SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0300 8428 "

Sökning: L773:0300 8428

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alfonso, Fernando, et al. (författare)
  • Authorship : from credit to accountability. Reflections from the Editors' Network.
  • 2019
  • Ingår i: Basic Research in Cardiology. - : Springer Science and Business Media LLC. - 0300-8428 .- 1435-1803. ; 114:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Editors' Network of the European Society of Cardiology provides a dynamic forum for editorial discussions and endorses the recommendations of the International Committee of Medical Journal Editors (ICMJE) to improve the scientific quality of biomedical journals. Authorship confers credit and important academic rewards. Recently, however, the ICMJE emphasized that authorship also requires responsibility and accountability. These issues are now covered by the new (fourth) criterion for authorship. Authors should agree to be accountable and ensure that questions regarding the accuracy and integrity of the entire work will be appropriately addressed. This review discusses the implications of this paradigm shift on authorship requirements with the aim of increasing awareness on good scientific and editorial practices.
  •  
2.
  • Bulhak, A, et al. (författare)
  • Protection against myocardial ischaemia/reperfusion injury by PPAR-alpha activation is related to production of nitric oxide and endothelin-1
  • 2006
  • Ingår i: Basic Research in Cardiology. - : Springer Science and Business Media LLC. - 0300-8428 .- 1435-1803. ; 101:3, s. 244-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Ligands of peroxisome proliferator-activated receptor alpha (PPAR-alpha) have been shown to reduce ischaemia/reperfusion injury. The mechanisms behind this effect are not well known. We hypothesized that activation of PPAR-alpha exerts cardioprotection via a mechanism related to nitric oxide (NO) and endothelin-1 (ET-1). Methods Five groups of anaesthetized open-chest Sprague-Dawley rats were given the PPAR-alpha agonist WY 14643 1 mg/kg (WY; n = 7), dimethyl sulfoxide (DMSO, vehicle for WY; n = 6), the combination of WY and the NO synthase inhibitor N-nitro-L-arginine (L-NNA, 2 mg/kg) (n = 7), L-NNA only (n = 8) or 0.9% sodium chloride (NaCl, vehicle for DMSO and L-NNA; n = 8) i.v. before a 30 min period of coronary artery occlusion followed by 2 h of reperfusion. Infarct size (IS), eNOS and iNOS protein and ET-1 mRNA expression were determined. Results There were no haemodynamic differences between the groups during the experiment. The IS was 78 +/- 3% of the area at risk in the DMSO group and 77 +/- 2% in the NaCl group (P = NS). WY reduced IS to 56 +/- 3% (P < 0.001 vs. DMSO group). When WY was administered in combination with L-NNA the cardioprotective effect was abolished (IS 73 +/- 3%, P < 0.01 vs. WY 14643). L-NNA did not affect IS per se (78 +/- 2%, P = NS). The expression of eNOS but not iNOS protein in ischaemic myocardium from rats was increased in the group given WY (P < 0.05). ET-1 mRNA levels were lower in the ischaemic myocardium following WY administration. Conclusion The results suggest that the PPAR-alpha activation protects the rat myocardium against ischaemia/ reperfusion injury via a mechanism related to production of NO, and possibly ET-1.
  •  
3.
  •  
4.
  • Esfahani, PH, et al. (författare)
  • Cell shape determines gene expression: cardiomyocyte morphotypic transcriptomes
  • 2019
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 115:1, s. 7-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiomyocytes undergo considerable changes in cell shape. These can be due to hemodynamic constraints, including changes in preload and afterload conditions, or to mutations in genes important for cardiac function. These changes instigate significant changes in cellular architecture and lead to the addition of sarcomeres, at the same time or at a later stage. However, it is currently unknown whether changes in cell shape on their own affect gene expression and the aim of this study was to fill that gap in our knowledge. We developed a single-cell morphotyping strategy, followed by single-cell RNA sequencing, to determine the effects of altered cell shape in gene expression. This enabled us to profile the transcriptomes of individual cardiomyocytes of defined geometrical morphotypes and characterize them as either normal or pathological conditions. We observed that deviations from normal cell shapes were associated with significant downregulation of gene expression and deactivation of specific pathways, like oxidative phosphorylation, protein kinase A, and cardiac beta-adrenergic signaling pathways. In addition, we observed that genes involved in apoptosis of cardiomyocytes and necrosis were upregulated in square-like pathological shapes. Mechano-sensory pathways, including integrin and Src kinase mediated signaling, appear to be involved in the regulation of shape-dependent gene expression. Our study demonstrates that cell shape per se affects the regulation of the transcriptome in cardiac myocytes, an effect with possible implications for cardiovascular disease.
  •  
5.
  •  
6.
  • Fu, Michael, 1963, et al. (författare)
  • Effect of metoprolol on activity of beta-adrenoceptor coupled to guanine nucleotide binding regulatory proteins in adriamycin-induced cardiotoxicity.
  • 1991
  • Ingår i: Basic research in cardiology. - 0300-8428. ; 86:2, s. 117-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Prevention of cardiotoxicity without interfering with the therapeutic efficacy of adriamycin is a very crucial question. We have investigated the activity of beta-adrenoceptor coupled to guanine nucleotide binding regulatory proteins (G-proteins) and Ca(2+)-ATPase activity in experimental adriamycin-induced cardiotoxicity and the influence of metoprolol treatment on these variables. Adriamycin was administered to rats intravenously as a single dose of 6 mg/kg, and metoprol was continuously given by means of implanted osmotic pumps. beta-Adrenoceptor characteristics were measured by radioligand-binding experiments and by basal and stimulated adenylyl cyclase activity. Northern blot and dot blot analysis was used to quantify G-protein mRNA. It was shown that adriamycin did not induce any change in the total beta-adrenoceptor density, nor did the high affinity agonist binding to beta-adrenoceptor change. Adriamycin did not induce any alteration in the amount of mRNA encoding for stimulatory (Gs) or inhibitory (Gi) G-proteins. Also, basal and stimulated adenylyl cyclase activities were identical in the different experimental groups. In contrast, the Ca(2+)-ATPase was shown to increase in adriamycin-treated rats compared to control rats (45 +/- 3.8 versus 23 +/- 1.2 mumol Pi/mg/h, P less than .01). Metoprolol was shown to normalize this increase (29 +/- 2.1 mumol Pi/mg/h). Thus, it may be concluded that in experimental adriamycin-induced cardiotoxicity, despite Ca(2+)-overloading, the beta-adrenoceptor-G protein-adenylyl cyclase system remains intact. Metoprolol seems to prevent Ca(2+)-overloading independently of the beta-adrenoceptors studied here.
  •  
7.
  • Gencer, S, et al. (författare)
  • Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium
  • 2022
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 117:1, s. 30-
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12–CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe−/− mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3’s role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Götberg, Matthias, et al. (författare)
  • Optimal timing of hypothermia in relation to myocardial reperfusion.
  • 2011
  • Ingår i: Basic Research in Cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 106, s. 697-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Two previous clinical trials investigating hypothermia as an adjunct therapy for myocardial infarction have failed. Recently a pilot study has demonstrated a significant reduction in infarct size. The aims of this study were to elucidate the effects of hypothermia on reperfusion injury and to investigate the optimal hypothermia protocol for a future clinical trial. Pigs (40-50 kg) were anesthetized and a normal pig temperature of 38°C was established utilizing an endovascular temperature modulating catheter. The pigs were randomized to a combination hypothermia group (1,000 ml of 4°C saline solution and endovascular cooling, n = 8), or to normothermic controls (n = 8). A PCI balloon was then inflated in the LAD for 40 min (control) or 45 min with hypothermia induced during the last 5 min. Furthermore, hypothermia induced by cold saline alone (n = 8), and prolonged combination hypothermia during reperfusion (n = 7) were also examined. Infarct size and area at risk were determined ex vivo after 4 h of reperfusion using gadolinium-enhanced MRI and Tc-99-tetrofosmin SPECT, respectively. All pigs in the combination hypothermia group were cooled to <35°C within 5 min. Combination hypothermia reduced IS/AAR by 18% compared with normothermic controls despite 5 min longer ischemic time (61 ± 5 vs. 74 ± 4%, p = 0.03). Cold saline did not reduce IS/AAR. Prolonging hypothermia treatment after onset of reperfusion by an additional 45 min over that used in a previous paper did not confer any additional benefit. The cardioprotective effects of hypothermia treatment are due to an attenuation of myocardial injury during both ischemia and reperfusion. The results suggest that a hypothermia protocol using a cold saline infusion and endovascular cooling enables hypothermia to be induced in a clinical setting without delaying reperfusion therapy.
  •  
12.
  •  
13.
  • Jiang, He, et al. (författare)
  • Functional analysis of a gene-edited mouse model to gain insights into the disease mechanisms of a titin missense variant
  • 2021
  • Ingår i: Basic Research in Cardiology. - : Springer. - 0300-8428 .- 1435-1803. ; 116
  • Tidskriftsartikel (refereegranskat)abstract
    • Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model.
  •  
14.
  • Jiao, T, et al. (författare)
  • Erythrocytes from patients with ST-elevation myocardial infarction induce cardioprotection through the purinergic P2Y13 receptor and nitric oxide signaling
  • 2022
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 117:1, s. 46-
  • Tidskriftsartikel (refereegranskat)abstract
    • Red blood cells (RBCs) are suggested to play a role in cardiovascular regulation by exporting nitric oxide (NO) bioactivity and ATP under hypoxia. It remains unknown whether such beneficial effects of RBCs are protective in patients with acute myocardial infarction. We investigated whether RBCs from patients with ST-elevation myocardial infarction (STEMI) protect against myocardial ischemia–reperfusion injury and whether such effect involves NO and purinergic signaling in the RBCs. RBCs from patients with STEMI undergoing primary coronary intervention and healthy controls were administered to isolated rat hearts subjected to global ischemia and reperfusion. Compared to RBCs from healthy controls, RBCs from STEMI patients reduced myocardial infarct size (30 ± 12% RBC healthy vs. 11 ± 5% RBC STEMI patients, P < 0.001), improved recovery of left-ventricular developed pressure and dP/dt and reduced left-ventricular end-diastolic pressure in hearts subjected to ischemia–reperfusion. Inhibition of RBC NO synthase with L-NAME or soluble guanylyl cyclase (sGC) with ODQ, and inhibition of cardiac protein kinase G (PKG) abolished the cardioprotective effect. Furthermore, the non-selective purinergic P2 receptor antagonist PPADS but not the P1 receptor antagonist 8PT attenuated the cardioprotection induced by RBCs from STEMI patients. The P2Y13 receptor was expressed in RBCs and the cardioprotection was abolished by the P2Y13 receptor antagonist MRS2211. By contrast, perfusion with PPADS, L-NAME, or ODQ prior to RBCs administration failed to block the cardioprotection induced by RBCs from STEMI patients. Administration of RBCs from healthy subjects following pre-incubation with an ATP analog reduced infarct size from 20 ± 6 to 7 ± 2% (P < 0.001), and this effect was abolished by ODQ and MRS2211. This study demonstrates a novel function of RBCs in STEMI patients providing protection against myocardial ischemia–reperfusion injury through the P2Y13 receptor and the NO–sGC–PKG pathway.
  •  
15.
  • Kogan, PS, et al. (författare)
  • Uncovering the molecular identity of cardiosphere-derived cells (CDCs) by single-cell RNA sequencing
  • 2022
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 117:1, s. 11-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiosphere-derived cells (CDCs) generated from human cardiac biopsies have been shown to have disease-modifying bioactivity in clinical trials. Paradoxically, CDCs’ cellular origin in the heart remains elusive. We studied the molecular identity of CDCs using single-cell RNA sequencing (sc-RNAseq) in comparison to cardiac non-myocyte and non-hematopoietic cells (cardiac fibroblasts/CFs, smooth muscle cells/SMCs and endothelial cells/ECs). We identified CDCs as a distinct and mitochondria-rich cell type that shared biological similarities with non-myocyte cells but not with cardiac progenitor cells derived from human-induced pluripotent stem cells. CXCL6 emerged as a new specific marker for CDCs. By analysis of sc-RNAseq data from human right atrial biopsies in comparison with CDCs we uncovered transcriptomic similarities between CDCs and CFs. By direct comparison of infant and adult CDC sc-RNAseq data, infant CDCs revealed GO-terms associated with cardiac development. To analyze the beneficial effects of CDCs (pro-angiogenic, anti-fibrotic, anti-apoptotic), we performed functional in vitro assays with CDC-derived extracellular vesicles (EVs). CDC EVs augmented in vitro angiogenesis and did not stimulate scarring. They also reduced the expression of pro-apoptotic Bax in NRCMs. In conclusion, CDCs were disclosed as mitochondria-rich cells with unique properties but also with similarities to right atrial CFs. CDCs displayed highly proliferative, secretory and immunomodulatory properties, characteristics that can also be found in activated or inflammatory cell types. By special culture conditions, CDCs earn some bioactivities, including angiogenic potential, which might modify disease in certain disorders.
  •  
16.
  • Kohlhauer, M., et al. (författare)
  • Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive
  • 2019
  • Ingår i: Basic Research in Cardiology. - : Springer Science and Business Media LLC. - 0300-8428 .- 1435-1803. ; 114:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothermia induced at the onset of ischemia is a potent experimental cardioprotective strategy for myocardial infarction. The aim of our study was to determine whether the beneficial effects of hypothermia may be due to decreasing mitochondria-mediated mechanisms of damage that contribute to the pathophysiology of ischemia/reperfusion injury. New Zealand male rabbits were submitted to 30min of myocardial ischemia with hypothermia (32 degrees C) induced by total liquid ventilation (TLV). Hypothermia was applied during ischemia alone (TLV group), during ischemia and reperfusion (TLV-IR group) and normothermia (Control group). In all the cases, ischemia was performed by surgical ligation of the left anterior descending coronary artery and was followed by 3h of reperfusion before assessment of infarct size. In a parallel study, male C57BL6/J mice underwent 30min myocardial ischemia followed by reperfusion under either normothermia (37 degrees C) or conventionally induced hypothermia (32 degrees C). In both the models, the levels of the citric acid cycle intermediate succinate, mitochondrial complex I activity were assessed at various times. The benefit of hypothermia during ischemia on infarct size was compared to inhibition of succinate accumulation and oxidation by the complex II inhibitor malonate, applied as the pro-drug dimethyl malonate under either normothermic or hypothermic conditions. Hypothermia during ischemia was cardioprotective, even when followed by normothermic reperfusion. Hypothermia during ischemia only, or during both, ischemia and reperfusion, significantly reduced infarct size (2.8 +/- 0.6%, 24.2 +/- 3.0% and 49.6 +/- 2.6% of the area at risk, for TLV-IR, TLV and Control groups, respectively). The significant reduction of infarct size by hypothermia was neither associated with a decrease in ischemic myocardial succinate accumulation, nor with a change in its rate of oxidation at reperfusion. Similarly, dimethyl malonate infusion and hypothermia during ischemia additively reduced infarct size (4.8 +/- 2.2% of risk zone) as compared to either strategy alone. Hypothermic cardioprotection is neither dependent on the inhibition of succinate accumulation during ischemia, nor of its rapid oxidation at reperfusion. The additive effect of hypothermia and dimethyl malonate on infarct size shows that they are protective by distinct mechanisms and also suggests that combining these different therapeutic approaches could further protect against ischemia/reperfusion injury during acute myocardial infarction.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Li, L, et al. (författare)
  • Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes
  • 2022
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 117:1, s. 6-
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e−6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.
  •  
21.
  •  
22.
  •  
23.
  • Raulf, Alexandra, et al. (författare)
  • Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status
  • 2015
  • Ingår i: Basic Research in Cardiology. - : Springer Science and Business Media LLC. - 0300-8428 .- 1435-1803. ; 110:3, s. 33-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific alpha MHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo.
  •  
24.
  • Sandstedt, Joakim, et al. (författare)
  • C-kit+ CD45- cells found in the adult human heart represent a population of endothelial progenitor cells.
  • 2010
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 105:4, s. 545-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Although numerous reports support the existence of stem cells in the adult heart, few studies have been conducted using human cardiac tissue. Therefore, cells from human cardiac atrial biopsies were analyzed regarding progenitor properties. Expression of stem cell markers was analyzed using fluorescence-activated cell sorting. This identified a small population of C-kit+ cells, which could be further subdivided based on expression of CD45. The C-kit+ CD45+ population was determined to be of mast cell identity, while the C-kit+ CD45- population expressed mRNA of the endothelial lineage. Since the number of cells obtainable from biopsies was limited, a comparison between directly isolated and monolayer and explant cultured cells, respectively, was carried out. While both cultures retained a small population of mast cells, only monolayer culture produced a stable and relatively high percentage of C-kit+ CD45- cells. This population was found to co-express endothelial progenitor cell markers such as CD31, CD34, CXCR4, and FLK-1. The mRNA expression profile was similar to the one from directly isolated cells. When sorted cells were cultured in endothelial differentiation medium, the C-kit+ CD45- population retained its expression of endothelial markers to a large extent, but downregulated progenitor markers, indicating further differentiation into endothelial cells. We have confirmed that the human cardiac atrium contains a small C-kit+ CD45- population expressing markers commonly found on endothelial progenitor cells. The existence of an endothelial progenitor population within the heart might have future implications for developing methods of inducing neovascularization after myocardial infarction.
  •  
25.
  • Sandstedt, Joakim, et al. (författare)
  • Left atrium of the human adult heart contains a population of side population cells.
  • 2012
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 107:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac "side population" (SP) cells have previously been found to differentiate into both endothelial cells and cardiomyocytes in mice and rats, but there are no data on SP cells in the human adult heart. Therefore, human cardiac atrial biopsies were dissociated, stained for SP cells and analyzed with FACS. Identified cell populations were analyzed for gene expression by quantitative real-time PCR and subjected to in vitro differentiation. Only biopsies from the left atrium contained a clearly distinguishable population of SP cells (0.22±0.08%). The SP population was reduced by co-incubation with MDR1 inhibitor Verapamil, while the ABCG2 inhibitor FTC failed to decrease the number of SP cells. When the gene expression was analyzed, SP cells were found to express significantly more MDR1 than non-SP cells. For ABCG2, there was no detectable difference. SP cells also expressed more of the stem cell-associated markers C-KIT and OCT-4 than non-SP cells. On the other hand, no significant difference in the expression of endothelial and cardiac genes could be detected. SP cells were further subdivided based on CD45 expression. The CD45-SP population showed evidence of endothelial commitment at gene expression level. In conclusion, the results show that a SP population of cells is present also in the human adult heart.
  •  
26.
  •  
27.
  •  
28.
  • Vlacil, AK, et al. (författare)
  • Deficiency of Nucleotide-binding oligomerization domain-containing proteins (NOD) 1 and 2 reduces atherosclerosis
  • 2020
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 115:4, s. 47-
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis is crucially fueled by inflammatory pathways including pattern recognition receptor (PRR)-related signaling of the innate immune system. Currently, the impact of the cytoplasmic PRRs nucleotide-binding oligomerization domain-containing protein (NOD) 1 and 2 is incompletely characterized. We, therefore, generated Nod1/Nod2 double knockout mice on a low-density lipoprotein receptor (Ldlr)-deficient background (= Ldlr−/−Nod1/2−/−) which were subsequently analyzed regarding experimental atherosclerosis, lipid metabolism, insulin resistance and gut microbiota composition. Compared to Ldlr−/− mice, Ldlr−/−Nod1/2−/− mice showed reduced plasma lipids and increased hepatic expression of the scavenger receptor LDL receptor-related protein 1 after feeding a high-fat diet for 12 weeks. Furthermore, intestinal cholesterol and its bacterial degradation product coprostanol were elevated in Ldlr−/−Nod1/2−/− mice, correlating with the increased abundance of Eubacterium coprostanoligenes as assessed by 3rd generation sequencing of the gut microbiota. Atherosclerotic plaques of Ldlr−/−Nod1/2−/− mice exhibited less lipid deposition and macrophage accumulation. Moreover, macrophages from Ldlr−/−Nod1/2−/− mice showed higher expression of the cholesterol efflux transporters Abca1 and Abcg1 and accordingly reduced foam cell formation. Deficiency of Nod1 and Nod2 led to reduced plaque lipid deposition and inflammatory cell infiltration in atherosclerotic plaques. This might be explained by diminished plasma lipid levels and foam cell formation due to altered expression of key regulators of the hepatic cholesterol pathway as well as differential intestinal cholesterol metabolism and microbiota composition.
  •  
29.
  • Winkler, MJ, et al. (författare)
  • Functional investigation of the coronary artery disease gene SVEP1
  • 2020
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 115:6, s. 67-
  • Tidskriftsartikel (refereegranskat)abstract
    • A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE−/−Svep1+/−) compared to Svep1 wild-type mice (ApoE−/−Svep1+/+) and ApoE−/−Svep1+/− mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE−/−Svep1+/− mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE−/−Svep1+/− mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.
  •  
30.
  •  
31.
  • Zhang, Y, et al. (författare)
  • Adenosine and adenosine receptor-mediated action in coronary microcirculation
  • 2021
  • Ingår i: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 116:1, s. 22-
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy