .- 1872-6321. ; 62:2, s. 147-164
  • Forskningsöversikt (refereegranskat)abstract
    • Anorexia nervosa (AN) is a complex multi-factorial disease with high heritability. The psychological AN symptoms are poorly connected with specific molecular mechanisms. Here we review the molecular basis of AN with the focus on human genetic association studies; we put these in the experimental biological context with emphasis on molecular systems controlling food intake and body weight in a direct or indirect manner. We systematically searched for human genetic studies related to AN and grouped data into main categories/systems reflecting their major known roles: (1) Systems related to mental disorders (serotonin, brain-derived neurotrophic factor (BDNF), norepinephrine (NE), glutamate (NMDA) receptor and SK3 channel, KCCN3). (2) Hunger regulatory systems (leptin, AGRP, MSH, melanocortin 4 receptor (MC4R), NPY, ghrelin, cholecystokinin (CCK). (3) Feeding motivation- and reward-related systems (opioids, OPRD1, cannabinoids (anandamide (AEA), THC, CBR1), dopamine, DRD2, DRD3, DRD4, catecholamine-O-methyl transferase (COMT). (4) Systems regulating energy metabolism (uncoupling proteins 2 and 3 (UCP2 and UCP3). (5) Neuroendocrine systems with emphasis on sex hormones (estrogen receptor-beta (ESR2). (6) The immune system and inflammatory response (tumor necrosis factor-alpha (TNF-alpha)). Overall, we found that in total 175 association studies have been performed on AN cohorts on 128 different polymorphisms related to 43 genes. We review the strongest associations, identify some genes that have an important role in regulating BMI whose possible relationship to AN has not been investigated and discuss the potential targets for pharmacological interventions.
  •  
13.
  • Schouenborg, Jens (författare)
  • Action-based sensory encoding in spinal sensorimotor circuits
  • 2008
  • Ingår i: Brain Research Reviews. - : Elsevier BV. - 1872-6321 .- 0165-0173. ; 57:1, s. 111-117
  • Forskningsöversikt (refereegranskat)abstract
    • The concept of a modular organisation of the spinal withdrawal reflex circuits has proven to be fundamental for the understanding of how the spinal cord is organised and how the sensorimotor circuits translate sensory information into adequate movement corrections. Recent studies indicate that a task-related body representation is engraved at the network level through learning-dependent mechanisms involving an active probing procedure termed 'somatosensory imprinting' during development. It was found that somatosensory imprinting depends on the tactile input that is associated with spontaneous movements that occur during sleep and results in elimination of erroneous connections and establishment of correct connections. In parallel studies it was found that the strength of the first order tactile synapses in rostrocaudally elongated zones in the adult dorsal horn in the lower lumbar cord is related to the modular organisation of the withdrawal reflexes. Hence, the topographical organisation of the tactile input to this spinal area seems to be action-based rather than a simple body map as previously thought. Far from being innate and adult like at birth, the adult organisation seems to emerge from an initial 'floating' and diffuse body representation with many inappropriate connections through profound activity-dependent rearrangements of afferent synaptic connections. It is suggested that somatosensory imprinting plays a key role in the self-organisation of the spinal cord during development.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Carlsson, Arvid, 1923, et al. (författare)
  • Adaptive properties and heterogeneity of dopamine D(2) receptors - pharmacological implications.
  • 2008
  • Ingår i: Brain research reviews. - : Elsevier BV. - 0165-0173. ; 58:2, s. 374-8
  • Tidskriftsartikel (refereegranskat)abstract
    • In this review, we focus on the marked adaptability of dopamine D(2) receptors to varying agonist levels and we discuss the extent to which this phenomenon can account for the heterogeneity of these receptors in regard to function and pharmacological responsiveness. We emphasize the significance of a distinction between synaptic and extrasynaptic receptors in this context. For example, the application of this dichotomy appears to shed new light on the various subgroups of antipsychotic drugs and the mechanisms underlying their different profiles.
  •  
39.
  •  
40.
  • Deliagina, TG, et al. (författare)
  • Spinal and supraspinal postural networks
  • 2008
  • Ingår i: Brain research reviews. - : Elsevier BV. - 0165-0173. ; 57:1, s. 212-221
  • Tidskriftsartikel (refereegranskat)
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Fuxe, Kjell, et al. (författare)
  • From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.
  • 2007
  • Ingår i: Brain research reviews. - : Elsevier BV. - 0165-0173. ; 55:1, s. 17-54
  • Tidskriftsartikel (refereegranskat)abstract
    • After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the integration of signals. This will lead to the unified execution of information handling and trophism for optimal brain function and survival.
  •  
47.
  •  
48.
  •  
49.
  • Garwicz, Martin (författare)
  • Spinal reflexes provide motor error signals to cerebellar modules - relevance for motor coordination
  • 2002
  • Ingår i: Brain Research Reviews. - 1872-6321. ; 40:1-3, s. 152-165
  • Tidskriftsartikel (refereegranskat)abstract
    • The cerebellar olivo-cortico-nuclear network influencing rubro- and corticospinal tracts via the nucleus interpositus anterior (NIA) is one of the most thoroughly characterized mammalian motor systems involved in limb movement control. Recent findings indicate that climbing fibres innervating the NIA system mediate highly integrated sensorimotor information derived from spinal withdrawal reflex modules. In the present paper, the implications of this relationship between spinal and cerebellar neuronal networks for cerebellar sensorimotor processing are put in perspective of the modular organization of the NIA system. Data that should prove useful for computational models of cerebellar sensorimotor processing and motor learning, including functional spino-olivo-cortico-nucleo-spinal connectivity, are reviewed. It is argued that spinal 'pre-processing' of climbing fibre input constitutes a signal conversion from 'sensory' to 'motor' coordinates, providing the cerebellar modules with motor error signals relevant to the action of single limb muscles. Drawing upon their patterns of interconnectivity with spinal reflex modules it is hypothesized how cerebellar modules may adaptively coordinate transitions between agonist and antagonist muscle activity. This mechanism would contribute to the generation of the triphasic EMG patterns that are necessary for smooth acceleration and deceleration of single-joint movements. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 59

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy