SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0964 6906 "

Sökning: L773:0964 6906

  • Resultat 1-50 av 458
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, A, et al. (författare)
  • Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness
  • 2019
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 28:22, s. 3853-3865
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans are social animals that experience intense suffering when they perceive a lack of social connection. Modern societies are experiencing an epidemic of loneliness. Although the experience of loneliness is universally human, some people report experiencing greater loneliness than others. Loneliness is more strongly associated with mortality than obesity, emphasizing the need to understand the nature of the relationship between loneliness and health. Although it is intuitive that circumstantial factors such as marital status and age influence loneliness, there is also compelling evidence of a genetic predisposition toward loneliness. To better understand the genetic architecture of loneliness and its relationship with associated outcomes, we extended the genome-wide association study meta-analysis of loneliness to 511 280 subjects, and detect 19 significant genetic variants from 16 loci, including four novel loci, as well as 58 significantly associated genes. We investigated the genetic overlap with a wide range of physical and mental health traits by computing genetic correlations and by building loneliness polygenic scores in an independent sample of 18 498 individuals with EHR data to conduct a PheWAS with. A genetic predisposition toward loneliness was associated with cardiovascular, psychiatric, and metabolic disorders and triglycerides and high-density lipoproteins. Mendelian randomization analyses showed evidence of a causal, increasing, the effect of both BMI and body fat on loneliness. Our results provide a framework for future studies of the genetic basis of loneliness and its relationship to mental and physical health.
  •  
2.
  •  
3.
  • Adhikari, Deepak, et al. (författare)
  • Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:11, s. 2476-2484
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.
  •  
4.
  • Adhikari, Deepak, et al. (författare)
  • Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:3, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To maintain the female reproductive lifespan, the majority of ovarian primordial follicles are preserved in a quiescent state in order to provide ova for later reproductive life. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Here we provide genetic evidence to show that the tumor suppressor tuberous sclerosis complex 1 (Tsc1), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the quiescence of primordial follicles. In mutant mice lacking the Tsc1 gene in oocytes, the entire pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in the oocyte, ending up with follicular depletion in early adulthood and causing premature ovarian failure (POF). We further show that maintenance of the quiescence of primordial follicles requires synergistic, collaborative functioning of both Tsc and PTEN (phosphatase and tensin homolog deleted on chromosome 10) and that these two molecules suppress follicular activation through distinct ways. Our results suggest that Tsc/mTORC1 signaling and PTEN/PI3K (phosphatidylinositol 3 kinase) signaling synergistically regulate the dormancy and activation of primordial follicles, and together ensure the proper length of female reproductive life. Deregulation of these signaling pathways in oocytes results in pathological conditions of the ovary, including POF and infertility.
  •  
5.
  • Aguila, Monica, et al. (författare)
  • AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity
  • 2020
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 29:8, s. 1310-1318
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5(-/-) and P23H(+/-):Erdj5(-/-) mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
  •  
6.
  • Ahlqvist, Emma, et al. (författare)
  • High-resolution mapping of a complex disease, a model for rheumatoid arthritis, using heterogeneous stock mice
  • 2011
  • Ingår i: Human Molecular Genetics. - Oxford : Oxford University Press. - 0964-6906 .- 1460-2083. ; 20:15, s. 3031-3041
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving the genetic basis of complex diseases like rheumatoid arthritis will require knowledge of the corresponding diseases in experimental animals to enable translational functional studies. Mapping of quantitative trait loci in mouse models of arthritis, such as collagen-induced arthritis (CIA), using F(2) crosses has been successful, but can resolve loci only to large chromosomal regions. Using an inbred-outbred cross design, we identified and fine-mapped CIA loci on a genome-wide scale. Heterogeneous stock mice were first intercrossed with an inbred strain, B10.Q, to introduce an arthritis permitting MHCII haplotype. Homozygous H2(q) mice were then selected to set up an F(3) generation with fixed major histocompatibility complex that was used for arthritis experiments. We identified 26 loci, 18 of which are novel, controlling arthritis traits such as incidence of disease, severity and time of onset and fine-mapped a number of previously mapped loci. © The Author 2011. Published by Oxford University Press. All rights reserved.
  •  
7.
  • Ahluwalia, T. S., et al. (författare)
  • Genome-wide association study of circulating interleukin 6 levels identifies novel loci
  • 2021
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 30:5, s. 393-409
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67428 (n(discovery)=52654 and n(replication)=14774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (P-combined=1.8x10(-11)), HLA-DRB1/DRB5 rs660895 on Chr6p21 (P-combined=1.5x10(-10)) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (P-combined=1.2x10(-122)). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
  •  
8.
  •  
9.
  • Ahn, Jiyoung, et al. (författare)
  • Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:19, s. 3749-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
  •  
10.
  • Ahola-Erkkilä, Sofia, et al. (författare)
  • Ketogenic diet slows down mitochondrial myopathy progression in mice
  • 2010
  • Ingår i: Human Molecular Genetics. - : Elsevier. - 0964-6906 .- 1460-2083. ; 19:10, s. 1974-1984
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial dysfunction is a major cause of neurodegenerative and neuromuscular diseases of adult age and of multisystem disorders of childhood. However, no effective treatment exists for these progressive disorders. Cell culture studies suggested that ketogenic diet (KD), with low glucose and high fat content, could select against cells or mitochondria with mutant mitochondrial DNA (mtDNA), but proper patient trials are still lacking. We studied here the transgenic Deletor mouse, a disease model for progressive late-onset mitochondrial myopathy, accumulating mtDNA deletions during aging and manifesting subtle progressive respiratory chain (RC) deficiency. We found that these mice have widespread lipidomic and metabolite changes, including abnormal plasma phospholipid and free amino acid levels and ketone body production. We treated these mice with pre-symptomatic long-term and post-symptomatic shorter term KD. The effects of the diet for disease progression were followed by morphological, metabolomic and lipidomic tools. We show here that the diet decreased the amount of cytochrome c oxidase negative muscle fibers, a key feature in mitochondrial RC deficiencies, and prevented completely the formation of the mitochondrial ultrastructural abnormalities in the muscle. Furthermore, most of the metabolic and lipidomic changes were cured by the diet to wild-type levels. The diet did not, however, significantly affect the mtDNA quality or quantity, but rather induced mitochondrial biogenesis and restored liver lipid levels. Our results show that mitochondrial myopathy induces widespread metabolic changes, and that KD can slow down progression of the disease in mice. These results suggest that KD may be useful for mitochondrial late-onset myopathies.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Almqvist, E, et al. (författare)
  • Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes : insights into the genetic evolution of Huntington disease.
  • 1995
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 4:2, s. 207-14
  • Tidskriftsartikel (refereegranskat)abstract
    • This study addresses genetic factors associated with normal variation of the CAG repeat in the Huntington disease (HD) gene. To achieve this, we have studied patterns of variation of three trinucleotide repeats in the HD gene including the CAG and adjacent CCG repeats as well as a GAG polymorphism at residue 2642 (delta 2642). We have previously demonstrated that variation in the CCG repeat is associated with variation of the CAG repeat length on normal chromosomes. Here we show that differences in the GAG trinucleotide polymorphism at residue 2642 is also significantly correlated with CAG size on normal chromosomes. The B allele which is associated with higher CAG repeat lengths on normal chromosomes is markedly enriched on affected chromosomes. Furthermore, this glutamic acid polymorphism shows significant variation in different ancestries and is absent in chromosomes of Japanese, Black and Chinese descent. Haplotype analysis of both the CCG and delta 2642 polymorphisms have indicated that both are independently associated with differences in CAG length on normal chromosomes. These findings lead to a model for the genetic evolution of new mutations for HD preferentially occurring on normal chromosomes with higher CAG repeat lengths and a CCG repeat length of seven and/or a deletion of the glutamic acid residue at delta 2642. This study also provides additional evidence for genetic contributions to demographic differences in prevalence rates for HD.
  •  
15.
  • Amos, Christopher I, et al. (författare)
  • Genome-wide association study identifies novel loci predisposing to cutaneous melanoma
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:24, s. 23-5012
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a multistage genome-wide association study of melanoma. In a discovery cohort of 1804 melanoma cases and 1026 controls, we identified loci at chromosomes 15q13.1 (HERC2/OCA2 region) and 16q24.3 (MC1R) regions that reached genome-wide significance within this study and also found strong evidence for genetic effects on susceptibility to melanoma from markers on chromosome 9p21.3 in the p16/ARF region and on chromosome 1q21.3 (ARNT/LASS2/ANXA9 region). The most significant single-nucleotide polymorphisms (SNPs) in the 15q13.1 locus (rs1129038 and rs12913832) lie within a genomic region that has profound effects on eye and skin color; notably, 50% of variability in eye color is associated with variation in the SNP rs12913832. Because eye and skin colors vary across European populations, we further evaluated the associations of the significant SNPs after carefully adjusting for European substructure. We also evaluated the top 10 most significant SNPs by using data from three other genome-wide scans. Additional in silico data provided replication of the findings from the most significant region on chromosome 1q21.3 rs7412746 (P = 6 × 10(-10)). Together, these data identified several candidate genes for additional studies to identify causal variants predisposing to increased risk for developing melanoma.
  •  
16.
  • Anney, Richard, et al. (författare)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Tidskriftsartikel (refereegranskat)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
17.
  • Anney, Richard, et al. (författare)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
18.
  • Anthoni, Heidi, et al. (författare)
  • A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia.
  • 2007
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 16:6, s. 667-77
  • Tidskriftsartikel (refereegranskat)abstract
    • DYX3, a locus for dyslexia, resides on chromosome 2p11-p15. We have refined its location on 2p12 to a 157 kb region in two rounds of linkage disequilibrium (LD) mapping in a set of Finnish families. The observed association was replicated in an independent set of 251 German families. Two overlapping risk haplotypes spanning 16 kb were identified in both sample sets separately as well as in a joint analysis. In the German sample set, the odds ratio for the most significantly associated haplotype increased with dyslexia severity from 2.2 to 5.2. The risk haplotypes are located in an intergenic region between FLJ13391 and MRPL19/C2ORF3. As no novel genes could be cloned from this region, we hypothesized that the risk haplotypes might affect long-distance regulatory elements and characterized the three known genes. MRPL19 and C2ORF3 are in strong LD and were highly co-expressed across a panel of tissues from regions of adult human brain. The expression of MRPL19 and C2ORF3, but not FLJ13391, were also correlated with the four dyslexia candidate genes identified so far (DYX1C1, ROBO1, DCDC2 and KIAA0319). Although several non-synonymous changes were identified in MRPL19 and C2ORF3, none of them significantly associated with dyslexia. However, heterozygous carriers of the risk haplotype showed significantly attenuated expression of both MRPL19 and C2ORF3, as compared with non-carriers. Analysis of C2ORF3 orthologues in four non-human primates suggested different evolutionary rates for primates when compared with the out-group. In conclusion, our data support MRPL19 and C2ORF3 as candidate susceptibility genes for DYX3.
  •  
19.
  • Antoniou, Antonis C., et al. (författare)
  • Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3304-3321
  • Tidskriftsartikel (refereegranskat)abstract
    • Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [ hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 x 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 x 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women.
  •  
20.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
21.
  •  
22.
  • Aspatwar, Ashok, et al. (författare)
  • Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:3, s. 417-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.
  •  
23.
  •  
24.
  • Atanassova, N, et al. (författare)
  • Sequence-specific stalling of DNA polymerase gamma and the effects of mutations causing progressive ophthalmoplegia
  • 2011
  • Ingår i: Human Molecular Genetics. - 0964-6906. ; 20:6, s. 1212-1223
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of mutations in the gene encoding the catalytic subunit of mitochondrial DNA polymerase γ (POLγA) cause human disease. The Y955C mutation is common and leads to a dominant disease with progressive external ophthalmoplegia and other symptoms. The biochemical effect of the Y955C mutation has been extensively studied and it has been reported to lower enzyme processivity due to decreased capacity to utilize dNTPs. However, it is unclear why this biochemical defect leads to a dominant disease. Consistent with previous reports, we show here that the POLγA:Y955C enzyme only synthesizes short DNA products at dNTP concentrations that are sufficient for proper function of wild-type POLγA. In addition, we find that this phenotype is overcome by increasing the dNTP concentration, e.g. dATP. At low dATP concentrations, the POLγA:Y955C enzyme stalls at dATP insertion sites and instead enters a polymerase/exonuclease idling mode. The POLγA:Y955C enzyme will compete with wild-type POLγA for primer utilization, and this will result in a heterogeneous population of short and long DNA replication products. In addition, there is a possibility that POLγA:Y955C is recruited to nicks of mtDNA and there enters an idling mode preventing ligation. Our results provide a novel explanation for the dominant mtDNA replication phenotypes seen in patients harboring the Y955C mutation, including the existence of site-specific stalling. Our data may also explain why mutations that disturb dATP pools can be especially deleterious for mtDNA synthesis.
  •  
25.
  •  
26.
  •  
27.
  • Bademci, Guney, et al. (författare)
  • FOXF2 is required for cochlear development in humans and mice.
  • 2019
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 28:8, s. 1286-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1,000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wildtype. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to sensorineural hearing loss and developmental anomalies of the cochlea in humans and mice.
  •  
28.
  •  
29.
  • Baker, N L, et al. (författare)
  • Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy
  • 2005
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 14:2, s. 279-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the three collagen VI genes COL6A1, COL6A2 and COL6A3 cause Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). UCMD, a severe disorder characterized by congenital muscle weakness, proximal joint contractures and marked distal joint hyperextensibility, has been considered a recessive condition, and homozygous or compound heterozygous mutations have been defined in COL6A2 and COL6A3. In contrast, the milder disorder Bethlem myopathy shows clear dominant inheritance and is caused by heterozygous mutations in COL6A1, COL6A2 and COL6A3. This model, where dominant mutations cause mild Bethlem myopathy and recessive mutations cause severe UCMD was recently challenged when a patient with UCMD was shown to have a heterozygous in-frame deletion in COL6A1. We have studied five patients with a clinical diagnosis of UCMD. Three patients had heterozygous in-frame deletions in the N-terminal region of the triple helical domain, one in the alpha1(VI) chain, one in alpha2(VI) and one in alpha3(VI). Collagen VI protein biosynthesis and assembly studies showed that these mutations act in a dominant negative fashion and result in severe collagen VI matrix deficiencies. One patient had recessive amino acid changes in the C2 subdomain of alpha2(VI), which prevented collagen VI assembly. No collagen VI mutations were found in the fifth patient. These data demonstrate that rather than being a rare cause of UCMD, dominant mutations are common in UCMD, now accounting for four of the 14 published cases. Mutation detection in this disorder remains critical for accurate genetic counseling of patients and their families.
  •  
30.
  • Barekati, Zeinab, et al. (författare)
  • Methylation profile of TP53 regulatory pathway and mtDNA alterations in breast cancer patients lacking TP53 mutations
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford Journals. - 0964-6906 .- 1460-2083. ; 19:15, s. 2936-2946
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
  •  
31.
  • Barrdahl, Myrto, et al. (författare)
  • Post-G WAS gene-environment interplay in breast cancer : results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79 000 women
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:19, s. 5260-5270
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the interplay between 39 breast cancer (BC) risk SNPs and established BC risk (body mass index, height, age at menarche, parity, age at menopause, smoking, alcohol and family history of BC) and prognostic factors (TNM stage, tumor grade, tumor size, age at diagnosis, estrogen receptor status and progesterone receptor status) as joint determinants of BC risk. We used a nested case-control design within the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3), with 16 285 BC cases and 19 376 controls. We performed stratified analyses for both the risk and prognostic factors, testing for heterogeneity for the risk factors, and case-case comparisons for differential associations of polymorphisms by subgroups of the prognostic factors. We analyzed multiplicative interactions between the SNPs and the risk factors. Finally, we also performed a meta-analysis of the interaction ORs from BPC3 and the Breast Cancer Association Consortium. After correction for multiple testing, no significant interaction between the SNPs and the established risk factors in the BPC3 study was found. The meta-analysis showed a suggestive interaction between smoking status and SLC4A7-rs4973768 (P-interaction = 8.84 x 10(-4)) which, although not significant after considering multiple comparison, has a plausible biological explanation. In conclusion, in this study of up to almost 79 000 women we can conclusively exclude any novel major interactions between genome-wide association studies hits and the epidemiologic risk factors taken into consideration, but we propose a suggestive interaction between smoking status and SLC4A7-rs4973768 that if further replicated could help our understanding in the etiology of BC.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of offspring birth weight in 86,577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
  • 2018
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 1460-2083 .- 0964-6906. ; 27:4, s. 742-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) of birth weight have focused on fetal genetics, while relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86,577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5x10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
  •  
36.
  • Beck, J. J., et al. (författare)
  • Genetic meta-analysis of twin birth weight shows high genetic correlation with singleton birth weight
  • 2021
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 30:19, s. 1894-1905
  • Tidskriftsartikel (refereegranskat)abstract
    • Birth weight (BW) is an important predictor of newborn survival and health and has associations with many adult health outcomes, including cardiometabolic disorders, autoimmune diseases and mental health. On average, twins have a lower BW than singletons as a result of a different pattern of fetal growth and shorter gestational duration. Therefore, investigations into the genetics of BW often exclude data from twins, leading to a reduction in sample size and remaining ambiguities concerning the genetic contribution to BW in twins. In this study, we carried out a genome-wide association meta-analysis of BW in 42 212 twin individuals and found a positive correlation of beta values (Pearson's r = 0.66, 95% confidence interval [CI]: 0.47-0.77) with 150 previously reported genome-wide significant variants for singleton BW. We identified strong positive genetic correlations between BW in twins and numerous anthropometric traits, most notably with BW in singletons (genetic correlation [r(g)]= 0.92, 95% CI: 0.66-1.18). Genetic correlations of BW in twins with a series of health-related traits closely resembled those previously observed for BW in singletons. Polygenic scores constructed from a genome-wide association study on BW in the UK Biobank demonstrated strong predictive power in a target sample of Dutch twins and singletons. Together, our results indicate that a similar genetic architecture underlies BW in twins and singletons and that future genome-wide studies might benefit from including data from large twin registers.
  •  
37.
  • Bedoni, Nicola, et al. (författare)
  • Mutations in the polyglutamylase gene TTLL5, expressed in photoreceptor cells and spermatozoa, are associated with cone-rod degeneration and reduced male fertility
  • 2016
  • Ingår i: Human Molecular Genetics. - 0964-6906. ; 25:20, s. 4546-4555
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary retinal degenerations encompass a group of genetic diseases characterized by extreme clinical variability. Following next-generation sequencing and autozygome-based screening of patients presenting with a peculiar, recessive form of cone-dominated retinopathy, we identified five homozygous variants [p.(Asp594fs), p.(Gln117*), p.(Met712fs), p.(Ile756Phe), and p.(Glu543Lys)] in the polyglutamylase-encoding gene TTLL5, in eight patients from six families. The two male patients carrying truncating TTLL5 variants also displayed a substantial reduction in sperm motility and infertility, whereas those carrying missense changes were fertile. Defects in this polyglutamylase in humans have recently been associated with cone photoreceptor dystrophy, while mouse models carrying truncating mutations in the same gene also display reduced fertility in male animals. We examined the expression levels of TTLL5 in various human tissues and determined that this gene has multiple viable isoforms, being highly expressed in testis and retina. In addition, antibodies against TTLL5 stained the basal body of photoreceptor cells in rat and the centrosome of the spermatozoon flagellum in humans, suggesting a common mechanism of action in these two cell types. Taken together, our data indicate that mutations in TTLL5 delineate a novel, allele-specific syndrome causing defects in two as yet pathogenically unrelated functions, reproduction and vision.
  •  
38.
  • Beer, Nicola L., et al. (författare)
  • The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:21, s. 4081-4088
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR). Fructose-6 and fructose-1 phosphate (F6P and F1P) enhance or reduce GKRP-mediated inhibition, respectively. A common GCKR variant (P446L) is reproducibly associated with triglyceride and fasting plasma glucose levels in the general population. The aim of this study was to determine the mutational mechanism responsible for this genetic association. Recombinant human GCK and both human wild-type (WT) and P446L-GKRP proteins were generated. GCK kinetic activity was observed spectrophotometrically using an NADP(+)-coupled assay. WT and P446L-GKRP-mediated inhibition of GCK activity and subsequent regulation by phosphate esters were determined. Assays matched for GKRP activity demonstrated no difference in dose-dependent inhibition of GCK activity or F1P-mediated regulation. However, the response to physiologically relevant F6P levels was significantly attenuated with P446L-GKRP (n = 18; P < 0.03). Experiments using equimolar concentrations of both regulatory proteins confirmed these findings (n = 9; P < 0.001). In conclusion, P446L-GKRP has reduced regulation by physiological concentrations of F6P, resulting indirectly in increased GCK activity. Altered GCK regulation in liver is predicted to enhance glycolytic flux, promoting hepatic glucose metabolism and elevating concentrations of malonyl-CoA, a substrate for de novo lipogenesis, providing a mutational mechanism for the reported association of this variant with raised triglycerides and lower glucose levels.
  •  
39.
  • Bento-Abreu, Andre, et al. (författare)
  • Elongator subunit 3 (ELP3) modifies ALS through tRNA modification.
  • 2018
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 27:7, s. 1276-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder of which the progression is influenced by several disease-modifying factors. Here, we investigated ELP3, a subunit of the elongator complex that modifies tRNA wobble uridines, as one of such ALS disease modifiers. ELP3 attenuated the axonopathy of a mutant SOD1, as well as of a mutant C9orf72 ALS zebrafish model. Furthermore, the expression of ELP3 in the SOD1G93A mouse extended the survival and attenuated the denervation in this model. Depletion of ELP3 in vitro reduced the modified tRNA wobble uridine mcm5s2U and increased abundance of insoluble mutant SOD1, which was reverted by exogenous ELP3 expression. Interestingly, the expression of ELP3 in the motor cortex of ALS patients was reduced and correlated with mcm5s2U levels. Our results demonstrate that ELP3 is a modifier of ALS and suggest a link between tRNA modification and neurodegeneration.
  •  
40.
  • Benyamin, Beben, et al. (författare)
  • Identification of novel loci affecting circulating chromogranins and related peptides
  • 2017
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 26:1, s. 233-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromogranins are pro-hormone secretory proteins released from neuroendocrine cells, with effects on control of blood pressure. We conducted a genome-wide association study for plasma catestatin, the catecholamine release inhibitory peptide derived from chromogranin A (CHGA), and other CHGA- or chromogranin B (CHGB)-related peptides, in 545 US and 1252 Australian subjects. This identified loci on chromosomes 4q35 and 5q34 affecting catestatin concentration (P = 3.40 × 10(-30) for rs4253311 and 1.85 × 10(-19) for rs2731672, respectively). Genes in these regions include the proteolytic enzymes kallikrein (KLKB1) and Factor XII (F12). In chromaffin cells, CHGA and KLKB1 proteins co-localized in catecholamine storage granules. In vitro, kallikrein cleaved recombinant human CHGA to catestatin, verified by mass spectrometry. The peptide identified from this digestion (CHGA360-373) selectively inhibited nicotinic cholinergic stimulated catecholamine release from chromaffin cells. A proteolytic cascade involving kallikrein and Factor XII cleaves chromogranins to active compounds both in vivo and in vitro.
  •  
41.
  • Berggren, Olof, et al. (författare)
  • IFN-α production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:12, s. 3571-3581
  • Tidskriftsartikel (refereegranskat)abstract
    • The type I interferon (IFN) system is persistently activated in systemic lupus erythematosus (SLE) and many other systemic autoimmune diseases. Studies have shown an association between SLE and several gene variants within the type I IFN system. We investigated whether single nucleotide polymorphisms (SNPs) associated with SLE and other autoimmune diseases affect the IFN-α production in healthy individuals. Plasmacytoid dendritic cells (pDCs), B and NK cells were isolated from peripheral blood of healthy individuals and stimulated with RNA-containing immune complexes (IC), herpes simplex virus (HSV) or the oligonucleotide ODN2216. IFN-α production by pDCs alone or in cocultures with B or NK cells was measured by an immunoassay. All donors were genotyped with the 200K ImmunoChip and a 5bp CGGGG length polymorphism in the IFN regulatory factor 5 gene (IRF5) was genotyped by PCR. We found associations between IFN-α production and 18-86 SNPs (p ≤ 0.001), depending on the combination of the stimulated cell types. However, only three of these associated SNPs were shared between the cell type combinations. Several SNPs showed novel associations to the type I IFN system among all the associated SNPs, while some loci have been described earlier for their association with SLE. Furthermore, we found that the SLE-risk variant of the IRF5 CGGGG-indel was associated with lower IFN-α production. We conclude that the genetic variants affecting the IFN-α production highlight the intricate regulation of the type I IFN system and the importance of understanding the mechanisms behind the dysregulated type I IFN system in SLE.
  •  
42.
  • Berndt, Sonja I, et al. (författare)
  • Large-scale fine mapping of the HNF1B locus and prostate cancer risk
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3322-3329
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case-control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10(-8) with the most significant association with rs4430796 (P = 1.62 × 10(-24)). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r(2)= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10(-23)) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10(-8)); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10(-10)), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.
  •  
43.
  • Besingi, Welisane, et al. (författare)
  • Smoke-related DNA methylation changes in the etiology of human disease
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:9, s. 2290-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to environmental and lifestyle factors, such as cigarette smoking, affect the epigenome and might mediate risk for diseases and cancers. We have performed a genome-wide DNA methylation study to determine the effect of smoke and snuff (smokeless tobacco) on DNA methylation. A total of 95 sites were differentially methylated [false discovery rate (FDR) q-values < 0.05] in smokers and a subset of the differentially methylated loci were also differentially expressed in smokers. We found no sites, neither any biological functions nor molecular processes enriched for smoke-less tobacco-related differential DNA methylation. This suggests that methylation changes are not caused by the basic components of the tobacco but from its burnt products. Instead, we see a clear enrichment (FDR q-value < 0.05) for genes, including CPOX, CDKN1A and PTK2, involved in response to arsenic-containing substance, which agrees with smoke containing small amounts of arsenic. A large number of biological functions and molecular processes with links to disease conditions are also enriched (FDR q-value < 0.05) for smoke-related DNA methylation changes. These include 'insulin receptor binding', and 'negative regulation of glucose import' which are associated with diabetes, 'positive regulation of interleukin-6-mediated signaling pathway', 'regulation of T-helper 2 cell differentiation', 'positive regulation of interleukin-13 production' which are associated with the immune system and 'sertoli cell fate commitment' which is important for male fertility. Since type 2 diabetes, repressed immune system and infertility have previously been associated with smoking, our results suggest that this might be mediated by DNA methylation changes.
  •  
44.
  • Bethke, Lara, et al. (författare)
  • Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 17:6, s. 800-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Much of the variation in inherited risk of glioma is likely to be explained by combinations of common low risk variants. The established relationship between glioma risk and exposure to ionizing radiation led us to examine whether variants in the DNA repair genes contribute to disease susceptibility. We evaluated 1127 haplotype-tagging single-nucleotide polymorphisms (SNPs) supplemented with 388 putative functional SNPs to capture most of the common variation in 136 DNA repair genes, in five unique case–control series from four different countries (1013 cases, 1016 controls). We identified 16 SNPs associated with glioma risk at the 1% significance level. The highest association observed across the five independent case–control datasets involved rs243356, which maps to intron 3 of CHAF1A (trend odds ratio, 1.32; 95% confidence interval 1.14–1.54; P = 0.0002; false-positive report probability = 0.055, based on a prior probability of 0.01). Our results provide additional support for the hypothesis that low penetrance variants contribute to the risk of developing glioma and suggest that a genetic variant located in or around the CHAF1A gene contributes to disease risk.
  •  
45.
  • Bicak, Mesude, et al. (författare)
  • Prostate cancer risk SNP rs10993994 is a trans-eQTL for SNHG11 mediated through MSMB
  • 2020
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 29:10, s. 1581-1591
  • Tidskriftsartikel (refereegranskat)abstract
    • How genome-wide association studies-identified single-nucleotide polymorphisms (SNPs) affect remote genes remains unknown. Expression quantitative trait locus (eQTL) association meta-analysis on 496 prostate tumor and 602 normal prostate samples with 117 SNPs revealed novel cis-eQTLs and trans-eQTLs. Mediation testing and colocalization analysis demonstrate that MSMB is a cis-acting mediator for SNHG11 (P < 0.01). Removing rs10993994 in LNCaP cell lines by CRISPR/Cas9 editing shows that the C-allele corresponds with an over 100-fold increase in MSMB expression and 5-fold increase in SNHG11 compared with the T-allele. Colocalization analysis confirmed that the same set of SNPs associated with MSMB expression is associated with SNHG11 expression (posterior probability of shared variants is 66.6% in tumor and 91.4% in benign). These analyses further demonstrate variants driving MSMB expression differ in tumor and normal, suggesting regulatory network rewiring during tumorigenesis.
  •  
46.
  •  
47.
  • Birve, Anna, et al. (författare)
  • A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:21, s. 4201-4206
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 145 mutations have been found in the gene CuZn-Superoxide dismutase (SOD1) in patients with amyotrophic lateral sclerosis (ALS). The vast majority are easily detected nucleotide mutations in the coding region. In a patient from a Swiss ALS family with half-normal erythrocyte SOD1 activity, exon flanking sequence analysis revealed a novel thymine to guanine mutation 7 bp upstream of exon 4 (c.240-7T>G). The results of splicing algorithm analyses were ambiguous, but five out of seven analysis tools suggested a potential novel splice site that would add six new base pairs to the mRNA. If translated, this mRNA would insert Ser and Ile between Glu78 and Arg79 in the SOD1 protein. In fibroblasts from the patient, the predicted mutant transcript and the mutant protein were both highly expressed, and despite the location of the insertion into the metal ion-binding loop IV, the SOD1 activity appeared high. In erythrocytes, which lack protein synthesis and are old compared with cultured fibroblasts, both SOD1 protein and enzymic activity was 50% of controls. Thus, the usage of the novel splice site is near 100%, and the mutant SOD1 shows the reduced stability typical of ALS-associated mutant SOD1s. The findings suggests that this novel intronic mutation is causing the disease and highlights the importance of wide exon-flanking sequencing and transcript analysis combined with erythrocyte SOD1 activity analysis in comprehensive search for SOD1 mutations in ALS. We find that there are potentially more SOD1 mutations than previously reported.
  •  
48.
  • Björkqvist, Maria, et al. (författare)
  • Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington's disease
  • 2006
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 15:10, s. 1713-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is characterized by a triad of motor, psychiatric and cognitive symptoms. Although many of these symptoms are likely to be related to central nervous system pathology, others may be due to changes in peripheral tissues. The R6/2 mouse, a transgenic model of HD expressing exon 1 of the human HD gene, develops progressive alterations in the hypothalamic-pituitary-adrenal axis, reminiscent of a Cushing-like syndrome. We observed muscular atrophy, reduced bone mineral density, abdominal fat accumulation and insulin resistance in the mice. All these changes could be consequences of increased glucocorticoid levels. Indeed, hypertrophy of the adrenal cortex and a progressive increase in serum and urine corticosterone levels were found in R6/2 mice. In addition, the intermediate pituitary lobe was markedly enlarged and circulating adreno-corticotrophic hormone (ACTH) increased. Under normal conditions dopamine represses the ACTH expression. In the R6/2 mice, however, the expression of pituitary dopamine D2 receptors was reduced by half, possibly explaining the increase in ACTH. Urinary samples from 82 HD patients and 68 control subjects were analysed for cortisol: in accord with the observations in the R6/2 mice, urinary cortisol increased in parallel with disease progression. This progressive increase in cortisol may contribute to the clinical symptoms, such as muscular wasting, mood changes and some of the cognitive deficits that occur in HD.
  •  
49.
  • Björkqvist, Maria, et al. (författare)
  • The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient {beta}-cell mass and exocytosis.
  • 2005
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 14:5, s. 565-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes frequently develops in Huntington's disease (HD) patients and in transgenic mouse models of HD such as the R6/2 mouse. The underlying mechanisms have not been clarified. Elucidating the pathogenesis of diabetes in HD would improve our understanding of the molecular mechanisms involved in HD neuropathology. With this aim, we examined our colony of R6/2 mice with respect to glucose homeostasis and islet function. At week 12, corresponding to end-stage HD, R6/2 mice were hyperglycemic and hypoinsulinemic and failed to release insulin in an intravenous glucose tolerance test. In vitro, basal and glucose-stimulated insulin secretion was markedly reduced. Islet nuclear huntingtin inclusions increased dramatically over time, predominantly in ß-cells. ß-cell mass failed to increase normally with age in R6/2 mice. Hence, at week 12, ß-cell mass and pancreatic insulin content in R6/2 mice were 35±5 and 16±3% of that in wild-type mice, respectively. The normally occurring replicating cells were largely absent in R6/2 islets, while no abnormal cell death could be detected. Single cell patch-clamp experiments revealed unaltered electrical activity in R6/2 ß-cells. However, exocytosis was virtually abolished in ß- but not in {alpha}-cells. The blunting of exocytosis could be attributed to a 96% reduction in the number of insulin-containing secretory vesicles. Thus, diabetes in R6/2 mice is caused by a combination of deficient ß-cell mass and disrupted exocytosis.
  •  
50.
  • Blauw, Hylke M, et al. (författare)
  • A large genome scan for rare CNVs in amyotrophic lateral sclerosis
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford Journals. - 0964-6906 .- 1460-2083. ; 19:20, s. 4091-4099
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease selectively affecting motor neurons in the brain and spinal cord. Recent genome-wide association studies (GWASs) have identified several common variants which increase disease susceptibility. In contrast, rare copy-number variants (CNVs), which have been associated with several neuropsychiatric traits, have not been studied for ALS in well-powered study populations. To examine the role of rare CNVs in ALS susceptibility, we conducted a CNV association study including over 19,000 individuals. In a genome-wide screen of 1875 cases and 8731 controls, we did not find evidence for a difference in global CNV burden between cases and controls. In our association analyses, we identified two loci that met our criteria for follow-up: the DPP6 locus (OR = 3.59, P = 6.6 × 10(-3)), which has already been implicated in ALS pathogenesis, and the 15q11.2 locus, containing NIPA1 (OR = 12.46, P = 9.3 × 10(-5)), the gene causing hereditary spastic paraparesis type 6 (HSP 6). We tested these loci in a replication cohort of 2559 cases and 5887 controls. Again, results were suggestive of association, but did not meet our criteria for independent replication: DPP6 locus: OR = 1.92, P = 0.097, pooled results: OR = 2.64, P = 1.4 × 10(-3); NIPA1: OR = 3.23, P = 0.041, pooled results: OR = 6.20, P = 2.2 × 10(-5)). Our results highlight DPP6 and NIPA1 as candidates for more in-depth studies. Unlike other complex neurological and psychiatric traits, rare CNVs with high effect size do not play a major role in ALS pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 458
Typ av publikation
tidskriftsartikel (453)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (454)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Lindblom, A (18)
Hall, P (16)
Southey, MC (16)
Haiman, CA (16)
Giles, GG (15)
Hopper, JL (15)
visa fler...
Couch, FJ (14)
Henderson, BE (14)
Czene, K (13)
Dunning, AM (13)
Cox, A (13)
Chang-Claude, J (13)
Benitez, J. (12)
Groop, Leif (12)
Margolin, S (12)
Fasching, PA (12)
Bojesen, SE (12)
Le Marchand, L (12)
Dennis, J (11)
Andersen, Peter M. (11)
Milne, RL (11)
Andrulis, IL (11)
Beckmann, MW (11)
Peto, J (11)
Burwinkel, B (11)
aut (10)
Zheng, W. (10)
Brenner, H (10)
Riboli, Elio (10)
Nordestgaard, BG (10)
Olson, JE (10)
Severi, G (10)
Kere, J (9)
Peterlongo, P (9)
Melander, Olle (9)
Chanock, Stephen J (9)
Albanes, Demetrius (9)
Michailidou, K (9)
Brauch, H (9)
Hamann, U (9)
Schmidt, MK (9)
Broeks, A (9)
Ekici, AB (9)
Shen, CY (9)
Radice, P (9)
Mannermaa, A (9)
Kosma, VM (9)
Lambrechts, D (9)
Schumacher, F (9)
Devilee, P (9)
visa färre...
Lärosäte
Karolinska Institutet (233)
Lunds universitet (102)
Uppsala universitet (98)
Umeå universitet (56)
Göteborgs universitet (53)
Linköpings universitet (16)
visa fler...
Stockholms universitet (14)
Marie Cederschiöld högskola (6)
Örebro universitet (4)
Jönköping University (2)
Högskolan i Skövde (2)
Linnéuniversitetet (2)
Kungliga Tekniska Högskolan (1)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
Gymnastik- och idrottshögskolan (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (458)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (223)
Naturvetenskap (39)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy