SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0969 9961 "

Sökning: L773:0969 9961

  • Resultat 1-50 av 197
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gloveli, T, et al. (författare)
  • Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABA(B) autoreceptors in layer III of the entorhinal cortex
  • 2003
  • Ingår i: Neurobiology of Disease. - 0969-9961. ; 13:3, s. 203-212
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the effect of kindling, a model of temporal lobe epilepsy, on the frequency-dependent information transfer from the entorhinal cortex to the hippocampus in vitro. In control rats repetitive synaptic activation of layer III projection cells resulted in a frequency dependent depression of the synaptic transfer of action potentials to the hippocampus. One-to-two-days after kindling this effect was strongly reduced. Although no substantial change in synaptic inhibition upon single electrical stimulation was detected in kindled rats, there was a significant depression in the prolonged inhibition following high frequency stimulation. In kindled animals, paired-pulse depression (PPD) of stimulus-evoked IPSCs in layer III neurons was significantly stronger than in control rats. The increase of PPD is most likely caused by an increased presynaptic GABA(B) receptor-mediated autoinhibition. In kindled animals activation of presynaptic GABA(B) receptors by baclofen (10 muM) suppressed monosynaptic IPSCs significantly more than in control rats. In contrast, activation of postsynaptic GABA(B) receptors by baclofen was accompanied by comparable changes of the membrane conductance in both animal groups. Thus, in kindled animals activation of the layer III-CA1 pathway is facilitated by an increased GABA(B) receptor-mediated autoinhibition leading to an enhanced activation of the monosynaptic EC-CA1 pathway. (C) 2003 Elsevier Science (USA). All rights reserved.
  •  
2.
  • O'Malley, KL, et al. (författare)
  • Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons
  • 2003
  • Ingår i: Neurobiology of Disease. - 0969-9961. ; 14:1, s. 43-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases such as Parkinson's disease exhibit complex features of cell death reflecting both the primary lesion as well as surrounding interconnected events. Because Bcl-2 family members are intimately involved in cell death processes, the present Study used dopaminergic cultures from control, Bcl-2-overexpressing, or Bax-deficient genetically modified animals to determine the in situ effects of parkinsonism-inducing toxins. MPP+-mediated cell death was attenuated by Bcl-2 but did not require Bax. Accordingly, mutations or deletions within Bax heterodimerization domains, BH1, BH2, or BH3 had no effect on Bcl-2's ability to prevent cell death. whereas the cell-death suppressing BH4 domain did. Although both staurosporine and 6-OHDA induced apoptosis, overexpression of Bcl-2 only rescued cells from programmed cell death induced by staurosporine. Thus, differential cell death pathways are associated with these cytotoxic signals in primary models of Parkinson's disease. (C) 2003 Elsevier Science (USA). All rights reserved.
  •  
3.
  •  
4.
  • Ajmone-Cat, Maria Antonietta, et al. (författare)
  • Prostaglandin E(2) and BDNF levels in rat hippocampus are negatively correlated with status epilepticus severity: No impact on survival of seizure-generated neurons.
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 23:1, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Partial and generalized status epilepticus (pSE and gSE) trigger the same level of progenitor cell proliferation in adult dentate gyrus, but survival of new neurons is poor after gSE. Here, we show markedly elevated levels of prostaglandin E-2 (PGE(2)) and brain-derived neurotrophic factor (BDNF) in rat hippocampal formation at 7 days following pSE but not gSE. Administration of the cyclooxygenase (COX) inhibitor flurbiprofen for 1 week, starting at day 8 post-SE, abated PGE(2) and decreased BDNF levels, but did not affect survival of new neurons a weeks later. Thus, high PGE(2) and BDNF levels induced by pSE are probably not of major importance for survival of new neurons during the first days after formation. We propose that they modulate other aspects of synaptic and cellular plasticity, and thereby may influence epileptogenesis.
  •  
5.
  • Aldrin-Kirk, Patrick, et al. (författare)
  • Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum
  • 2018
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 109, s. 148-162
  • Tidskriftsartikel (refereegranskat)abstract
    • The intricate balance between dopaminergic and cholinergic neurotransmission in the striatum has been thoroughly difficult to characterize. It was initially described as a seesaw with a competing function of dopamine versus acetylcholine. Recent technical advances however, have brought this view into question suggesting that the two systems work rather in concert with the cholinergic interneurons (ChIs) driving dopamine release. In this study, we have utilized two transgenic Cre-driver rat lines, a choline acetyl transferase ChAT-Cre transgenic rat and a novel double-transgenic tyrosine hydroxylase TH-Cre/ChAT-Cre rat to further elucidate the role of striatal ChIs in normal motor function and in Parkinson's disease. Here we show that selective and reversible activation of ChIs using chemogenetic (DREADD) receptors increases locomotor function in intact rats and potentiate the therapeutic effect of L-DOPA in the rats with lesions of the nigral dopamine system. However, the potentiation of the L-DOPA effect is accompanied by an aggravation of L-DOPA induced dyskinesias (LIDs). These LIDs appear to be driven primarily through the indirect striato-pallidal pathway since the same effect can be induced by the D2 agonist Quinpirole. Taken together, the results highlight the intricate regulation of balance between the two output pathways from the striatum orchestrated by the ChIs.
  •  
6.
  • Ali, Idrish, et al. (författare)
  • Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 74, s. 194-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal lobe seizures lead to an acute inflammatory response in the brain primarily characterized by activation of parenchymal microglial cells. Simultaneously, degeneration of pyramidal cells and interneurons is evident together with a seizure-induced increase in the production of new neurons within the dentate gyrus of the hippocampus. We have previously shown a negative correlation between the acute seizure-induced inflammation and the survival of newborn hippocampal neurons. Here, we aimed to evaluate the role of the fractalkine-CX3CR1 pathway for these acute events. Fractalkine is a chemokine expressed by both neurons and glia, while its receptor, CX3CR1 is primarily expressed on microglia. Electrically-induced partial status epilepticus (SE) was induced in adult rats through stereotaxically implanted electrodes in the hippocampus. Recombinant rat fractalkine or CX3CR1 antibody was infused intraventricularly during one week post-SE. A significant increase in the expression of CX3CR1, but not fractalkine, was observed in the dentate gyrus at one week. CX3CR1 antibody treatment resulted in a reduction in microglial activation, neurodegeneration, as well as neuroblast production. In contrast, fractalkine treatment had only minor effects. This study provides evidence for a role of the fractalkine-CX3CR1 signaling pathway in seizure-induced microglial activation and suggests that neuroblast production following seizures may partly occur as a result of microglial activation.
  •  
7.
  •  
8.
  •  
9.
  • Andersson, M, et al. (författare)
  • Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease.
  • 1999
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 6:6, s. 461-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Rats with unilateral dopamine-denervating lesions sustained a 3-week treatment with a daily l-DOPA dose that is in the therapeutic range for Parkinson's disease. In most of the treated animals, chronic l-DOPA administration gradually induced abnormal involuntary movements affecting cranial, trunk, and limb muscles on the side of the body contralateral to the lesion. This effect was paralleled by an induction of FosB-like immunoreactive proteins in striatal subregions somatotopically related to the types of movements that had been elicited by l-DOPA. The induced proteins showed both regional and cellular colocalization with prodynorphin mRNA. Intrastriatal infusion of fosB antisense inhibited the development of dyskinetic movements that were related to the striatal subregion targeted and produced a local specific downregulation of prodynorphin mRNA. These data provide compelling evidence of a causal role for striatal fosB induction in the development of l-DOPA-induced dyskinesia in the rat and of a positive regulation of prodynorphin gene expression by FosB-related transcription factors.
  •  
10.
  •  
11.
  • Andreoli, Laura, et al. (författare)
  • Distinct patterns of dyskinetic and dystonic features following D1 or D2 receptor stimulation in a mouse model of parkinsonism
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA-induced dyskinesia (LID) is a significant complication of dopamine replacement therapy in Parkinson's disease (PD), and the specific role of different dopamine receptors in this disorder is poorly understood. We set out to compare patterns of dyskinetic behaviours induced by the systemic administration of L-DOPA and D1 or D2 receptor (D1R, D2R) agonists in mice with unilateral 6-hydroxydopamine lesions. Mice were divided in four groups to receive increasing doses of L-DOPA, a D1R agonist (SKF38393), a D2/3 agonist (quinpirole), or a selective D2R agonist (sumanirole). Axial, limb and orofacial abnormal involuntary movements (AIMs) were rated using a well-established method, while dystonic features were quantified in different body segments using a new rating scale. Measures of abnormal limb and trunk posturing were extracted from high-speed videos using a software for markerless pose estimation (DeepLabCut). While L-DOPA induced the full spectrum of dyskinesias already described in this mouse model, SKF38393 induced mostly orofacial and limb AIMs. By contrast, both of the D2-class agonists (quinpirole, sumanirole) induced predominantly axial AIMs. Dystonia ratings revealed that these agonists elicited marked dystonic features in trunk/neck, forelimbs, and hindlimbs, which were overall more severe in sumanirole-treated mice. Accordingly, sumanirole induced pronounced axial bending and hindlimb divergence in the automated video analysis. In animals treated with SKF38393, the only appreciable dystonic-like reaction consisted in sustained tail dorsiflexion and stiffness. We next compared the effects of D1R or D2R selective antagonists in L-DOPA-treated mice, where only the D2R antagonist had a significant effect on dystonic features. Taken together these results indicate that the dystonic components of LID are predominantly mediated by the D2R.
  •  
12.
  • Andsberg, Gunnar, et al. (författare)
  • Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats.
  • 2002
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 9:2, s. 187-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were continuously delivered to the striatum at biologically active levels via recombinant adeno-associated viral (rAAV) gene transfer 4-5 weeks prior to 30 min of middle cerebral artery occlusion (MCAO). The magnitude of the deficits in a battery of behavioral tests designed to assess striatal function was highly correlated to the extent of ischemic damage determined by unbiased stereological estimations of striatal neuron numbers. The delivery of neurotrophins lead to mild functional improvements in the ischemia-induced motor impairments assessed 3-5 weeks after the insult, in agreement with a small but significant increase of the survival of dorsolateral striatal neurons. Detailed phenotypic analysis demonstrated that the parvalbumin-containing interneurons were spared to a greater extent by the neurotrophin treatment as compared to the projection neurons, which agreed with the specificity for interneuron transduction by the rAAV vector. These data show the advantage of the never previously performed combination of precise quantification of the ischemia-induced neuropathology along with detailed behavioural analysis for assessing neuroprotection after stroke. We observe that intrastriatal delivery of NGF and BDNF using a viral vector system can mitigate, albeit only moderately, neuronal death following stroke, which leads to detectable functional sparing. (c)2002 Elsevier Science (USA).
  •  
13.
  •  
14.
  • Annelies, Nonneman, et al. (författare)
  • Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Neurobiology of Disease. - : Academic Press. - 0969-9961 .- 1095-953X. ; 119, s. 26-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1(G93A) mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1(G93A) mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1(G93A) mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
  •  
15.
  • Arkan, Sertan, et al. (författare)
  • DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson's disease
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 158
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: α-synuclein (α-syn) aggregation can lead to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) as invariably observed in patients with Parkinson's Disease (PD). The co-chaperone DNAJB6 has previously been found to be expressed at higher levels in PD patients than in control subjects and was also found in Lewy bodies. Our previous experiments showed that knock out of DNAJB6 induced α-syn aggregation in cellular level. However, effects of overexpression of DNAJB6 against α-syn aggregation remains to be investigated. Methods: We used a α-syn CFP/YFP HEK293 FRET cell line to investigate the effects of overexpression of DNAJB6 in cellular level. α-syn aggregation was induced by transfection α-syn preformed fibrils (PPF), then was measured FRET analysis. We proceeded to investigate if DNAJB6b can impair α-syn aggregation and toxicity in an animal model and used adeno associated vira (AAV6) designed to overexpress of human wt α-syn, GFP-DNAJB6 or GFP in rats. These vectors were injected into the SNpc of the rats, unilaterally. Rats injected with vira to express α-syn along with GFP in the SNpc where compared to rats expressing α-syn and GFP-DNAJB6. We evaluated motor functions, dopaminergic cell death, and axonal degeneration in striatum. Results: We show that DNAJB6 prevent α-syn aggregation induced by α-syn PFF's, in a cell culture model. In addition, we observed α-syn overexpression caused dopaminergic cell death and that this was strongly reduced by co-expression of DNAJB6b. The lesion caused by α-syn overexpression resulted in behavior deficits, which increased over time as seen in stepping test, which was rescued by co-expression of DNAJB6b. Conclusion: We here demonstrate for the first time that DNAJB6 is a strong suppressor of α-syn aggregation in cells and in animals and that this results in a suppression of dopaminergic cell death and PD related motor deficits in an animal model of PD.
  •  
16.
  •  
17.
  •  
18.
  • Berglind, Fredrik, et al. (författare)
  • Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 65, s. 133-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchronized activity is common during various physiological operations but can culminate in seizures and consequently in epilepsy in pathological hyperexcitable conditions in the brain. Many types of seizures are not possible to control and impose significant disability for patients with epilepsy. Such intractable epilepsy cases are often associated with degeneration of inhibitory interneurons in the cortical areas resulting in impaired inhibitory drive onto the principal neurons. Recently emerging optogenetic technique has been proposed as an alternative approach to control such seizures but whether it may be effective in situations where inhibitory processes in the brain are compromised has not been addressed. Here we used pharmacological and optogenetic techniques to block inhibitory neurotransmission and induce epileptiform activity in vitro and in vivo. We demonstrate that NpHR-based optogenetic hyperpolarization and thereby inactivation of a principal neuronal population in the hippocampus is effectively attenuating seizure activity caused by disconnected network inhibition both in vitro and in vivo. Our data suggest that epileptiform activity in the hippocampus caused by impaired inhibition may be controlled by optogenetic silencing of principal neurons and potentially can be developed as an alternative treatment for epilepsy.
  •  
19.
  • Bez, Francesco, et al. (författare)
  • Dramatic differences in susceptibility to L-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion
  • 2016
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 94, s. 213-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice with striatal 6-hydroxydopamine (6-OHDA) lesions are widely used as a model to study the effects of neurorestorative, symptomatic, or antidyskinetic treatments for Parkinson's disease (PD). The standard praxis is to utilize young adult mice with relatively acute 6-OHDA lesions. However, long post-lesion intervals may be required for longitudinal studies of treatment interventions, and the long-term stability of the model's behavioral and cellular phenotypes is currently unknown. In this study, C57Bl/6J mice sustained unilateral striatal 6-OHDA lesions at approx. 2 months of age, and were allowed to survive for 1, 10 or 22 months. Another group of mice sustained the lesion at the age of 23 months and survived for one month thereafter. Baseline and drug-induced motor behaviors were examined using a battery of tests (utilizing also a novel video-based methodology). The extent of nigral dopamine cell loss was stable across post-lesion intervals and ages. However, a prominent sprouting of both dopaminergic and serotonergic fibers was detected in the caudate-putamen in animals that survived until 10 and 22 months post-lesion. This phenomenon was associated with a recovery of baseline motor deficits, and with a lack of dyskinetic responses upon treatment with either L-DOPA or apomorphine. By contrast, mice sustaining the lesion at 23 months of age showed a striking susceptibility to the dyskinetic effects of both L-DOPA and apomorphine, which was associated with a pronounced drug-induced upregulation of ∆FosB in the ventrolateral striatum. The results reveal a remarkable compensatory capacity of a damaged nigrostriatal pathway in ageing mice, and how this impacts on the response to dopaminergic therapies for PD.
  •  
20.
  • Björklund, Anders, et al. (författare)
  • Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease
  • 1997
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 4:3-4, s. 186-200
  • Forskningsöversikt (refereegranskat)abstract
    • Intrastriatal 6-hydroxydopamine injections in rats induce partial lesions of the nigrostriatal dopamine (DA) system which are accompanied by a delayed and protracted degeneration of DA neurons within the substantia nigra. By careful selection of the dose and placement of the toxin it is possible to obtain reproducible and regionally defined partial lesions which are well correlated with stable functional deficits, not only in drug-induced behaviors but also in spontaneous motoric and sensorimotoric function, which are analogous to the symptoms seen in patients during early stages of Parkinson's disease. The intrastriatal partial lesion model has proved to be particularly useful for studies on the mechanisms of action of neurotrophic factors since it offers opportunities to investigate both protection of degenerating DA neurons during the acute phases after the lesion and stimulation of regeneration and functional recovery during the chronic phase of the postlesion period when a subset of the spared nigral DA neurons persist in an atrophic and dysfunctional state. In the in vivo experiments performed in this model glial cell line-derived neurotrophic factor (GDNF) has been shown to exert neurotrophic effects both at the level of the cell bodies in the substantia nigra and at the level of the axon terminals in the striatum. Intrastriatal administration of GDNF appears to be a particularly effective site for induction of axonal sprouting and regeneration accompanied by recovery of spontaneous sensorimotor behaviors in the chronically lesioned nigrostriatal dopamine system.
  •  
21.
  • Bourdenx, Mathieu, et al. (författare)
  • Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson's disease and L-DOPA-induced dyskinesia
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 62, s. 307-312
  • Tidskriftsartikel (refereegranskat)abstract
    • A role for enhanced peptidergic transmission, either opioidergic or not, has been proposed for the generation of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) on the basis of in situ hybridization studies showing that striatal peptidergic precursor expression consistently correlates with LID severity. Few studies, however, have focused on the actual peptides derived from these precursors. We used mass-spectrometry to study peptide profiles in the putamen and globus pallidus (internalis and externalis) collected from 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine treated macaque monkeys, acutely or chronically treated with L-DOPA. We identified that parkinsonian and dyskinetic states are associated with an abnormal production of proenkephalin-, prodynorphin- and protachykinin-1-derived peptides in both segments of the globus pallidus. Moreover, we report that peptidergic processing is dopamine-state dependent and highly structure-specific, possibly explaining the failure of previous clinical trials attempting to rectify abnormal peptidergic transmission.
  •  
22.
  •  
23.
  • Buck, Kerstin, et al. (författare)
  • Ser129 phosphorylation of endogenous α-synuclein induced by overexpression of polo-like kinases 2 and 3 in nigral dopamine neurons is not detrimental to their survival and function.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 78:Mar 25, s. 100-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorylation of the α-synuclein (α-syn) protein at Ser129 [P(S129)-α-] was found to be the most abundant form in intracellular inclusions in brains from Parkinson's disease (PD) patients. This finding suggests that P(S129)-α-syn plays a central role in the pathogenesis of PD. However, it is at present unclear whether P(S129)-α-syn is pathogenic driving the neurodegenerative process. Rodent studies using neither the phosphomimics of human α-syn nor co-expression of human wild-type α-syn and kinases phosphorylating α-syn at Ser129 gave consistent results. One major concern in interpreting these findings is that human α-syn was expressed above physiological levels inducing neurodegeneration in rat nigral neurons. In order to exclude this confounding factor, we took a different approach and increased the phosphorylation level of endogenous α-syn. For this purpose, we took advantage of recombinant adeno-associated viral (rAAV) vectors to deliver polo-like kinase 2 (PLK2) or PLK3 in the substantia nigra and investigated whether increased levels of P(S129)-α-syn compromised the function and survival of nigral dopaminergic neurons. Interestingly, we observed that hyperphosphorylated α-syn did not induce nigral dopaminergic cell death, as assessed at 1 and 4months. Furthermore, histological analysis did not show any accumulation of α-syn protein or formation of inclusions. Using in vivo microdialysis, we found that the only measurable functional alteration was the depolarisation-induced release of dopamine, while the in vivo synthesis rate of DOPA and dopamine baseline release remained unaltered. Taken together, our results suggest that phosphorylation of α-syn at Ser129 does not confer a toxic gain of function per se.
  •  
24.
  • Burguillos Garcia, Miguel, et al. (författare)
  • Apoptosis-inducing factor mediates dopaminergic cell death in response to lps-induced inflammatory stimulus Evidence in Parkinson's disease patients.
  • 2011
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 41, s. 177-188
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that intranigral lipopolysaccharide (LPS) injection, which provokes specific degeneration of DA neurons, induced caspase-3 activation in the rat ventral mesencephalon, which was mostly associated with glial cells. In contrast, nigral DA neurons exhibited AIF nuclear translocation in response to LPS. A significant decrease of the Bcl-2/Bax ratio in nigral tissue after LPS injection was observed. We next developed an in vitro co-culture system with the microglial BV2 and the DA neuronal MN9D murine cell lines. The silencing of caspase-3 or AIF by small interfering RNAs exclusively in the DA MN9D cells demonstrated the key role of AIF in the LPS-induced death of DA cells. In vivo chemical inhibition of caspases and poly(ADP-ribose)polymerase-1, an upstream regulator of AIF release and calpain, proved the central role of the AIF-dependent pathway in LPS-induced nigral DA cell death. We also observed nuclear translocation of AIF in the ventral mesencephalon of Parkinson's disease subjects.
  •  
25.
  •  
26.
  •  
27.
  • Carlsson, Thomas, et al. (författare)
  • Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia.
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 21:3, s. 657-668
  • Tidskriftsartikel (refereegranskat)abstract
    • In two recent double-blind clinical trials of fetal ventral mesencephalic cell transplants into the striatum in patients with Parkinson's disease (PD), a significant proportion of the grafted patients developed dyskinetic side effects, which were not seen in the sham operated patients. Comparison between dyskinetic and non-dyskinetic grafted patients in one of the trials suggested that an uneven pattern of striatal reinnervation might be the leading cause of the dyskinesias. Here, we studied the importance of graft placement for the development of dyskinesias in parkinsonian rats. Abnormal involuntary movements resembling peak-dose dyskinesias seen in PD patients were induced by daily injections of L-DOPA for 6 weeks. The dyskinetic animals received about 130.000 fetal ventral mesencephalic cells as single grafts placement in the rostral or the caudal aspect of the head of striatum. The results show that grafts placed in the caudal, but not the rostral, part are effective in reducing the L-DOPA-induced limb and orolingual dyskinesia, predominantly seen as hyperkinesia. The same grafts, however, also induced a new type of dyskinetic behavior after activation with amphetamine, which were not seen in non-grafted lesion controls. The severity of these abnormal involuntary movements was significantly correlated with a higher graft-derived dopaminergic reinnervation in the caudal aspect of the head of striatum relative to the rostral part. The results indicate that graft-induced dyskinesias in PD patients may be linked to single, small graft deposits that provide an uneven, patchy reinnervation of the putamen.
  •  
28.
  •  
29.
  • Cederfjäll, Erik, et al. (författare)
  • Key factors determining the efficacy of gene therapy for continuous DOPA delivery in the Parkinsonian brain
  • 2012
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 48:2, s. 222-227
  • Forskningsöversikt (refereegranskat)abstract
    • L-DOPA is currently the standard treatment for alleviating the motor symptoms in Parkinson's disease. The therapeutic efficacy, however, diminishes as the disease progresses. It has been suggested that the beneficial effect of L-DOPA could be reestablished by changing the mode of administration. Indeed, continuous delivery of L-DOPA has been shown to be an effective way to circumvent many of the side effects seen with traditional oral administration, which results in an intermittent supply of the dopamine precursor to the brain. However, all currently tested continuous dopaminergic stimulation approaches rely on peripheral administration. This is not ideal since it gives rise to off target effects and is difficult to maintain long-term. Thus, there is an unmet need for an effective continuous administration method with an acceptable side effect profile. Viral-mediated gene therapy is a promising alternative paradigm that can meet this demand. Encouraging preclinical studies in animal models of Parkinson's disease showed therapeutic efficacy after expression of the genes encoding the enzymes required for biosynthesis of dopamine. Although the first phase I clinical trials using these approaches have been conducted, clear positive data in placebo controlled efficacy studies is still lacking. We are now at a critical junction and need to carefully review the preclinical data from the clinical translation perspective and identify the key factors that will determine the potential for success in gene therapy for Parkinson's disease. (C) 2011 Published by Elsevier Inc.
  •  
30.
  •  
31.
  • Cenci Nilsson, Angela, et al. (författare)
  • Rodent models of impulsive compulsive behaviors in Parkinson's disease: how far have we reached?
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 82:aug 29, s. 561-573
  • Forskningsöversikt (refereegranskat)abstract
    • There is increasing awareness that the medications used to treat the motor symptoms of Parkinson's disease (PD) contribute to the development of behavioral addictions, which have been clinically defined as impulsive compulsive behaviors (ICBs). These features include pathological gambling, compulsive sexual behavior, binge eating, compulsive shopping, excessive hobbyism or punding, and the excessive use of dopaminergic medication. ICBs frequently have devastating effects on the social and occupational function of the affected individuals as well as their families. Although ICBs are an important clinical problem in PD, the number of studies in which these symptoms have been modeled in rodents is still limited. This may depend on uncertainties regarding, on one hand, the pathophysiology of these behaviors and, on the other hand, the experimental paradigms with which similar features can be induced in rodents. To help compose these uncertainties, we will here review the characteristics of ICBs in PD patients and then describe behavioral methods to approximate them in rodents. We will discuss both the challenges and the possibilities of applying these methods to animals with PD-like lesions, and review the recent progress made to this end. We will finally highlight important questions deserving further investigation. Rodent models having both face validity and construct validity to parkinsonian ICBs will be essential to further pathophysiological and therapeutic investigations into this important area.
  •  
32.
  • Chapman, Katie, et al. (författare)
  • Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 83:Aug 20, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts towards the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.
  •  
33.
  •  
34.
  • Cisbani, G, et al. (författare)
  • Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 82, s. 430-444
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuroprotective properties of cystamine identified in pre-clinical studies have fast-tracked this compound to clinical trials in Huntington's disease, showing tolerability and benefits on motor symptoms. We tested whether cystamine could have such properties in a Parkinson's disease murine model and now provide evidence that it can not only prevent the neurodegenerative process but also can reverse motor impairments created by a 6-hydroxydopamine lesion 3weeks post-surgery. Importantly, we report that cystamine has neurorestorative properties 5weeks post-lesion as seen on the number of nigral dopaminergic neurons which is comparable with treatments of cysteamine, the reduced form of cystamine used in the clinic, as well as rasagiline, increasingly prescribed in early parkinsonism. All three compounds induced neurite arborization of the remaining dopaminergic cells which was further confirmed in ex vivo dopaminergic explants derived from Pitx3-GFP mice. The disease-modifying effects displayed by cystamine/cysteamine would encourage clinical testing.
  •  
35.
  • Correa, Fernando, et al. (författare)
  • Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: Restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β.
  • 2011
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 44:1, s. 142-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Histone deacetylase (HDAC) inhibitors have promising neuroprotective and anti-inflammatory properties although the exact mechanisms are unclear. We have earlier showed that factors from lipopolysaccharide (LPS)-activated microglia can down-regulate the astroglial nuclear factor-erythroid 2-related factor 2 (Nrf2)-inducible anti-oxidant defence. Here we have evaluated whether histone modification and activation of GSK3β are involved in these negative effects of microglia. Microglia were cultured for 24h in serum-free culture medium to achieve microglia-conditioned medium from non-activated cells (MCM(0)) or activated with 10ng/mL of LPS to produce MCM(10). Astrocyte-rich cultures treated with MCM(10) showed a time-dependent (0-72h) increase in astroglial HDAC activity that correlated with lower levels of acetylation of histones H3 and H4 and decreased levels of the transcription factor Nrf2 and γ-glutamyl cysteine ligase modulatory subunit (γGCL-M) protein levels. The HDAC inhibitors valproic acid (VPA) and trichostatin-A (TSA) elevated the histone acetylation levels, restored the Nrf2-inducible anti-oxidant defence and conferred protection from oxidative stress-induced (H(2)O(2)) death in astrocyte-rich cultures exposed to MCM(10). Inhibitors of GSK3β (lithium) and p38 MAPK (SB203580) signaling pathways restored the depressed histone acetylation and Nrf2-related transcription whereas an inhibitor of Akt (Ly294002) caused a further decrease in Nrf2-related transcription. In conclusion, the study shows that well tolerated drugs such as VPA and lithium can restore an inflammatory induced depression in the Nrf2-inducible antioxidant defence, possibly via normalised histone acetylation levels.
  •  
36.
  • Crittenden, Jill R., et al. (författare)
  • CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors
  • 2021
  • Ingår i: Neurobiology of Disease. - Maryland Heights, MO, United States : Academic Press. - 0969-9961 .- 1095-953X. ; 158
  • Tidskriftsartikel (refereegranskat)abstract
    • CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntingtons disease and levodopa-induced dyskinesia in Parkinsons disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the selfadministration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGIs therapeutic potential.
  •  
37.
  • Damenti, Martina, et al. (författare)
  • STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • The classic view of organelle cell biology is undergoing a constant revision fueled by the new insights unraveled by fluorescence nanoscopy, which enable sensitive, faster and gentler observation of specific proteins in situ. The endoplasmic reticulum (ER) is one of the most challenging structure to capture due the rapid and constant restructuring of fine sheets and tubules across the full 3D cell volume. Here we apply STED and parallelized 2D and 3D RESOLFT live imaging to uncover the tubular ER organization in the fine processes of neuronal cells with focus on mitochondria-ER contacts, which recently gained medical attention due to their role in neurodegeneration. Multi-color STED nanoscopy enables the simultaneous visualization of small transversal ER tubules crossing and constricting mitochondria all along axons and dendrites. Parallelized RESOLFT allows for dynamic studies of multiple contact sites within seconds and minutes with prolonged time-lapse imaging at similar to 50 nm spatial resolution. When operated in 3D super resolution mode it enables a new isotropic visualization of such contacts extending our understanding of the three-dimensional architecture of these packed structures in axons and dendrites.
  •  
38.
  • Darreh-Shori, T., et al. (författare)
  • Differential CSF butyrylcholinesterase levels in Alzheimer's disease patients with the ApoE ε4 allele in relation to cognitive function and cerebral glucose metabolism.
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 24:2, s. 326-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Butyrylcholinesterase (BuChE) is increased in the cerebral cortex of Alzheimer's disease (AD) patients, particularly those carrying ε4 allele of the apolipoprotein E gene (ApoE) and certain BuChE variants that predict increased AD risk and poor response to anticholinesterase therapy. We measured BuChE activity and protein level in CSF of eighty mild AD patients in relation to age, gender, ApoE ε4 genotype, cognition and cerebral glucose metabolism (CMRglc). BuChE activity was 23% higher in men than women ( p<0.03) and 40–60% higher in ApoE ε4 negative patients than in those carrying one or two ε4 alleles ( p<0.0004). CSF BuChE level correlated with cortical CMRglc. Patients with high to moderate CSF BuChE showed better cognitive function scores than others. We hypothesize that CSF BuChE varies inversely with BuChE in cortical amyloid plaques. Thus, low BuChE in a patient's CSF may predict extensive incorporation in neuritic plaques, increased neurotoxicity and greater central neurodegeneration.
  •  
39.
  •  
40.
  • Decressac, Mickael, et al. (författare)
  • Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons.
  • 2012
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 45:3, s. 939-953
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α-synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine neurons, that develop progressively over 2-4months after vector injection. As in human PD, nigral cell loss was preceded by degenerative changes in striatal axons and terminals, and the appearance of α-synuclein positive inclusions in dystrophic axons and dendrites, supporting the idea that α-synuclein-induced pathology hits the axons and terminals first and later progresses to involve also the cell bodies. The time-course of changes seen in the AAV-α-synuclein treated animals defines distinct stages of disease progression that matches the pre-symptomatic, early symptomatic, and advanced stages seen in PD patients. This model provides new interesting possibilities for studies of stage-specific pathologic mechanisms and identification of targets for disease-modifying therapeutic interventions linked to early or late stages of the disease.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  • Domert, Jakob, et al. (författare)
  • Spreading of Amyloid-β Peptides via Neuritic Cell-to-cell Transfer Is Dependent on Insufficient Cellular Clearance
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 65, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aβ) residues 1-42 (oAβ1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aβ-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aβ-isoform. Although different Aβ isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aβ can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aβ1-42 isoform, which further promotes cell-to-cell transfer; thus, oAβ1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.
  •  
45.
  • Doverhag, Christina, 1979, et al. (författare)
  • Galectin-3 contributes to neonatal hypoxic-ischemic brain injury.
  • 2010
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 38:1, s. 36-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation induced by hypoxia-ischemia (HI) contributes to the development of injury in the newborn brain. In this study we investigated the role of galectin-3, a novel inflammatory mediator, in the inflammatory response and development of brain injury in a mouse model for neonatal HI. Galectin-3 gene and protein expression was increased after injury and galectin-3 was located in activated microglia/macrophages. Galectin-3 deficient mice (gal3-/-) were protected from injury particularly in hippocampus and striatum. Microglia accumulation was increased in the gal3-/-mice but accompanied by decreased levels of total matrix metalloproteinase (MMP)-9 and nitrotyrosine. The protection and increase in microglial infiltration was more pronounced in male gal3-/-mice. Trophic factors and apoptotic markers did not significantly differ between groups. In conclusion, galectin-3 contributes to neonatal HI injury particularly in male mice. Our results indicate that galectin-3 exerts its effect by modulating the inflammatory response.
  •  
46.
  • Doverhag, Christina, 1979, et al. (författare)
  • Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice
  • 2008
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 31:1, s. 133-44
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Inflammation and reactive oxygen species (ROS) are important in the development of perinatal brain injury. The ROS-generating enzyme NADPH oxidase (Nox2) is present in inflammatory cells and contributes to brain injury in adult animal models. HYPOTHESIS: NADPH oxidase contributes to ROS formation and development of injury in the immature brain and inhibition of NADPH oxidase attenuates perinatal brain injury. METHODS: We used animal models of term hypoxia-ischemia (HI) (P9 mice) as well as ibotenate-induced excitotoxic injury (P5 mice) mimicking features of periventricular leukomalacia in preterm infants. In vitro microglia cell cultures were used to investigate NADPH oxidase-dependent ROS formation. In vivo we determined the impact 1) of HI on NADPH oxidase gene expression 2) of genetic (gp91-phox/Nox2 knock-out) and 3) of pharmacological NADPH oxidase inhibition on HI-induced injury and NMDA receptor-mediated excitotoxic injury, respectively. Endpoints were ROS formation, oxidative stress, apoptosis, inflammation and extent of injury. RESULTS: Hypoxia-ischemia increased NADPH oxidase subunits mRNA expression in total brain tissue in vivo. In vitro ibotenate increased NADPH oxidase-dependent formation of reactive oxygen species in microglia. In vivo the inhibition of NADPH oxidase did not reduce the extent of brain injury in any of the animal models. In contrast, the injury was increased by inhibition of NADPH oxidase and genetic inhibition was associated with an increased level of galectin-3 and IL-1beta. CONCLUSION: NADPH oxidase is upregulated after hypoxia-ischemia and activated microglia cells are a possible source of Nox2-derived ROS. In contrast to findings in adult brain, NADPH oxidase does not significantly contribute to the pathogenesis of perinatal brain injury. Results obtained in adult animals cannot be transferred to newborns and inhibition of NADPH oxidase should not be used in attempts to attenuate injury.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  • Emilsson, Lina, et al. (författare)
  • Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signalling
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 21:3, s. 618-625
  • Tidskriftsartikel (refereegranskat)abstract
    • We combined global and high-resolution strategies to find genes with altered mRNA expression levels in one of the largest collection of brain autopsies from Alzheimer's patients and controls ever studied. Our global analysis involved microarray hybridizations of large pools of samples obtained from 114 individuals, using two independent sets of microarrays. Ten genes selected from the microarray experiments were quantified on each individual separately using real-time RT-PCR. This high-resolution analysis accounted for systematic differences in age, postmortem interval, brain pH, and reference gene expression, and it estimated the effect of disease on mRNA levels, on top of the effect of all other variables. Differential expression was confirmed for eight out of ten genes. Among them, Type B inositol 1,4,5-trisphosphate 3-kinase (ITPKB), and regulator of G protein signaling 4 (RGS4) showed highly altered expression levels in patients (P values < 0.0001). Our results point towards increased inositol triphospate (IP3)-mediated calcium signaling in Alzheimer's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 197
Typ av publikation
tidskriftsartikel (189)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (195)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Zetterberg, Henrik, ... (10)
Björklund, Anders (8)
Blennow, Kaj, 1958 (7)
Lundblad, Martin (7)
Kokaia, Zaal (6)
Ekdahl Clementson, C ... (5)
visa fler...
Zhu, J. (4)
Winblad, B (4)
Hagberg, Henrik, 195 ... (4)
Nordberg, A (3)
Diez, M (3)
Andersen, Peter M. (3)
Olson, L (3)
Möller, Christer (3)
Lannfelt, Lars (3)
Lindholm, Dan (2)
Bernardi, G. (2)
Link, H (2)
Almkvist, Ove (2)
Vandenberghe, R (2)
Londos, Elisabet (2)
Sandberg, Mats, 1953 (2)
Mix, E (2)
Mariotti, C. (2)
Hillert, J (2)
Olsson, T (2)
Ljunggren, HG (2)
Padovani, A (2)
Savic, I (2)
Wierup, Nils (2)
Lavebratt, C (2)
Tartaglia, MC (2)
Chen, ZG (2)
Spenger, C (2)
Brinkmalm, Gunnar (2)
Ingelsson, Martin (2)
Söderberg, Linda (2)
Andersson, M (2)
Smith, C (2)
Hardy, J (2)
Engel, J (2)
Andersson, My (2)
Mattsson, Bengt (2)
Adolfsson, R. (2)
Hokfelt, T (2)
Canlon, B (2)
Nath, Sangeeta (2)
Hansson, Oskar (2)
Blennow, Kaj (2)
Monni, Emanuela (2)
visa färre...
Lärosäte
Lunds universitet (90)
Karolinska Institutet (75)
Göteborgs universitet (19)
Uppsala universitet (14)
Umeå universitet (7)
Linköpings universitet (7)
visa fler...
Kungliga Tekniska Högskolan (5)
Stockholms universitet (3)
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (197)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (119)
Naturvetenskap (8)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy