SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0270 7306 OR L773:1098 5549 "

Sökning: L773:0270 7306 OR L773:1098 5549

  • Resultat 1-50 av 212
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrae, Johanna, et al. (författare)
  • Analysis of Mice Lacking the Heparin-Binding Splice Isoform of Platelet-Derived Growth Factor A
  • 2013
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 33:20, s. 4030-4040
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet-derived growth factor A-chain (PDGF-A) exists in two evolutionarily conserved isoforms, PDGF-Along and PDGF-Ashort, generated by alternative RNA splicing. They differ by the presence (in PDGF-Along) or absence (in PDGF-Ashort) of a carboxyterminal heparin/heparan sulfate proteoglycan-binding motif. In mice, similar motifs present in other members of the PDGF and vascular endothelial growth factor (VEGF) families have been functionally analyzed in vivo, but the specific physiological importance of PDGF-A(long) has not been explored previously. Here, we analyzed the absolute and relative expression of the two PDGF-A splice isoforms during early postnatal organ development in the mouse and report on the generation of a Pdgfa allele (Pdgfa(Delta ex6) incapable of producing PDGF-A(long) due to a deletion of the exon 6 splice acceptor site. In situations of limiting PDGF-A signaling through PDGF receptor alpha (PDGFR alpha), or in mice lacking PDGF-C, homozygous carriers of Pdgfa(Delta ex6) showed abnormal development of the lung, intestine, and vertebral column, pinpointing developmental processes where PDGF-A(long) may play a physiological role.
  •  
2.
  • Annicotte, Jean-Sébastien, et al. (författare)
  • Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development.
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23:19, s. 6713-6124
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver receptor homolog 1 (LRH-1) and pancreatic-duodenal homeobox 1 (PDX-1) are coexpressed in the pancreas during mouse embryonic development. Analysis of the regulatory region of the human LRH-1 gene demonstrated the presence of three functional binding sites for PDX-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed that PDX-1 bound to the LRH-1 promoter, both in cultured cells in vitro and during pancreatic development in vivo. Retroviral expression of PDX-1 in pancreatic cells induced the transcription of LRH-1, whereas reduced PDX-1 levels by RNA interference attenuated its expression. Consistent with direct regulation of LRH-1 expression by PDX-1, PDX-1(-/-) mice expressed smaller amounts of LRH-1 mRNA in the embryonic pancreas. Taken together, our data indicate that PDX-1 controls LRH-1 expression and identify LRH-1 as a novel downstream target in the PDX-1 regulatory cascade governing pancreatic development, differentiation, and function.
  •  
3.
  • Antonsson, Åsa, et al. (författare)
  • Regulation of c-Rel Nuclear Localization by Binding of Ca2+/Calmodulin
  • 2003
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 23:4, s. 1418-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • The NF-κB/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory IκB proteins sequester NF-κB/Rel in the cytoplasm. Cellular stimulation results in the degradation of IκB and modification of NF-κB/Rel proteins, allowing NF-κB/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca2+ binding protein that serves as a key mediator of intracellular Ca2+ signals. Here we report that two members of the NF-κB/Rel family, c-Rel and RelA, interact directly with Ca2+-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of IκB. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca2+ signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from IκB and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-κB/Rel proteins following stimulation.
  •  
4.
  • Arvidsson, Ann-Kristin, et al. (författare)
  • Tyr-716 in the platelet-derived growth factor beta-receptor kinase insertis involved in GRB2 binding and Ras activation
  • 1994
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 14:10, s. 6715-6726
  • Tidskriftsartikel (refereegranskat)abstract
    • Ligand stimulation of the platelet-derived growth factor (PDGF) beta-receptor leads to activation of its intrinsic tyrosine kinase and autophosphorylation of the intracellular part of the receptor. The autophosphorylated tyrosine residues mediate interactions with downstream signal transduction molecules and thereby initiate different signalling pathways. A pathway leading to activation of the GTP-binding protein Ras involves the adaptor molecule GRB2. Here we show that Tyr-716, a novel autophosphorylation site in the PDGF beta-receptor kinase insert, mediates direct binding of GRB2 in vitro and in vivo. In a panel of mutant PDGF beta-receptors, in which Tyr-716 and the previously known autophosphorylation sites were individually mutated, only PDGFR beta Y716F failed to bind GRB2. Furthermore, a synthetic phosphorylated peptide containing Tyr-716 bound GRB2, and this peptide specifically interrupted the interaction between GRB2 and the wild-type receptor. In addition, the Y716(P) peptide significantly decreased the amount of GTP bound to Ras in response to PDGF in permeabilized fibroblasts as well as in porcine aortic endothelial cells expressing transfected PDGF beta-receptors. The mutant PDGFR beta Y716F still mediated activation of mitogen-activated protein kinases and an increased DNA synthesis in response to PDGF, indicating that multiple signal transduction pathways transduce mitogenic signals from the activated PDGF beta-receptor.
  •  
5.
  • Banyai, Gabor, et al. (författare)
  • Mediator Can Regulate Mitotic Entry and Direct Periodic Transcription in Fission Yeast
  • 2014
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 34:21, s. 4008-4018
  • Tidskriftsartikel (refereegranskat)abstract
    • Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events.
  •  
6.
  • Bao, W J, et al. (författare)
  • Cell attachment to the extracellular matrix induces proteasomal degradation of p21(CIP1) via Cdc42/Rac1 signaling
  • 2002
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 22:13, s. 4587-4597
  • Tidskriftsartikel (refereegranskat)abstract
    • The cyclin-dependent kinase 2 (Cdk2) inhibitors p21(CIP1) and p27(KIP1) are negatively regulated by anchorage during cell proliferation, but it is unclear how integrin signaling may affect these Cdk2 inhibitors. Here, we demonstrate that integrin ligation led to rapid reduction of p21(CIp1) and p27(KIP1) protein levels in three distinct cell types upon attachment to various extracellular matrix (ECM) proteins, including fibronectin (FN), or to immobilized agonistic anti-integrin monoclonal antibodies. Cell attachment to FN did not rapidly influence p21(CIp1) mRNA levels, while the protein stability of p21(CIp1) was decreased. Importantly, the down-regulation of p21(CIP1) and p27(KIP1) was completely blocked by three distinct proteasome inhibitors, demonstrating that integrin ligation induced proteasomal degradation of these Cdk2 inhibitors. Interestingly, ECM-induced proteasomal proteolysis of a ubiquitination-deficient p21(CIP1) mutant (p21K6R) also occurred, showing that the proteasomal degradation of p21(CIP1) was ubiquitin independent. Concomitant with our finding that the small GTPases Cdc42 and Rac1 were activated by attachment to FN, constitutively active (ca) Cdc42 and ca Rac1 promoted down-regulation of p21(CIP1). However, dominant negative (dn) Cdc42 and do Rac1 mutants blocked the anchorage-induced degradation of p21(CIP1), suggesting that an integrin-induced Cdc42/Rac1 signaling pathway activates proteasomal degradation of p21(CIP1). Our results indicate that integrin-regulated proteasomal proteolysis might contribute to anchorage-dependent cell cycle control.
  •  
7.
  • Bjerling, Pernilla, et al. (författare)
  • Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity
  • 2002
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 22:7, s. 2170-2181
  • Tidskriftsartikel (refereegranskat)abstract
    • Histone deacetylases (HDACs) are important for gene regulation and the maintenance of heterochromatin in eukaryotes. Schizosaccharomyces pombe was used as a model system to investigate the functional divergence within this conserved enzyme family. S. pombe has three HDACs encoded by the hda1(+), clr(3+), and clr6(+) genes. Strains mutated in these genes have previously been shown to display strikingly different phenotypes when assayed for viability, chromosome loss, and silencing. Here, conserved differences in the substrate binding pocket identify Clr6 and Hda1 as class I HDACs, while Clr3 belongs in the class II family. Furthermore, these HDACs were shown to have strikingly different subcellular localization patterns. Hda1 was localized to the cytoplasm, while most of Clr3 resided throughout the nucleus. Finally, Clr6 was localized exclusively on the chromosomes in a spotted pattern. Interestingly, Clr3, the only HDAC present in the nucleolus, was required for ribosomal DNA (rDNA) silencing. Clr3 presumably acts directly on heterochromatin, since it colocalized with the centromere, mating-type region, and rDNA as visualized by in situ hybridization. In addition, Clr3 could be cross-linked to mat3 in chromatin immunoprecipitation experiments. Western analysis of bulk histone preparations indicated that Hda1 (class I) had a generally low level of activity in vivo and Clr6 (class 1) had a high level of activity and broad in vivo substrate specificity, whereas Clr3 (class II) displayed its main activity on acetylated lysine 14 of histone H3. Thus, the distinct functions of the S. pombe HDACs are likely explained by their distinct cellular localization and their different in vivo specificities.
  •  
8.
  • Björk Grimberg, Kristian, et al. (författare)
  • Basic Leucine Zipper Protein Cnc-C is a Substrate and Transcriptional Regulator of the Drosophila 26S Proteasome
  • 2011
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 31:4, s. 897-909
  • Tidskriftsartikel (refereegranskat)abstract
    • While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.
  •  
9.
  • Björkblom, Benny, et al. (författare)
  • c-Jun N-Terminal Kinase Phosphorylation of MARCKSL1 Determines Actin Stability and Migration in Neurons and in Cancer Cells
  • 2012
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 32:17, s. 3513-3526
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1S120D,T148D,T183D) inhibits whereas dephospho-MARCKSL1S120A,T148A,T183A induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.
  •  
10.
  • Björkblom, Benny, et al. (författare)
  • Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin beta 2
  • 2014
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 34:16, s. 3024-3040
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in DJ-1 are a cause of recessive, early-onset Parkinson's disease (PD). Although oxidative stress and mitochondrial integrity have been implicated in PD, it is largely unknown why neurons degenerate. DJ-1 is involved in oxidative stress-mediated responses and in mitochondrial maintenance; however, its specific function remains vague. Here we show that DJ-1 exhibits neuronal dynamic intracellular trafficking, with dimeric/monomeric cycling modulated by the oxidative environment. We demonstrate that oxidative stress enhances monomerization of wild-type cytosolic DJ-1, leading to nuclear recruitment. The pathogenic DJ-1/E163K variant is unable to homodimerize but is retained in the cytosol upon wild-type DJ-1 heterodimerization. We found that this wild-type/pathogenic heterodimer is disrupted by oxidative stress, leading to DJ-1/E163K mitochondrial translocation. We further demonstrated that endogenously expressed wild-type DJ-1 is imported into neuronal nuclei as a monomer and that nucleo-cytoplasmic transport is oxidative stress mediated. We identified a novel proline-tyrosine nuclear localization signal (PY-NLS) in DJ-1, and we found that nuclear monomeric DJ-1 import is mediated by an oxidative stress-dependent interaction with karyopherin beta 2. Our study provides evidence that oxidative stress-mediated intracellular trafficking of DJ-1, mediated by dynamic DJ-1 dimeric/monomeric cycling, is implicated in PD pathogenesis.
  •  
11.
  • Björkman, Lena, 1965, et al. (författare)
  • The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment
  • 2016
  • Ingår i: Molecular and Cellular Biology. - : Informa UK Limited. - 0270-7306 .- 1098-5549. ; 36:20, s. 2583-2595
  • Tidskriftsartikel (refereegranskat)abstract
    • Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca2+, and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-alpha) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R.
  •  
12.
  • Carlsten, Jonas O P, et al. (författare)
  • Mediator Promotes CENP-A Incorporation at Fission Yeast Centromeres
  • 2012
  • Ingår i: Molecular and Cellular Biology. - : Informa UK Limited. - 0270-7306 .- 1098-5549. ; 32:19, s. 4035-4043
  • Tidskriftsartikel (refereegranskat)abstract
    • At Schizosaccharomyces pombe centromeres, heterochromatin formation is required for de novo incorporation of the histone H3 variant CENP-A(Cnp1), which in turn directs kinetochore assembly and ultimately chromosome segregation during mitosis. Noncoding RNAs (ncRNAs) transcribed by RNA polymerase II (Pol II) directs heterochromatin formation through not only the RNA interference (RNAi) machinery but also RNAi-independent RNA processing factors. Control of centromeric ncRNA transcription is therefore a key factor for proper centromere function. We here demonstrate that Mediator directs ncRNA transcription and regulates centromeric heterochromatin formation in fission yeast. Mediator colocalizes with Pol II at centromeres, and loss of the Mediator subunit Med20 causes a dramatic increase in pericentromeric transcription and desilencing of the core centromere. As a consequence, heterochromatin formation is impaired via both the RNAi-dependent and -independent pathways, resulting in loss of CENP-A(Cnp1) from the core centromere, a defect in kinetochore function, and a severe chromosome segregation defect. Interestingly, the increased centromeric transcription observed in med20 Delta cells appears to directly block CENP-A(Cnp1) incorporation since inhibition of Pol II transcription can suppress the observed phenotypes. Our data thus identify Mediator as a crucial regulator of ncRNA transcription at fission yeast centromeres and add another crucial layer of regulation to centromere function.
  •  
13.
  • Chaudhari, Aditi, et al. (författare)
  • p110alpha hot spot mutations E545K and H1047R exert metabolic reprogramming independently of p110alpha kinase activity : Kinase-independent signaling of p110 alpha mutants
  • 2015
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 35:19, s. 3258-3273
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
  •  
14.
  • Chaudhari, Aditi, et al. (författare)
  • p110α hot spot mutations E545K and H1047R exert metabolic reprogramming independently of p110α kinase activity
  • 2015
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 35:19, s. 3258-3273
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
  •  
15.
  • Chernukhin, Igor, et al. (författare)
  • CTCF Interacts with and Recruits the Largest Subunit of RNA Polymerase II to CTCF Target Sites Genome-Wide
  • 2007
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 27:5, s. 1631-1648
  • Tidskriftsartikel (refereegranskat)abstract
    • CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. "Serial" chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the β-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.
  •  
16.
  • Crabtree, Judy S, et al. (författare)
  • Of mice and MEN1 : Insulinomas in a conditional mouse knockout.
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23:17, s. 6075-6085
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with multiple endocrine neoplasia type 1 (MEN1) develop multiple endocrine tumors, primarily affecting the parathyroid, pituitary, and endocrine pancreas, due to the inactivation of the MEN1 gene. A conditional mouse model was developed to evaluate the loss of the mouse homolog, Men1, in the pancreatic beta cell. Men1 in these mice contains exons 3 to 8 flanked by loxP sites, such that, when the mice are crossed to transgenic mice expressing cre from the rat insulin promoter (RIP-cre), exons 3 to 8 are deleted in beta cells. By 60 weeks of age, >80% of mice homozygous for the floxed Men1 gene and expressing RIP-cre develop multiple pancreatic islet adenomas. The formation of adenomas results in elevated serum insulin levels and decreased blood glucose levels. The delay in tumor appearance, even with early loss of both copies of Men1, implies that additional somatic events are required for adenoma formation in beta cells. Comparative genomic hybridization of beta cell tumor DNA from these mice reveals duplication of chromosome 11, potentially revealing regions of interest with respect to tumorigenesis.
  •  
17.
  • Culver, Carolyn, et al. (författare)
  • Mechanism of Hypoxia-Induced NF-kappa B
  • 2010
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 30:20, s. 4901-4921
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-kappa B activation is a critical component in the transcriptional response to hypoxia. However, the underlying mechanisms that control its activity under these conditions are unknown. Here we report that under hypoxic conditions, I kappa B kinase (IKK) activity is induced through a calcium/calmodulin-dependent kinase 2 (CaMK2)dependent pathway distinct from that for other common inducers of NF-kappa B. This process still requires IKK and the IKK kinase TAK1, like that for inflammatory inducers of NF-kappa B, but the TAK1-associated proteins TAB1 and TAB2 are not essential. IKK complex activation following hypoxia requires Ubc13 but not the recently identified LUBAC (linear ubiquitin chain assembly complex) ubiquitin conjugation system. In contrast to the action of other NF-kappa B inducers, IKK-mediated phosphorylation of I kappa B alpha does not result in its degradation. We show that this results from I kappa B alpha sumoylation by Sumo-2/3 on critical lysine residues, normally required for K-48-linked polyubiquitination. Furthermore, inhibition of specific Sumo proteases is sufficient to release RelA from I kappa B alpha and activate NF-kappa B target genes. These results define a novel pathway regulating NF-kappa Bactivation, important to its physiological role in human health and disease.
  •  
18.
  • Dahlén, Maria, 1965, et al. (författare)
  • Replication proteins influence the maintenance of telomere length and telomerase protein stability
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23, s. 3031-3042
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the effects of fission yeast replication genes on telomere length maintenance and identified 20 mutant alleles that confer lengthening or shortening of telomeres. The telomere elongation was telomerase dependent in the replication mutants analyzed. Furthermore, the telomerase catalytic subunit, Trt1, and the principal initiation and lagging-strand synthesis DNA polymerase, Polalpha, were reciprocally coimmunoprecipitated, indicating these proteins physically coexist as a complex in vivo. In a polalpha mutant that exhibited abnormal telomere lengthening and slightly reduced telomere position effect, the cellular level of the Trt1 protein was significantly lower and the coimmunoprecipitation of Trt1 and Polalpha was severely compromised compared to those in the wild-type polalpha cells. Interestingly, ectopic expression of wild-type polalpha in this polalpha mutant restored the cellular Trt1 protein to the wild-type level and shortened the telomeres to near-wild-type length. These results suggest that there is a close physical relationship between the replication and telomerase complexes. Thus, mutation of a component of the replication complex can affect the telomeric complex in maintaining both telomere length equilibrium and telomerase protein stability
  •  
19.
  • Dever, Thomas E, et al. (författare)
  • Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes
  • 1995
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 15:11, s. 6351-6363
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.
  •  
20.
  • DiRenzo, J, et al. (författare)
  • Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors
  • 1997
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 17:4, s. 2166-2176
  • Tidskriftsartikel (refereegranskat)abstract
    • As the obligate member of most nuclear receptor heterodimers, retinoid X receptors (RXRs) can potentially perform two functions: cooperative binding to hormone response elements and coordinate regulation of target genes by RXR ligands. In this paper we describe allosteric interactions between RXR and two heterodimeric partners, retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs); RARs and PPARs prevent and permit activation by RXR-specific ligands, respectively. By competing for dimerization with RXR on response elements consisting of direct-repeat half-sites spaced by 1 bp (DR1 elements), the relative abundance of RAR and PPAR determines whether the RXR signaling pathway will be functional. In contrast to RAR, which prevents the binding of RXR ligands and recruits the nuclear receptor corepressor N-CoR, PPAR permits the binding of SRC-1 in response to both RXR and PPAR ligands. Overexpression of SRC-1 markedly potentiates ligand-dependent transcription by PPARgamma, suggesting that SRC-1 serves as a coactivator in vivo. Remarkably, the ability of RAR to both block the binding of ligands to RXR and interact with corepressors requires the CoR box, a structural motif residing in the N-terminal region of the RAR ligand binding domain. Mutations in the CoR box convert RAR from a nonpermissive to a permissive partner of RXR signaling on DR1 elements. We suggest that the differential recruitment of coactivators and corepressors by RAR-RXR and PPAR-RXR heterodimers provides the basis for a transcriptional switch that may be important in controlling complex programs of gene expression, such as adipocyte differentiation.
  •  
21.
  • Edlund, Sofia, et al. (författare)
  • Interaction between Smad7 and beta-catenin : importance for transforming growth factor beta-induced apoptosis
  • 2005
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 25:4, s. 1475-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Members of the transforming growth factor beta (TGF-beta) and Wnt/wingless superfamilies regulate cell fate during development and tissue maintenance. Here we report that Smad7 interacts with beta-catenin and lymphoid enhancer binding factor 1/T-cell-specific factor (LEF1/TCF), transcriptional regulators in Wnt signaling, in a TGF-beta-dependent manner. Smad7 was found to be required for TGF-beta1-induced accumulation of beta-catenin and LEF1 in human prostate cancer (PC-3U) cells as well as in human keratinocytes (HaCaT cells). Moreover, when the endogenous Smad7 was repressed by specific small interfering RNA, TGF-beta-induced increase of activated p38, Akt phosphorylated on Ser473, glycogen synthase kinase 3beta phosphorylated on Ser9 was prevented, as well as the TGF-beta-induced association between beta-catenin and LEF1. Notably, the observed physical association of Smad7 and beta-catenin was found to be important for TGF-beta-induced apoptosis, since suppression of beta-catenin expression by small interfering RNA decreased the apoptotic response to TGF-beta.
  •  
22.
  • Fagerström-Billai, Fredrik, et al. (författare)
  • Functional comparison of the Tup11 and Tup12 transcriptional corepressors in fission yeast
  • 2005
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 25:2, s. 716-727
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene duplication is considered an important evolutionary mechanism. Unlike many characterized species, the fission yeast Schizosaccharomyces pombe contains two paralogous genes, tup11(+) and tup12(+), that encode transcriptional corepressors similar to the well-characterized budding yeast Tup1 protein. Previous reports have suggested that Tup11 and Tup12 proteins play redundant roles. Consistently, we show that the two Tup proteins can interact together when expressed at normal levels and that each can independently interact with the Ssn6 protein, as seen for Tup1 in budding yeast. However, tup11(-) and tup12(-) mutants have different phenotypes on media containing KCl and CaCl2. Consistent with the functional difference between tup11(-) and tup12- mutants, we identified a number of genes in genome-wide gene expression experiments that are differentially affected by mutations in the tup11(+) and tup12(+) genes. Many of these genes are differentially derepressed in tup11(-) mutants and are over-represented in genes that have previously been shown to respond to a range of different stress conditions. Genes specifically derepressed in tup12(-) mutants require the Ssn6 protein for their repression. As for Tupl.2, Ssn6 is also required for efficient adaptation to KCI- and CaCl2-mediated stress. We conclude that Tup11 and Tup12 are at least partly functionally diverged and suggest that the Tup12 and Ssn6 proteins have adopted a specific role in regulation of the stress response.
  •  
23.
  • Fagerström-Billai, Fredrik, et al. (författare)
  • Individual Subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes
  • 2007
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 27:3, s. 1069-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saccharomyces cerevisiae Ssn6 and Tup1 proteins form a corepressor complex that is recruited to target genes by DNA-bound repressor proteins. Repression occurs via several mechanisms, including interaction with hypoacetylated N termini of histones, recruitment of histone deacetylases (HDACs), and interactions with the RNA polymerase II holoenzyme. The distantly related fission yeast, Schizosaccharomyces pombe, has two partially redundant Tup1-like proteins that are dispensable during normal growth. In contrast, we show that Ssn6 is an essential protein in S. pombe, suggesting a function that is independent of Tup11 and Tup12. Consistently, the group of genes that requires Ssn6 for their regulation overlaps but is distinct from the group of genes that depend on Tup11 or Tup12. Global chip-on-chip analysis shows that Ssn6 is almost invariably found in the same genomic locations as Tup11 and/or Tup12. All three corepressor subunits are generally bound to genes that are selectively regulated by Ssn6 or Tup11/12, and thus, the subunit specificity is probably manifested in the context of a corepressor complex containing all three subunits. The corepressor binds to both the intergenic and coding regions of genes, but differential localization of the corepressor within genes does not appear to account for the selective dependence of target genes on the Ssn6 or Tup11/12 subunits. Ssn6, Tup11, and Tup12 are preferentially found at genomic locations at which histones are deacetylated, primarily by the Clr6 class I HDAC. Clr6 is also important for the repression of corepressor target genes. Interestingly, a subset of corepressor target genes, including direct target genes affected by Ssn6 overexpression, is associated with the function of class II (CIr3) and III (Hst4 and Sir2) HDACs.
  •  
24.
  • Fleenor, Courtney J., et al. (författare)
  • Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment
  • 2018
  • Ingår i: Molecular and Cellular Biology. - : AMER SOC MICROBIOLOGY. - 0270-7306 .- 1098-5549. ; 38:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Kruppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521(-/-)) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521s role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.
  •  
25.
  • Friant, S, et al. (författare)
  • Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo
  • 1998
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 18:2, s. 799-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Reverse transcription of the Saccharomyces cerevisiae Ty1 retrotransposon is primed by tRNA(iMet) base paired to the primer binding site (PBS) near the 5' end of Ty1 genomic RNA. The 10-nucleotide PBS is complementary to the last 10 nucleotides of the acceptor stem of tRNA(iMet). A structural probing study of the interactions between the Ty1 RNA template and the tRNA(iMet) primer showed that besides interactions between the PBS and the 3' end of tRNA(iMet), three short regions of Ty1 RNA, named boxes 0, 1, and 2.1, interact with the T and D stems and loops of tRNA(iMet). To determine if these sequences are important for the reverse transcription pathway of the Ty1 retrotransposon, mutant Ty1 elements and tRNA(iMet) were tested for the ability to support transposition. We show that the Ty1 boxes and the complementary sequences in the T and D stems and loops of tRNA(iMet) contain bases that are critical for Ty1 retrotransposition. Disruption of 1 or 2 bp between tRNA(iMet) and box 0, 1, or 2.1 dramatically decreases the level of transposition. Compensatory mutations which restore base pairing between the primer and the template restore transposition. Analysis of the reverse transcription intermediates generated inside Ty1 virus-like particles indicates that initiation of minus-strand strong-stop DNA synthesis is affected by mutations disrupting complementarity between Ty1 RNA and primer tRNA(iMet).
  •  
26.
  • Giandomenico, Valeria, et al. (författare)
  • Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23:7, s. 2587-2599
  • Tidskriftsartikel (refereegranskat)abstract
    • Members of the SREBP family of transcription factors control cholesterol and lipid homeostasis and play important roles during adipocyte differentiation. The transcriptional activity of SREBPs is dependent on the coactivators p300 and CBP. We now present evidence that SREBPs are acetylated by the intrinsic acetyltransferase activity of p300 and CBP. In SREBP1a, the acetylated lysine residue resides in the DNA-binding domain of the protein. Coexpression with p300 dramatically increases the expression of both SREBP1a and SREBP2, and this effect is dependent on the acetyltransferase activity of p300, indicating that acetylation of SREBPs regulates their stability. Indeed, acetylation or mutation of the acetylated lysine residue in SREBP1a stabilizes the protein. We demonstrate that the acetylated residue in SREBP1a is also targeted by ubiquitination and that acetylation inhibits this process. Thus, our studies define acetylation-dependent stabilization of transcription factors as a novel mechanism for coactivators to regulate gene expression.
  •  
27.
  • Gottipati, Ponnari, et al. (författare)
  • Transcription-associated recombination is dependent on replication in Mammalian cells
  • 2008
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 28:1, s. 154-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription can enhance recombination; this is a ubiquitous phenomenon from prokaryotes to higher eukaryotes. However, the mechanism of transcription-associated recombination in mammalian cells is poorly understood. Here we have developed a construct with a recombination substrate in which levels of recombination can be studied in the presence or absence of transcription. We observed a direct enhancement in recombination when transcription levels through the substrate were increased. This increase in homologous recombination following transcription is locus specific, since homologous recombination at the unrelated hprt gene is unaffected. In addition, we have shown that transcription-associated recombination involves both short-tract and long-tract gene conversions in mammalian cells, which are different from double-strand-break-induced recombination events caused by endonucleases. Transcription fails to enhance recombination in cells that are not in the S phase of the cell cycle. Furthermore, inhibition of transcription suppresses induction of recombination at stalled replication forks, suggesting that recombination may be involved in bypassing transcription during replication.
  •  
28.
  • Gutman, Alejandro, et al. (författare)
  • Multiple positive and negative regulatory elements in the promoter of the mouse homeobox gene Hoxb-4.
  • 1994
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 14:12, s. 8143-8154
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouse Hoxb-4 (Hox-2.6) is a homeobox gene that belongs to a family which also includes Hoxa-4, Hoxc-4, and Hoxd-4 and that is related to the Deformed gene in Drosophila melanogaster. We have determined the sequence of 1.2 kb of 5' flanking DNA of mouse Hoxb-4 and by nuclease S1 and primer extension experiments identified two transcription start sites, P1 and P2, 285 and 207 nucleotides upstream of the ATG initiator codon, respectively. We have shown that this region harbors two independent promoters which drive CAT expression in several different cell lines with various efficiencies, suggesting that they are subject to cell-type-specific regulation. Through detailed mutational analysis, we have identified several cis-regulatory elements, located upstream and downstream of the transcription start sites. They include two cell-type-specific negative regulatory elements, which are more active in F9 embryonal carcinoma cells than in neuroblastoma cells (regions a and d at -226 to -186 and +169 to +205, respectively). An additional negative regulatory element has been delimited (region b between +22 and +113). Positive regulation is achieved by binding of HoxTF, a previously unknown factor, to the sequence GCCATTGG (+148 to +155) that is essential for efficient Hoxb-4 expression. We have also defined the minimal promoter sequences and found that they include two 12-bp initiator elements centered around each transcription start site. The complex architecture of the Hoxb-4 promoter provides the framework for fine-tuned transcriptional regulation during embryonic development.
  •  
29.
  • Haiko, Paula, et al. (författare)
  • Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos.
  • 2008
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 28:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphatic vessels play an important role in the regulation of tissue fluid balance, immune responses, and fat adsorption and are involved in diseases including lymphedema and tumor metastasis. Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR-3) is necessary for development of the blood vasculature during early embryogenesis, but later, VEGFR-3 expression becomes restricted to the lymphatic vasculature. We analyzed mice deficient in both of the known VEGFR-3 ligands, VEGF-C and VEGF-D. Unlike the Vegfr3(-/-) embryos, the Vegfc(-/-); Vegfd(-/-) embryos displayed normal blood vasculature after embryonic day 9.5. Deletion of Vegfr3 in the epiblast, using keratin 19 (K19) Cre, resulted in a phenotype identical to that of the Vegfr3(-/-) embryos, suggesting that this phenotype is due to defects in the embryo proper and not in placental development. Interestingly, the Vegfr3(neo) hypomorphic mutant mice carrying the neomycin cassette between exons 1 and 2 showed defective lymphatic development. Overexpression of human or mouse VEGF-D in the skin, under the K14 promoter, rescued the lymphatic hypoplasia of the Vegfc(+/-) mice in the K14-VEGF-D; Vegfc(+/-) compound mice, suggesting that VEGF-D is functionally redundant with VEGF-C in the stimulation of developmental lymphangiogenesis. Our results suggest VEGF-C- and VEGF-D-independent functions for VEGFR-3 in the early embryo.
  •  
30.
  • Hallböök, Finn, et al. (författare)
  • Production and characterization of biologically active recombinant beta nerve growth factor
  • 1988
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 8:1, s. 452-456
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA fragments encoding either rat or chicken beta nerve growth factor (NGF) were inserted in the expression vector p91023(B) for transient expression in COS cells. The two NGF constructs produced RNA transcripts and proteins of the predicted sizes. Conditioned media from the transfected cells stimulated neurite outgrowth from cultured chicken embryo sympathetic ganglia. The results show that the rat or chicken NGF gene can direct the synthesis of a biologically active NGF protein after transfection of COS cells.
  •  
31.
  • Hoch, Nicolas C, et al. (författare)
  • Molecular basis of the essential s phase function of the rad53 checkpoint kinase
  • 2013
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 33:16, s. 3202-3213
  • Tidskriftsartikel (refereegranskat)abstract
    • The essential yeast kinases Mec1 and Rad53, or human ATR and Chk1, are crucial for checkpoint responses to exogenous genotoxic agents, but why they are also required for DNA replication in unperturbed cells remains poorly understood. Here we report that even in the absence of DNA-damaging agents, the rad53-4AQ mutant, lacking the N-terminal Mec1 phosphorylation site cluster, is synthetic lethal with a deletion of the RAD9 DNA damage checkpoint adaptor. This phenotype is caused by an inability of rad53-4AQ to activate the downstream kinase Dun1, which then leads to reduced basal deoxynucleoside triphosphate (dNTP) levels, spontaneous replication fork stalling, and constitutive activation of and dependence on S phase DNA damage checkpoints. Surprisingly, the kinase-deficient rad53-K227A mutant does not share these phenotypes but is rendered inviable by additional phosphosite mutations that prevent its binding to Dun1. The results demonstrate that ultralow Rad53 catalytic activity is sufficient for normal replication of undamaged chromosomes as long as it is targeted toward activation of the effector kinase Dun1. Our findings indicate that the essential S phase function of Rad53 is comprised by the combination of its role in regulating basal dNTP levels and its compensatory kinase function if dNTP levels are perturbed.
  •  
32.
  • Hogan, C. J., et al. (författare)
  • Fission yeast Iec1-Ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism
  • 2010
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 30:3, s. 657-674
  • Tidskriftsartikel (refereegranskat)abstract
    • Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenineresponsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.
  •  
33.
  • Jacobson, Therese, et al. (författare)
  • Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast
  • 2017
  • Ingår i: Molecular and Cellular Biology. - : Informa UK Limited. - 0270-7306 .- 1098-5549. ; 37:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Cadmium is a highly poisonous metal and is classified as a human carcinogen. While its toxicity is undisputed, the underlying in vivo molecular mechanisms are not fully understood. Here, we demonstrate that cadmium induces aggregation of cytosolic proteins in living Saccharomyces cerevisiae cells. Cadmium primarily targets proteins in the process of synthesis or folding, probably by interacting with exposed thiol groups in not-yet-folded proteins. On the basis of in vitro and in vivo data, we show that cadmium-aggregated proteins form seeds that increase the misfolding of other proteins. Cells that cannot efficiently protect the proteome from cadmium-induced aggregation or clear the cytosol of protein aggregates are sensitized to cadmium. Thus, protein aggregation may contribute to cadmium toxicity. This is the first report on how cadmium causes misfolding and aggregation of cytosolic proteins in vivo. The proposed mechanism might explain not only the molecular basis of the toxic effects of cadmium but also the suggested role of this poisonous metal in the pathogenesis of certain protein-folding disorders.
  •  
34.
  • Jaffe, Aron B, et al. (författare)
  • Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways
  • 2004
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 24:4, s. 1736-1746
  • Tidskriftsartikel (refereegranskat)abstract
    • Rho family GTPases act as molecular switches to control a variety of cellular responses, including cytoskeletal rearrangements, changes in gene expression, and cell transformation. In the active, GTP-bound state, Rho interacts with an ever-growing number of effector molecules, which promote distinct biochemical pathways. Here, we describe the isolation of hCNK1, the human homologue of Drosophila connector enhancer of ksr, as an effector for Rho. hCNK1 contains several protein-protein interaction domains, and Rho interacts with one of these, the PH domain, in a GTP-dependent manner. A mutant hCNK1, which is unable to bind to Rho, or depletion of endogenous hCNK1 by using RNA interference inhibits Rho-induced gene expression via serum response factor but has no apparent effect on Rho-induced stress fiber formation, suggesting that it acts as a specific effector for transcriptional, but not cytoskeletal, activation pathways. Finally, hCNK1 associates with Rhophilin and RalGDS, Rho and Ras effector molecules, respectively, suggesting that it acts as a scaffold protein to mediate cross talk between the two pathways.
  •  
35.
  • Jansen, Jacob G., et al. (författare)
  • Separate Domains of Rev1 Mediate Two Modes of DNA Damage Bypass in Mammalian Cells
  • 2009
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 29:11, s. 3113-3123
  • Tidskriftsartikel (refereegranskat)abstract
    • The Y family DNA polymerase Rev1 has been proposed to play a regulatory role in the replication of damaged templates. To elucidate the mechanism by which Rev1 promotes DNA damage bypass, we have analyzed the progression of replication on UV light-damaged DNA in mouse embryonic fibroblasts that contain a defined deletion in the N-terminal BRCT domain of Rev1 or that are deficient for Rev1. We provide evidence that Rev1 plays a coordinating role in two modes of DNA damage bypass, i.e., an early and a late pathway. The cells carrying the deletion in the BRCT domain are deficient for the early pathway, reflecting a role of the BRCT domain of Rev1 in mutagenic translesion synthesis. Rev1-deficient cells display a defect in both modes of DNA damage bypass. Despite the persistent defect in the late replicational bypass of fork-blocking (6-4) pyrimidine-pyrimidone photoproducts, overall replication is not strongly affected by Rev1 deficiency. This results in almost completely replicated templates that contain gaps encompassing the photoproducts. These gaps are inducers of DNA damage signaling leading to an irreversible G(2) arrest. Our results corroborate a model in which Rev1-mediated DNA damage bypass at postreplicative gaps quenches irreversible DNA damage responses.
  •  
36.
  • Jimenez, Maria A, et al. (författare)
  • Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade
  • 2007
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 27:2, s. 743-757
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ebf (O/E) family of helix-loop-helix transcription factors plays a significant role in B lymphocyte and neuronal development. The three primary members of this family, Ebf1, 2, and 3, are all expressed in adipocytes, and Ebf1 promotes adipogenesis when overexpressed in NIH 3T3 fibroblasts. Here we report that these three proteins have adipogenic potential in multiple cellular models and that peroxisome proliferator-activated receptor (PPAR) is required for this effect, at least in part due to direct activation of the PPAR1 promoter by Ebf1. Ebf1 also directly binds to and activates the C/EBP promoter, which exerts positive feedback on C/EBP expression. Despite this, C/EBP is dispensable for the adipogenic action of Ebf proteins. Ebf1 itself is induced by C/EBPß and , which bind and activate its promoter. Reduction of Ebf1 and Ebf2 proteins by specific short hairpin RNA blocks differentiation of 3T3-L1 cells, suggesting a critical role for these factors and the absence of functional redundancy between members of this family. Altogether, these data place Ebf1 within the known transcriptional cascade of adipogenesis and suggest critical roles for Ebf1 and Ebf2.
  •  
37.
  • Johansson, Anna-Mia, 1978-, et al. (författare)
  • POF Regulates the Expression of Genes on the Fourth Chromosome in Drosophila melanogaster by Binding to Nascent RNA
  • 2012
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 32:11, s. 2121-2134
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In Drosophila, two chromosome-wide compensatory systems have been characterized: the dosage compensation system that acts on the male X chromosome and the chromosome-specific regulation of genes located on the heterochromatic fourth chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X chromosome mediated by the male-specific lethal (MSL) complex. The mechanism of this compensation is suggested to involve enhanced transcriptional elongation mediated by the MSL complex, while the mechanism of compensation mediated by the painting of fourth (POF) protein on the fourth chromosome has remained elusive. Here, we show that POF binds to nascent RNA, and this binding is associated with increased transcription output from chromosome 4. We also show that genes located in heterochromatic regions spend less time in transition from the site of transcription to the nuclear envelope. These results provide useful insights into the means by which genes in heterochromatic regions can overcome the repressive influence of their hostile environment.
  •  
38.
  • Johansson, Marcus J O, et al. (författare)
  • Eukaryotic wobble uridine modifications promote a functionally redundant decoding system.
  • 2008
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 28:10, s. 3301-3312
  • Tidskriftsartikel (refereegranskat)abstract
    • The translational decoding properties of tRNAs are modulated by naturally occurring modifications of their nucleosides. Uridines located at the wobble position (nucleoside 34 [U34]) in eukaryotic cytoplasmic tRNAs often harbor a 5-methoxycarbonylmethyl (mcm(5)) or a 5-carbamoylmethyl (ncm(5)) side chain and sometimes an additional 2-thio (s2) or 2'-O-methyl group. Although a variety of models explaining the role of these modifications have been put forth, their in vivo functions have not been defined. In this study, we utilized recently characterized modification-deficient Saccharomyces cerevisiae cells to test the wobble rules in vivo. We show that mcm5 and ncm5 side chains promote decoding of G-ending codons and that concurrent mcm5 and s2 groups improve reading of both A- and G-ending codons. Moreover, the observation that the mcm5U34- and some ncm5U34-containing tRNAs efficiently read G-ending codons challenges the notion that eukaryotes do not use U-G wobbling.
  •  
39.
  • Junell, Anna, et al. (författare)
  • The POU Transcription Factor Drifter/Ventral veinless Regulates Expression of Drosophila Immune Defence Genes
  • 2010
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 30:14, s. 3672-3684
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens.
  •  
40.
  • Kahn, Tatiana, et al. (författare)
  • Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms
  • 2000
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 20:20, s. 7634-7642
  • Tidskriftsartikel (refereegranskat)abstract
    • Drosophila telomeres contain arrays of the retrotransposonlike elements HeT-A and TART. Their transposition to broken chromosomal termini has been implicated in chromosome healing and telomere elongation. The HeT-A element is attached by its 3' end, which contains the promoter. To monitor the behavior of HeT-A elements, we used the yellow gene with terminal deficiencies consisting of breaks in the yellow promoter region that result in the y-null phenotype. Attachment of the HeT-A element provides the promoterless yellow gene with a promoter that activates yellow expression in bristles. The frequency of HeT-A transpositions to the yellow terminal deficiency depends on the genotype of the line and varies from 2 x 10(-3) to less than 2 x 10(-5). Loss of the attached HeT-A due to incomplete replication at the telomere leads to inactivation of yellow expression, which is restored by attachment of a new HeT-A element upstream of yellow. New HeT-A additions occur at a frequency of about 1.2 x 10(-3). Short DNA attachments are generated by gene conversion using the homologous telomeric sequences as templates. Longer DNA attachments are generated either by conventional transposition of an HeT-A element to the chromosomal terminus or by recombination between the 3' terminus of telomeric HeT-A elements and the receding end of HeT-A attached to the yellow gene.
  •  
41.
  • Kaimal, Jayasankar Mohanakrishnan, et al. (författare)
  • Coordinated Hsp110 and Hsp104 Activities Power Protein Disaggregation in Saccharomyces cerevisiae
  • 2017
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 37:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein aggregation is intimately associated with cellular stress and is accelerated during aging, disease, and cellular dysfunction. Yeast cells rely on the ATP-consuming chaperone Hsp104 to disaggregate proteins together with Hsp70. Hsp110s are ancient and abundant chaperones that form complexes with Hsp70. Here we provide in vivo data showing that the Saccharomyces cerevisiae Hsp110s Sse1 and Sse2 are essential for Hsp104-dependent protein disaggregation. Following heat shock, complexes of Hsp110 and Hsp70 are recruited to protein aggregates and function together with Hsp104 in the disaggregation process. In the absence of Hsp110, targeting of Hsp70 and Hsp104 to the aggregates is impaired, and the residual Hsp104 that still reaches the aggregates fails to disaggregate. Thus, coordinated activities of both Hsp104 and Hsp110 are required to reactivate aggregated proteins. These findings have important implications for the understanding of how eukaryotic cells manage misfolded and amyloid proteins.
  •  
42.
  • Karlsson, Roger, et al. (författare)
  • A chicken beta-actin gene can complement a disruption of the Saccharomyces cerevisiae ACT1 gene
  • 1991
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 11:1, s. 213-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently it was demonstrated that beta-actin can be produced in Saccharomyces cerevisiae by using the expression plasmid pY beta actin (R. Karlsson, Gene 68:249-258, 1988), and several site-specific mutants are now being produced in a protein engineering study. To establish a system with which recombinant actin mutants can be tested in vivo and thus enable a correlation to be made with functional effects observed in vitro, a yeast strain lacking endogenous yeast actin and expressing exclusively beta-actin was constructed. This strain is viable but has an altered morphology and a slow-growth phenotype and is temperature sensitive to the point of lethality at 37 degrees C.
  •  
43.
  • Keeney, Jill B, et al. (författare)
  • Multiple molecular determinants for retrotransposition in a primer tRNA
  • 1995
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 15:1, s. 217-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Retroviruses and long terminal repeat-containing retroelements use host-encoded tRNAs as primers for the synthesis of minus strong-stop DNA, the first intermediate in reverse transcription of the retroelement RNA. Usually, one or more specific tRNAs, including the primer, are selected and packaged within the virion. The reverse transcriptase (RT) interacts with the primer tRNA and initiates DNA synthesis. The structural and sequence features of primer tRNAs important for these specific interactions are poorly understood. We have developed a genetic assay in which mutants of tRNA(iMet), the primer for the Ty1 retrotransposon of Saccharomyces cerevisiae, can be tested for the ability to serve as primers in the reverse transcription process. This system allows any tRNA mutant to be tested, regardless of its ability to function in the initiation of protein synthesis. We find that mutations in the T psi C loop and the acceptor stem regions of the tRNA(iMet) affect transposition most severely. Conversely, mutations in the anticodon region have only minimal effects on transposition. Further study of the acceptor stem and other mutants demonstrates that complementarity to the element primer binding site is a necessary but not sufficient requirement for effective tRNA priming. Finally, we have used interspecies hybrid initiator tRNA molecules to implicate nucleotides in the D arm as additional recognition determinants. Ty3 and Ty1, two very distantly related retrotransposons, require similar molecular determinants in this primer tRNA for transposition.
  •  
44.
  • Kowanetz, Marcin, et al. (författare)
  • Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein
  • 2004
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 24:10, s. 4241-4254
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factors beta (TGF-betas) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-beta and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-beta 1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-beta-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-beta and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-beta, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.
  •  
45.
  • Krampert, Monika, et al. (författare)
  • Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner
  • 2010
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 30:14, s. 3685-3694
  • Tidskriftsartikel (refereegranskat)abstract
    • Members of the transforming growth factor beta (TGF-beta) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-beta and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-beta and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-beta and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-beta and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-beta- and BMP-independent manner.
  •  
46.
  • Kurisaki, Akira, et al. (författare)
  • The mechanism of nuclear export of smad3 involves exportin 4 and Ran
  • 2006
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 26:4, s. 1318-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor beta (TGF-beta) receptors phosphorylate Smad3 and induce its nuclear import so it can regulate gene transcription. Smad3 can return to the cytoplasm to propagate further cycles of signal transduction or to be degraded. We demonstrate that Smad3 is exported by a constitutive mechanism that is insensitive to leptomycin B. The Mad homology 2 (MH2) domain is responsible for Smad3 export, which requires the GTPase Ran. Inactive, GDP-locked RanT24N or nuclear microinjection of Ran GTPase activating protein 1 blocked Smad3 export. Inactivation of the Ran guanine nucleotide exchange factor RCC1 inhibited Smad3 export and led to nuclear accumulation of phosphorylated Smad3. A screen for importin/exportin family members that associate with Smad3 identified exportin 4, which binds a conserved peptide sequence in the MH2 domain of Smad3 in a Ran-dependent manner. Exportin 4 is sufficient for carrying the in vitro nuclear export of Smad3 in cooperation with Ran. Knockdown of endogenous exportin 4 completely abrogates the export of endogenous Smad3. A short peptide representing the minimal interaction domain in Smad3 effectively competes with Smad3 association to exportin 4 and blocks nuclear export of Smad3 in vivo. We thus delineate a novel nuclear export pathway for Smad3.
  •  
47.
  • Kurisaki, Keiko, et al. (författare)
  • Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23:13, s. 4494-4510
  • Tidskriftsartikel (refereegranskat)abstract
    • Smad proteins transduce transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-beta and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-beta or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-beta- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-beta or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-beta growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-beta superfamily pathways.
  •  
48.
  • Lundgren, Josefin, et al. (författare)
  • Identification and characterization of a Drosophila proteasome regulatory network
  • 2005
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 25:11, s. 4662-4675
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintaining adequate proteasomal proteolytic activity is essential for eukaryotic cells. For metazoan cells, little is known about the composition of genes that are regulated in the proteasome network or the mechanisms that modulate the levels of proteasome genes. Previously, two distinct treatments have been observed to induce 26S proteasome levels in Drosophila melanogaster cell lines, RNA interference (RNAi)-mediated inhibition of the 26S proteasome subunit Rpn10/S5a and suppression of proteasome activity through treatment with active-site inhibitors. We have carried out genome array profiles from cells with decreased Rpn10/S5a levels using RNAi or from cells treated with proteasome inhibitor MG132 and have thereby identified candidate genes that are regulated as part of a metazoan proteasome network. The profiles reveal that the majority of genes that were identified to be under the control of the regulatory network consisted of 26S proteasome subunits. The 26S proteasome genes, including three new subunits, Ubp6p, Uch-L3, and Sem1p, were found to be up-regulated. A number of genes known to have proteasome-related functions, including Rad23, isopeptidase T, sequestosome, and the genes for the segregase complex TER94/VCP-Ufd1-Npl4 were also found to be up-regulated. RNAi-mediated inhibition against the segregase complex genes demonstrated pronounced stabilization of proteasome substrates throughout the Drosophila cell. Finally, transcriptional reporter assays and deletion mapping studies in Drosophila demonstrate that proteasome mRNA induction is dependent upon the 5' untranslated regions (UTRs). Transfer of the 5' UTR from the proteasome subunit Rpn1/S2 to a noninducible promoter was sufficient to confer transcriptional upregulation of the reporter mRNA after proteasome inhibition.
  •  
49.
  •  
50.
  • Lundkvist, Pär, et al. (författare)
  • Mrd1p Is Required for Release of Base-Paired U3 snoRNA within the Preribosomal Complex
  • 2009
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 29:21, s. 5763-5774
  • Tidskriftsartikel (refereegranskat)abstract
    • In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A2 cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A0 to A2. Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 212
Typ av publikation
tidskriftsartikel (211)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (205)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Gustafsson, JA (16)
Poellinger, L (9)
Ekwall, K (7)
Sigvardsson, Mikael (7)
Heldin, Carl-Henrik (7)
Treuter, E (7)
visa fler...
Wrange, O (7)
Helleday, Thomas (6)
Fässler, Reinhard (6)
Belikov, S (5)
Astrand, C (5)
Byström, Anders S (5)
Aspenström, Pontus (4)
Gustafsson, CM (4)
Gustafsson, Claes M, ... (4)
Djupedal, I (4)
Åkerblad, Peter (4)
Sunnerhagen, Per, 19 ... (3)
Davila Lopez, Marcel ... (3)
Tamás, Markus J., 19 ... (3)
Nystrom, T (3)
Grøtli, Morten, 1966 (3)
Steffensen, KR (3)
Lundin, Cecilia (3)
Schultz, Niklas (3)
ALMLOF, T (3)
WRIGHT, APH (3)
Whitelaw, ML (3)
Andressoo, JO (3)
Ekwall, Karl (3)
Wright, Anthony P. H ... (3)
Ohlsson, Rolf (3)
Moustakas, Aristidis (3)
Chabes, Andrei (3)
Erixon, Klaus (3)
Szilagyi, Zsolt (3)
Zhu, XF (3)
Pongratz, I (3)
Young, Patrick (3)
Nilsson, Jonas A. (3)
Aszodi, Attila (3)
Hunziker, Ernst B. (3)
Cleveland, John L (3)
Carlsten, JO (3)
Szilagyi, Z (3)
Liu, BD (3)
Lopez, MD (3)
Szaszi, E (3)
Solano, Carlos (3)
Pawson, T (3)
visa färre...
Lärosäte
Karolinska Institutet (104)
Uppsala universitet (28)
Umeå universitet (27)
Lunds universitet (22)
Stockholms universitet (18)
Göteborgs universitet (17)
visa fler...
Linköpings universitet (8)
Södertörns högskola (7)
Örebro universitet (2)
Chalmers tekniska högskola (2)
Högskolan i Skövde (1)
Linnéuniversitetet (1)
Högskolan i Borås (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (211)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (50)
Naturvetenskap (44)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy