SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 1013 "

Sökning: L773:1354 1013

  • Resultat 1-50 av 490
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, Christin, et al. (författare)
  • Contrasting ecosystem vegetation response in global drylands under drying and wetting conditions
  • 2023
  • Ingår i: Global Change Biology. - 1354-1013. ; 29:14, s. 3954-3969
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing aridity is one major consequence of ongoing global climate change and is expected to cause widespread changes in key ecosystem attributes, functions, and dynamics. This is especially the case in naturally vulnerable ecosystems, such as drylands. While we have an overall understanding of past aridity trends, the linkage between temporal dynamics in aridity and dryland ecosystem responses remain largely unknown. Here, we examined recent trends in aridity over the past two decades within global drylands as a basis for exploring the response of ecosystem state variables associated with land and atmosphere processes (e.g., vegetation cover, vegetation functioning, soil water availability, land cover, burned area, and vapor-pressure deficit) to these trends. We identified five clusters, characterizing spatiotemporal patterns in aridity between 2000 and 2020. Overall, we observe that 44.5% of all areas are getting dryer, 31.6% getting wetter, and 23.8% have no trends in aridity. Our results show strongest correlations between trends in ecosystem state variables and aridity in clusters with increasing aridity, which matches expectations of systemic acclimatization of the ecosystem to a reduction in water availability/water stress. Trends in vegetation (expressed by leaf area index [LAI]) are affected differently by potential driving factors (e.g., environmental, and climatic factors, soil properties, and population density) in areas experiencing water-related stress as compared to areas not exposed to water-related stress. Canopy height for example, has a positive impact on trends in LAI when the system is stressed but does not impact the trends in non-stressed systems. Conversely, opposite relationships were found for soil parameters such as root-zone water storage capacity and organic carbon density. How potential driving factors impact dryland vegetation differently depending on water-related stress (or no stress) is important, for example within management strategies to maintain and restore dryland vegetation.
  •  
2.
  • Abs, Elsa, et al. (författare)
  • Microbial evolution—An under-appreciated driver of soil carbon cycling
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Although substantial advances in predicting the ecological impacts of global change have been made, predictions of the evolutionary impacts have lagged behind. In soil ecosystems, microbes act as the primary energetic drivers of carbon cycling; however, microbes are also capable of evolving on timescales comparable to rates of global change. Given the importance of soil ecosystems in global carbon cycling, we assess the potential impact of microbial evolution on carbon-climate feedbacks in this system. We begin by reviewing the current state of knowledge concerning microbial evolution in response to global change and its specific effect on soil carbon dynamics. Through this integration, we synthesize a roadmap detailing how to integrate microbial evolution into ecosystem biogeochemical models. Specifically, we highlight the importance of microscale mechanistic soil carbon models, including choosing an appropriate evolutionary model (e.g., adaptive dynamics, quantitative genetics), validating model predictions with ‘omics’ and experimental data, scaling microbial adaptations to ecosystem level processes, and validating with ecosystem-scale measurements. The proposed steps will require significant investment of scientific resources and might require 10–20 years to be fully implemented. However, through the application of multi-scale integrated approaches, we will advance the integration of microbial evolution into predictive understanding of ecosystems, providing clarity on its role and impact within the broader context of environmental change.
  •  
3.
  • Adler, Anneli (författare)
  • Breeding process and preparedness for mass-scale deployment of perennial ligno-cellulosic biomass crops switchgrass, miscanthus, willow and poplar
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 11, s. 118-151
  • Forskningsöversikt (refereegranskat)abstract
    • Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.
  •  
4.
  • Agrell, Jep, et al. (författare)
  • CO2 and O-3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria)
  • 2005
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 11:4, s. 588-599
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated levels of CO2 and O-3 affect plant growth and phytochemistry, which in turn can alter physiological performance of associated herbivores. Little is known, however, about how generalist insect herbivores respond behaviorally to CO2- and O-3-mediated changes in their host plants. This research examined the effects of elevated CO2 and O-3 levels on host plant preferences and consumption of forest tent caterpillar (FTC, Malacosoma disstria Hbn.) larvae. Dual choice feeding assays were performed with foliage from birch (Betula papyrifera Marsh.) and aspen (Populus tremuloides Michx., genotypes 216 and 259). Trees were grown at the Aspen Free Air CO2 Enrichment (FACE) facility near Rhinelander, WI, USA, and had been exposed to ambient or elevated concentrations of CO2 and/or O-3. Levels of nutritional and secondary compounds were quantified through phytochemical analyses. The results showed that elevated O-3 levels increased FTC larval preferences for birch compared with aspen, whereas elevated CO2 levels had the opposite effect. In assays with the two aspen genotypes, addition of both CO2 and O-3 caused a shift in feeding preferences from genotype 259 to genotype 216. Consumption was unaffected by experimental treatments in assays comparing aspen and birch, but were increased for larvae given high O-3 foliage in the aspen genotype assays. Elevated levels of CO2 and O-3 altered tree phytochemistry, but did not explain shifts in feeding preferences. The results demonstrate that increased levels of CO2 and O-3 can alter insect host plant preferences both between and within tree species. Also, consequences of altered host quality (e.g., compensatory consumption) may be buffered by partial host shifts in situations when alternative plant species are available. Environmentally induced changes in host plant preferences may have the potential to alter the distribution of herbivory across plant genotypes and species, as well as competitive interactions among them.
  •  
5.
  • Alatalo, Juha, 1966-, et al. (författare)
  • Response to simulated climatic change in an alpine and subarctic pollen-risk strategist, Silene acaulis
  • 1997
  • Ingår i: Global Change Biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 3, s. 74-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to test if early no overing species respond with increased seed production to climate warming as is predicted for late-flowering seed-risk strategists. Experimental climate warming of about 3 degrees C was applied to two populations of the cushion-forming plant Silene acaulis (L.) Jacq. The experiment was run at one subarctic site and one alpine site for 2 years and 1 year, respectively, using open-top chambers (OTC). The 2-year temperature enhancement at the subarctic site had a marked effect on the flowering phenology. Cushions inside the OTC started flowering substantially earlier than control cushions. Both the male and female phases developed faster in the OTCs, and maturation of capsules occurred earlier. The cushions also responded positively in reproductive terms and produced more mature seeds and had a higher seed/ovule ratio. After 1 year temperature enhancement at the alpine site there was a weak trend for earlier flowering, but there was no significant difference in seed production or seed/ovule ratio.
  •  
6.
  • Aldea, Jorge, et al. (författare)
  • Current and future drought vulnerability for three dominant boreal tree species
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is projected to increase the frequency and severity of droughts, possibly causing sudden and elevated tree mortality. Better understanding and predictions of boreal forest responses to climate change are needed to efficiently adapt forest management. We used tree-ring width chronologies from the Swedish National Forest Inventory, sampled between 2010 and 2018, and a random forest machine-learning algorithm to identify the tree, stand, and site variables that determine drought damage risk, and to predict their future spatial–temporal evolution. The dataset consisted of 16,455 cores of Norway spruce, Scots pine, and birch trees from all over Sweden. The risk of drought damage was calculated as the probability of growth anomaly occurrence caused by past drought events during 1960–2010. We used the block cross-validation method to compute model predictions for drought damage risk under current climate and climate predicted for 2040–2070 under the RCP.2.6, RCP.4.5, and RCP.8.5 emission scenarios. We found local climatic variables to be the most important predictors, although stand competition also affects drought damage risk. Norway spruce is currently the most susceptible species to drought in southern Sweden. This species currently faces high vulnerability in 28% of the country and future increases in spring temperatures would greatly increase this area to almost half of the total area of Sweden. Warmer annual temperatures will also increase the current forested area where birch suffers from drought, especially in northern and central Sweden. In contrast, for Scots pine, drought damage coincided with cold winter and early-spring temperatures. Consequently, the current area with high drought damage risk would decrease in a future warmer climate for Scots pine. We suggest active selection of tree species, promoting the right species mixtures and thinning to reduce tree competition as promising strategies for adapting boreal forests to future droughts.
  •  
7.
  • Alexander, Peter, et al. (författare)
  • Assessing uncertainties in land cover projections
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 23:2, s. 767-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
  •  
8.
  • Algesten, Grete, et al. (författare)
  • Role of lakes for organic carbon cycling in the boreal zone
  • 2004
  • Ingår i: Global Change Biology. - Oxford : Blackwell Scientific. - 1354-1013 .- 1365-2486. ; 10:1, s. 141-147
  • Tidskriftsartikel (refereegranskat)abstract
    • We calculated the carbon loss (mineralization plus sedimentation) and net CO2 escape to the atmosphere for 79 536 lakes and total running water in 21 major Scandinavian catchments (size range 437–48 263 km2). Between 30% and 80% of the total organic carbon that entered the freshwater ecosystems was lost in lakes. Mineralization in lakes and subsequent CO2 emission to the atmosphere was by far the most important carbon loss process. The withdrawal capacity of lakes on the catchment scale was closely correlated to the mean residence time of surface water in the catchment, and to some extent to the annual mean temperature represented by latitude. This result implies that variation of the hydrology can be a more important determinant of CO2 emission from lakes than temperature fluctuations. Mineralization of terrestrially derived organic carbon in lakes is an important regulator of organic carbon export to the sea and may affect the net exchange of CO2 between the atmosphere and the boreal landscape.
  •  
9.
  • Alison, Jamie, et al. (författare)
  • Deep learning to extract the meteorological by-catch of wildlife cameras
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microclimate—proximal climatic variation at scales of metres and minutes—can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro-scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two-class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open-top chambers shortens early snow events in autumn, and (2) image-derived sunshine marginally outperforms sensor-derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras.
  •  
10.
  • Ammar, Yosr, et al. (författare)
  • The rise of novelty in marine ecosystems : The Baltic Sea case
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:7, s. 1485-1499
  • Tidskriftsartikel (refereegranskat)abstract
    • Global environmental changes have accelerated at an unprecedented rate in recent decades due to human activities. As a consequence, the incidence of novel abiotic conditions and biotic communities, which have been continuously emerging in the Earth system, has rapidly risen. Despite growing attention to the incidence and challenges posed by novelty in terrestrial ecosystems, novelty has not yet been quantified in marine ecosystems. Here, we measured for the rate of novelty (RoN) in abiotic conditions and community structure for three trophic levels, i.e., phytoplankton, zooplankton, and fish, in a large marine system - the Baltic Sea. We measured RoN as the degree of dissimilarity relative to a specific spatial and temporal baseline, and contrasted this with the rate of change as a measure of within-basin change over time. We found that over the past 35 years abiotic and biotic RoN showed complex dynamics varying in time and space, depending on the baseline conditions. RoN in abiotic conditions was smaller in the open Central Baltic Sea than in the Kattegat and the more enclosed Gulf of Bothnia, Gulf of Riga, and Gulf of Finland in the north. We found a similar spatial pattern for biotic assemblages, which resulted from changes in composition and stock size. We identified sea-surface temperature and salinity as key drivers of RoN in biotic communities. Hence, future environmental changes that are expected to affect the biogeochemistry of the Baltic Sea, may favor the rise of biotic novelty. Our results highlighted the need for a deeper understanding of novelty development in marine ecosystems, including interactions between species and trophic levels, ecosystem functioning under novel abiotic conditions, and considering novelty in future management interventions.
  •  
11.
  • Andert, Janet, et al. (författare)
  • Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil
  • 2011
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 17, s. 1497-1504
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of the complete genomes of sequenced denitrifying bacteria revealed that approximately 1/3 have a truncated denitrification pathway, lacking the nosZ gene encoding the nitrous oxide reductase. We investigated whether the number of denitrifiers lacking the genetic ability to synthesize the nitrous oxide reductase in soils is important for the proportion of N2O emitted by denitrification. Serial dilutions of the denitrifying strain Agrobacterium tumefaciens C58 lacking the nosZ gene were inoculated into three different soils to modify the proportion of denitrifiers having the nitrous oxide reductase genes. The potential denitrification and N2O emissions increased when the size of inoculated C58 population in the soils was in the same range as the indigenous nosZ community. However, in two of the three soils, the increase in potential denitrification in inoculated microcosms compared with the noninoculated microcosms was higher than the increase in N2O emissions. This suggests that the indigenous denitrifier community was capable of acting as a sink for the N2O produced by A. tumefaciens. The relative amount of N2O emitted also increased in two soils with the number of inoculated C58 cells, establishing a direct causal link between the denitrifier community composition and potential N2O emissions by manipulating the proportion of denitrifiers having the nosZ gene. However, the number of denitrifiers which do not possess a nitrous oxide reductase might not be as important for N2O emissions in soils having a high N2O uptake capacity compared with those with lower. In conclusion, we provide a proof of principle that the inability of some denitrifiers to synthesize the nitrous oxide reductase can influence the nature of the denitrification end products, indicating that the extent of the reduction of N2O to N-2 by the denitrifying community can have a genetic basis.
  •  
12.
  • Angeler, David, et al. (författare)
  • Invasion impacts and dynamics of a European-wide introduced species
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28, s. 4620-4632
  • Tidskriftsartikel (refereegranskat)abstract
    • Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.
  •  
13.
  • Anthony, Kenneth R. N., et al. (författare)
  • Operationalizing resilience for adaptive coral reef management under global environmental change
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:1, s. 48-61
  • Forskningsöversikt (refereegranskat)abstract
    • Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.
  •  
14.
  • Atkin, Owen K, et al. (författare)
  • Using temperature-dependent changes in leaf scaling relationships to quantitatively account forthermal acclimation of respiration in a coupled global climate-vegetation model
  • 2008
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 14, s. 2709-2726
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of plant respiration (R) to temperature is an important component of the biosphere's response to climate change. At present, most global models assume that R increases exponentially with temperature and does not thermally acclimate. Although we now know that acclimation does occur, quantitative incorporation of acclimation into models has been lacking. Using a dataset for 19 species grown at four temperatures (7, 14, 21, and 28 °C), we have assessed whether sustained differences in growth temperature systematically alter the slope and/or intercepts of the generalized log–log plots of leaf R vs. leaf mass per unit leaf area (LMA) and vs. leaf nitrogen (N) concentration. The extent to which variations in growth temperature account for the scatter observed in log–log R–LMA–N scaling relationships was also assessed. We show that thermal history accounts for up to 20% of the scatter in scaling relationships used to predict R, with the impact of thermal history on R–LMA–N generalized scaling relationships being highly predictable. This finding enabled us to quantitatively incorporate acclimation of R into a coupled global climate–vegetation model. We show that accounting for acclimation of R has negligible impact on predicted annual rates of global R, net primary productivity (NPP) or future atmospheric CO2 concentrations. However, our analysis suggests that accounting for acclimation is important when considering carbon fluxes among thermally contrasting biomes (e.g. accounting for acclimation decreases predicted rates of R by up to 20% in high-temperature biomes). We conclude that acclimation of R needs to be accounted for when predicting potential responses of terrestrial carbon exchange to climatic change at a regional level.
  •  
15.
  • Audet, Joachim (författare)
  • Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21, s. 4449-4463
  • Tidskriftsartikel (refereegranskat)abstract
    • Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes.
  •  
16.
  • Audet, J., et al. (författare)
  • Forest streams are important sources for nitrous oxide emissions
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:2, s. 629-641
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6±2.1 and 1.3±1.8µgN/L, respectively (mean±SD) despite higher total N (TN) concentrations in agricultural streams (1,520±1,640 vs. 780±600µgN/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8×109g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800×109gCO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector. © 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd
  •  
17.
  • Audet, Joachim, et al. (författare)
  • Forest streams are important sources for nitrous oxide emissions - Nitrous oxide emissions from Swedish streams
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26, s. 629-641
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 +/- 2.1 and 1.3 +/- 1.8 mu g N/L, respectively (mean +/- SD) despite higher total N (TN) concentrations in agricultural streams (1,520 +/- 1,640 vs. 780 +/- 600 mu g N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 x 10(9) g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 x 10(9) g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector.
  •  
18.
  • Auffret, Alistair (författare)
  • Synergistic and antagonistic effects of land use and non-native species on community responses to climate change
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25, s. 4303-4314
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change, land-use change and introductions of non-native species are key determinants of biodiversity change worldwide. However, the extent to which anthropogenic drivers of environmental change interact to affect biological communities is largely unknown, especially over longer time periods. Here, we show that plant community composition in 996 Swedish landscapes has consistently shifted to reflect the warmer and wetter climate that the region has experienced during the second half of the 20th century. Using community climatic indices, which reflect the average climatic associations of the species within each landscape at each time period, we found that species compositions in 74% of landscapes now have a higher representation of warm-associated species than they did previously, while 84% of landscapes now host more species associated with higher levels of precipitation. In addition to a warmer and wetter climate, there have also been large shifts in land use across the region, while the fraction of non-native species has increased in the majority of landscapes. Climatic warming at the landscape level appeared to favour the colonization of warm-associated species, while also potentially driving losses in cool-associated species. However, the resulting increases in community thermal means were apparently buffered by landscape simplification (reduction in habitat heterogeneity within landscapes) in the form of increased forest cover. Increases in non-native species, which generally originate from warmer climates than Sweden, were a strong driver of community-level warming. In terms of precipitation, both landscape simplification and increases in non-natives appeared to favour species associated with drier climatic conditions, to some extent counteracting the climate-driven shift towards wetter communities. Anthropogenic drivers can act both synergistically and antagonistically to determine trajectories of change in biological communities over time. Therefore, it is important to consider multiple drivers of global change when trying to understand, manage and predict biodiversity in the future.
  •  
19.
  • Baggesen, Nanna, et al. (författare)
  • Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:12, s. 2928-2944
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, biogenic volatile organic compound (BVOC) emissions are often considered a unidirectional flux, from the ecosystem to the atmosphere, but recent studies clearly show the potential for bidirectional exchange. Here we aimed to investigate how warming and leaf litter addition affect the bidirectional exchange (flux) of BVOCs in a long‐term field experiment in the Subarctic. We also assessed changes in net BVOC fluxes in relation to the time of day and the influence of different plant phenological stages. The study was conducted in a full factorial experiment with open top chamber warming and annual litter addition treatments in a tundra heath in Abisko, Northern Sweden. After 18 years of treatments, ecosystem‐level net BVOC fluxes were measured in the experimental plots using proton‐transfer‐reaction time‐of‐flight mass spectrometry (PTR–ToF–MS). The warming treatment increased monoterpene and isoprene emissions by ≈50%. Increasing temperature, due to diurnal variations, can both increase BVOC emission and simultaneously, increase ecosystem uptake. For any given treatment, monoterpene, isoprene, and acetone emissions also increased with increasing ambient air temperatures caused by diurnal variability. Acetaldehyde, methanol, and sesquiterpenes decreased likely due to a deposition flux. For litter addition, only a significant indirect effect on isoprene and monoterpene fluxes (decrease by ~50%–75%) was observed. Litter addition may change soil moisture conditions, leading to changes in plant species composition and biomass, which could subsequently result in changes to BVOC emission compositions. Phenological stages significantly affected fluxes of methanol, isoprene and monoterpenes. We suggest that plant phenological stages differ in impacts on BVOC net emissions, but ambient air temperature and photosynthetically active radiation (PAR) also interact and influence BVOC net emissions differently. Our results may also suggest that BVOC fluxes are not only a response to changes in temperature and light intensity, as the circadian clock also affects emission rates.
  •  
20.
  • Baho, Didier Ludovic, et al. (författare)
  • Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26, s. 6831-6851
  • Tidskriftsartikel (refereegranskat)abstract
    • Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9 degrees C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.
  •  
21.
  • Baho, Didier Ludovic, et al. (författare)
  • Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27, s. 3969-3986
  • Tidskriftsartikel (refereegranskat)abstract
    • Microplastic (plastic particles measuring <5mm) pollution is ubiquitous. Unlike in other well-studied ecosystems, for example, marine and freshwater environments, microplastics in terrestrial systems are relatively understudied. Their potential impacts on terrestrial environments, in particular the risk of causing ecological surprise, must be better understood and quantified. Ecological surprise occurs when ecosystem behavior deviates radically from expectations and generally has negative consequences for ecosystem services. The properties and behavior of microplastics within terrestrial environments may increase their likelihood of causing ecological surprises as they (a) are highly persistent global pollutants that will last for centuries, (b) can interact with the abiotic environment in a complex manner, (c) can impact terrestrial organisms directly or indirectly and (d) interact with other contaminants and can facilitate their transport. Here, we compiled findings of previous research on microplastics in terrestrial environments. We systematically focused on studies addressing different facets of microplastics related to their distribution, dispersion, impact on soil characteristics and functions, levels of biological organization of tested terrestrial biota (single species vs. assemblages), scale of experimental study and corresponding ecotoxicological effects. Our systematic assessment of previous microplastic research revealed that most studies have been conducted on single species under laboratory conditions with short-term exposures; few studies were conducted under more realistic long-term field conditions and/or with multi-species assemblages. Studies targeting multi-species assemblages primarily considered soil bacterial communities and showed that microplastics can alter essential nutrient cycling functions. More ecologically meaningful studies of terrestrial microplastics encompassing multi-species assemblages, critical ecological processes (e.g., biogeochemical cycles and pollination) and interactions with other anthropogenic stressors must be conducted. Addressing these knowledge gaps will provide a better understanding of microplastics as emerging global stressors and should lower the risk of ecological surprise in terrestrial ecosystems.
  •  
22.
  • Barcenas-Moreno, Gema, et al. (författare)
  • Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment
  • 2009
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 15:12, s. 2950-2957
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature not only has direct effects on microbial activity, but can also affect activity indirectly by changing the temperature dependency of the community. This would result in communities performing better over time in response to increased temperatures. We have for the first time studied the effect of soil temperature (5-50 degrees C) on the community adaptation of both bacterial (leucine incorporation) and fungal growth (acetate-in-ergosterol incorporation). Growth at different temperatures was estimated after about a month using a short-term assay to avoid confounding the effects of temperature on substrate availability. Before the experiment started, fungal and bacterial growth was optimal around 30 degrees C. Increasing soil temperature above this resulted in an increase in the optimum for bacterial growth, correlated to soil temperature, with parallel shifts in the total response curve. Below the optimum, soil temperature had only minor effects, although lower temperatures selected for communities growing better at the lowest temperature. Fungi were affected in the same way as bacteria, with large shifts in temperature tolerance at soil temperatures above that of optimum for growth. A simplified technique, only comparing growth at two contrasting temperatures, gave similar results as using a complete temperature curve, allowing for large scale measurements also in field situations with small differences in temperature.
  •  
23.
  • Barretto, Agop, et al. (författare)
  • Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 19:6, s. 1804-1815
  • Tidskriftsartikel (refereegranskat)abstract
    • Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 19751996 and 19962006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium-resolution data on total farmland area changes were used in a spatially explicit assessment of the land-use transitions that occurred in Brazil during 19602006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land-use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land-use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land-use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center-western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be effective. This can improve the prospects for protecting native vegetation by investing in agricultural intensification.
  •  
24.
  • Bartholomew, David, et al. (författare)
  • Bornean tropical forests recovering from logging at risk of regeneration failure
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30–35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15–27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5–6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Belyea, L R, et al. (författare)
  • Carbon sequestration in peatland: patterns and mechanisms of response to climate change
  • 2004
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 10:7, s. 1043-1052
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of peatlands to changes in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain insight on the patterns and mechanisms of response, we linked a model of peat accumulation to a model of peatland hydrology, then applied these models to empirical data spanning the past 5000 years for the large mire Store Mosse in southern Sweden. We estimated parameters for C sequestration and height growth by fitting the peat accumulation model to two age profiles. Then, we used independent reconstruction of climate wetness and model reconstruction of bog height to examine changes in peatland hydrology. Reconstructions of C sequestration showed two distinct patterns of behaviour: abrupt increases associated with major transitions in vegetation and dominant Sphagnum species (fuscum, rubellum-fuscum and magellanicum stages), and gradual decreases associated with increasing humification of newly formed peat. Carbon sequestration rate ranged from a minimum of 14 to a maximum of 72 g m(-2) yr(-1), with the most rapid changes occurring in the past 1000 years. Vegetation transitions were associated with periods of increasing climate wetness during which the hydrological requirement for increased seepage loss was met by rise of the water table closer to the peatland surface, with the indirect result of enhancing peat formation. Gradual decline in C sequestration within each vegetation stage resulted from enhanced litter decay losses from the near-surface layer. In the first two vegetation stages, peatland development (i.e., increasing surface gradient) and decreasing climate wetness drove a gradual increase in thickness of the unsaturated, near-surface layer, reducing seepage water loss and peat formation. In the most recent vegetation stage, the surface diverged into a mosaic of wet and dry microsites. Despite a steady increase in climate wetness, C sequestration declined rapidly. The complexity of response to climate change cautions against use of past rates to estimate current or to predict future rates of peatland C sequestration. Understanding interactions among hydrology, surface structure and peat formation are essential to predicting potential feedback on the global C cycle.
  •  
29.
  • Berendse, F, et al. (författare)
  • Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs
  • 2001
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 7:5, s. 591-598
  • Tidskriftsartikel (refereegranskat)abstract
    • Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum-dominated bog ecosystems.
  •  
30.
  • Berger, Stella A, et al. (författare)
  • Water temperature and stratification depth independently shift cardinal events during plankton spring succession
  • 2010
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 16:7, s. 1954-1965
  • Tidskriftsartikel (refereegranskat)abstract
    • In deep temperate lakes, the beginning of the growing season is triggered by thermal stratification, which alleviates light limitation of planktonic producers in the surface layer and prevents heat loss to deeper strata. The sequence of subsequent phenological events (phytoplankton spring bloom, grazer peak, clearwater phase) results in part from coupled phytoplankton–grazer interactions. Disentangling the separate, direct effects of correlated climatic drivers (stratification-dependent underwater light climate vs. water temperature) from their indirect effects mediated through trophic feedbacks is impossible using observational field data, which challenges our understanding of global warming effects on seasonal plankton dynamics. We therefore manipulated water temperature and stratification depth independently in experimental field mesocosms containing ambient microplankton and inocula of the resident grazer Daphnia hyalina. Higher light availability in shallower surface layers accelerated primary production, warming accelerated consumption and growth of Daphnia, and both factors speeded up successional dynamics driven by trophic feedbacks. Specifically, phytoplankton peaked and decreased earlier and Daphnia populations increased and peaked earlier at both shallower stratification and higher temperature. The timing of ciliate dynamics was unrelated to both factors. Volumetric peak densities of phytoplankton, ciliates and Daphnia in the surface layer were also unaffected by temperature but declined with stratification depth in parallel with light availability. The latter relationship vanished, however, when population sizes were integrated over the entire water column. Overall our results suggest that, integrated over the entire water column of a deep lake, surface warming and shallower stratification independently speed up spring successional events, whereas the magnitudes of phytoplankton and zooplankton spring peaks are less sensitive to these factors. Therefore, accelerated dynamics under warming need not lead to a trophic mismatch (given similar grazer inocula at the time of stratification). We emphasize that entire water column dynamics must be studied to estimate global warming effects on lake ecosystems.
  •  
31.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L−1, below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.
  •  
32.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Light and nutrient control phytoplankton biomass responses to global change in northern lakes
  • 2019
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 25:6, s. 2021-2029
  • Tidskriftsartikel (refereegranskat)abstract
    • Global change affects terrestrial loadings of colored dissolved organic carbon (DOC) and nutrients to northern lakes. Still, little is known about how phytoplankton respond to changes in light and nutrient availability across gradients in lake DOC. In this study, we used results from whole-lake studies in northern Sweden to show that annual mean phytoplankton biomass expressed unimodal curved relationships across lake DOC gradients, peaking at threshold DOC levels of around 11 mg/L. Whole-lake single nutrient enrichment in selected lakes caused elevated biomass, with most pronounced effect at the threshold DOC level. These patterns give support to the suggested dual control by DOC on phytoplankton via nutrient (positively) and light (negatively) availability and imply that the lakes' location along the DOC axis is critical in determining to what extent phytoplankton respond to changes in DOC and/or nutrient loadings. By using data from the large Swedish Lake Monitoring Survey, we further estimated that 80% of northern Swedish lakes are below the DOC threshold, potentially experiencing increased phytoplankton biomass with browning alone, and/or combined with nutrient enrichment. The results support the previous model results on effects of browning and eutrophication on lake phytoplankton, and provide important understanding of how northern lakes may respond to future global changes.
  •  
33.
  • Bergström, Ann-Kristin, et al. (författare)
  • Nitrogen deposition and warming  – effects on phytoplankton nutrient limitation in subarctic lakes
  • 2013
  • Ingår i: Global Change Biology. - Hoboken, NJ : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 19:8, s. 2557-2568
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosureexperiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growingseason in 11 lakes situated along an altitudinal/climate gradient with low N-deposition (<1 kg N ha1yr1) in northern subarctic Sweden. Short-term bioassay experiments with N- and P-additions revealed that phytoplankton inhigh-alpine lakes were more prone to P-limitation, and with decreasing altitude became increasingly N- andNP-colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positivecorrelation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients wereavailable in spring and autumn, on these occasions growth was likely constrained by low water temperatures. Theseresults imply that enhanced N-deposition over the Swedish mountain areas will, with the exception of high-alpinelakes, enhance biomass and drive phytoplankton from N- to P-limitation. However, if not accompanied by warming,N-input from deposition will stimulate limited phytoplankton growth due to low water temperatures during largeparts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of thegrowing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.
  •  
34.
  • Binzer, Amrei, et al. (författare)
  • Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure
  • 2016
  • Ingår i: Global Change Biology. - : WILEY-BLACKWELL. - 1354-1013 .- 1365-2486. ; 22:1, s. 220-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors.
  •  
35.
  • Birgander, Johanna, et al. (författare)
  • The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 24:8, s. 3357-3367
  • Tidskriftsartikel (refereegranskat)abstract
    • Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years’ winter warming. The warming treatments increased winter soil temperatures by 5–6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C exchange.
  •  
36.
  • Birgander, Johanna, et al. (författare)
  • Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 23:12, s. 5372-5382
  • Tidskriftsartikel (refereegranskat)abstract
    • A decisive set of steps in the terrestrial carbon (C) cycle is the fixation of atmospheric C by plants and the subsequent C-transfer to rhizosphere microorganisms. With climate change winters are expected to become milder in temperate ecosystems. Although the rate and pathways of rhizosphere C input to soil could be impacted by milder winters, the responses remain unknown. To address this knowledge-gap, a winter-warming experiment was established in a seminatural temperate grassland to follow the C flow from atmosphere, via the plants, to different groups of soil microorganisms. In situ 13CO2 pulse labelling was used to track C into signature fatty acids of microorganisms. The winter warming did not result in any changes in biomass of any of the groups of microorganisms. However, the C flow from plants to arbuscular mycorrhizal (AM) fungi, increased substantially by winter warming. Saprotrophic fungi also received large amounts of plant-derived C—indicating a higher importance for the turnover of rhizosphere C than biomass estimates would suggest—still, this C flow was unaffected by winter warming. AM fungi was the only microbial group positively affected by winter warming—the group with the closest connection to plants. Winter warming resulted in higher plant productivity earlier in the season, and this aboveground change likely induced plant nutrient limitation in warmed plots, thus stimulating the plant dependence on, and C allocation to, belowground nutrient acquisition. The preferential C allocation to AM fungi was at the expense of C flow to other microbial groups, which were unaffected by warming. Our findings imply that warmer winters may shift rhizosphere C-fluxes to become more AM fungal-dominated. Surprisingly, the stimulated rhizosphere C flow was matched by increased microbial turnover, leading to no accumulation of soil microbial biomass.
  •  
37.
  • Blenckner, Thorsten, et al. (författare)
  • Large-scale climatic signatures in lakes across Europe : A meta-analysis
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:7, s. 1314-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have highlighted the impact of the winter North Atlantic Oscillation (NAO) on water temperature, ice conditions, and spring plankton phenology in specific lakes and regions in Europe. Here, we use meta-analysis techniques to test whether 18 lakes in northern, western, and central Europe respond coherently to winter climate forcing, and to assess the persistence of the winter climate signal in physical, chemical, and biological variables during the year. A meta-analysis approach was chosen because we wished to emphasize the overall coherence pattern rather than individual lake responses. A particular strength of our approach is that time-series from each of the 18 lakes were subjected to the same robust statistical analysis covering the same 23-year period. Although the strongest overall coherence in response to the winter NAO was exhibited by lake water temperatures, a strong, coherent response was also exhibited by concentrations of soluble reactive phosphorus and soluble reactive silicate, most likely as a result of the coherent response exhibited by the spring phytoplankton bloom. Lake nitrate concentrations showed significant coherence in winter. With the exception of the cyanobacterial biomass in summer, phytoplankton biomass in all seasons was unrelated to the winter NAO. A strong coherence in the abundance of daphnids during spring can most likely be attributed to coherence in daphnid phenology. A strong coherence in the summer abundance of the cyclopoid copepods may have been related to a coherent change in their emergence from resting stages. We discuss the complex nature of the potential mechanisms that drive the observed changes.
  •  
38.
  • Blok, Daan, et al. (författare)
  • Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 24:6, s. 2660-2672
  • Tidskriftsartikel (refereegranskat)abstract
    • Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability.
  •  
39.
  • Bodin, Per, et al. (författare)
  • Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (δ(13) C): implications for assessing physiological forcing
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 19:6, s. 1709-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate modelling of long-term changes in plant stomatal functioning is vital to global climate change studies because changes in evapotranspiration influence temperature via physiological forcing of the climate. Various stomatal models are included in land surface schemes, but their robustness over longer timescales is difficult to validate. We compare the performance of three stomatal models, varying in their degree of complexity, and coupled to a land surface model. This is done by simulating the carbon isotope ratio of tree leaves (δ(13) Cleaf ) over a period of 53 years, and comparing the results with carbon isotope ratios obtained from tree rings (δ(13) Cstem ) measured at six sites in northern Europe. All three stomatal models fail to capture the observed inter-annual variability in the measured δ(13) Cstem time series. However, the Soil-Plant-Atmosphere (SPA) model performs significantly better than the Ball-Berry (BB) or COX models when tested for goodness of fit against measured δ(13) Cstem . The δ(13) Cleaf time series simulated using the SPA model are significantly positively correlated (p < 0.05) with measured results over the full time period tested, at all six sites. The SPA model underestimates inter-annual variability measured in δ(13) Cstem , but is no worse than the BB model and significantly better than the COX model. The inability of current models to adequately replicate changes in stomatal response to rising levels of CO2 concentrations, and thus to quantify the associated physiological forcing, warrants further investigation. © 2013 Blackwell Publishing Ltd.
  •  
40.
  • Bokhorst, Stef Frederik (författare)
  • Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21, s. 4063-4075
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may have clear impacts, more work is needed to understand their net effect on Arctic ecosystems.
  •  
41.
  • Bokhorst, Stef Frederik (författare)
  • Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18, s. 1152-1162
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (210 similar to degrees C for 214 similar to days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events using infrared heating lamps, alone or with soil warming cables for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 211 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.
  •  
42.
  • Bokhorst, Stef Frederik, et al. (författare)
  • Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:1, s. 64-74
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year-round. In addition, their effects on temperature extremes and freeze-thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (-0.9 to 2.1 degrees C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R-2 = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC-induced changes in the frequency of freeze-thaw events included an increase in autumn and decreases in spring and summer. Frequency of high-temperature events in OTCs increased in spring, summer and autumn compared with non-manipulated control plots. Frequency of low-temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress) in combination with microclimate measurements at organism level.
  •  
43.
  • Bolinder, Martin, et al. (författare)
  • Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27, s. 904-928
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (+/- 15.5) Mg C/ha compared to the observed mean of 36.0 (+/- 19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 +/- 16.7 Mg C/ha) and Spe (36.8 +/- 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.
  •  
44.
  • Bondeau, Alberte, et al. (författare)
  • Modelling the role of agriculture for the 20th century global terrestrial carbon balance
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:3, s. 679-706
  • Forskningsöversikt (refereegranskat)abstract
    • In order to better assess the role of agriculture within the global climate-vegetation system, we present a model of the managed planetary land surface, Lund-Potsdam-Jena managed Land (LPJmL), which simulates biophysical and biogeochemical processes as well as productivity and yield of the most important crops worldwide, using a concept of crop functional types (CFTs). Based on the LPJ-Dynamic Global Vegetation Model, LPJmL simulates the transient changes in carbon and water cycles due to land use, the specific phenology and seasonal CO2 fluxes of agricultural-dominated areas, and the production of crops and grazing land. It uses 13 CFTs (11 arable crops and two managed grass types), with specific parameterizations of phenology connected to leaf area development. Carbon is allocated daily towards four carbon pools, one being the yield-bearing storage organs. Management (irrigation, treatment of residues, intercropping) can be considered in order to capture their effect on productivity, on soil organic carbon and on carbon extracted from the ecosystem. For transient simulations for the 20th century, a global historical land use data set was developed, providing the annual cover fraction of the 13 CFTs, rain-fed and/or irrigated, within 0.5 degrees grid cells for the period 1901-2000, using published data on land use, crop distributions and irrigated areas. Several key results are compared with observations. The simulated spatial distribution of sowing dates for temperate cereals is comparable with the reported crop calendars. The simulated seasonal canopy development agrees better with satellite observations when actual cropland distribution is taken into account. Simulated yields for temperate cereals and maize compare well with FAO statistics. Monthly carbon fluxes measured at three agricultural sites also compare well with simulations. Global simulations indicate a similar to 24% (respectively similar to 10%) reduction in global vegetation (respectively soil) carbon due to agriculture, and 6-9 Pg C of yearly harvested biomass in the 1990s. In contrast to simulations of the potential natural vegetation showing the land biosphere to be an increasing carbon sink during the 20th century, LPJmL simulates a net carbon source until the 1970s (due to land use), and a small sink (mostly due to changing climate and CO2) after 1970. This is comparable with earlier LPJ simulations using a more simple land use scheme, and within the uncertainty range of estimates in the 1980s and 1990s. The fluxes attributed to land use change compare well with Houghton's estimates on the land use related fluxes until the 1970s, but then they begin to diverge, probably due to the different rates of deforestation considered. The simulated impacts of agriculture on the global water cycle for the 1990s are similar to 5% (respectively similar to 20%) reduction in transpiration (respectively interception), and similar to 44% increase in evaporation. Global runoff, which includes a simple irrigation scheme, is practically not affected.
  •  
45.
  • Boyd, P. W., et al. (författare)
  • Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 24:6, s. 2239-2261
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain processoriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
  •  
46.
  • Bradter, Ute, et al. (författare)
  • Decomposing the spatial and temporal effects of climate on bird populations in northern European mountains
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:21, s. 6209-6227
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space-for-time substitution”, the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23-year period (1996–2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space-for-time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space-for-time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.
  •  
47.
  • Britton, D., et al. (författare)
  • Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardiere) C.Agardh
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:6, s. 3512-3524
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine heatwaves are extreme events that can have profound and lasting impacts on marine species. Field observations have shown seaweeds to be highly susceptible to marine heatwaves, but the physiological drivers of this susceptibility are poorly understood. Furthermore, the effects of marine heatwaves in conjunction with ocean warming and acidification are yet to be investigated. To address this knowledge gap, we conducted a laboratory culture experiment in which we tested the growth and physiological responses of Phyllospora comosa juveniles from the southern extent of its range (43 - 31 degrees S) to marine heatwaves, ocean warming and acidification. We used a "collapsed factorial design" in which marine heatwaves were superimposed on current (today's pH and temperature) and future (pH and temperature projected by 2100) ocean conditions. Responses were tested both during the heatwaves, and after a seven-day recovery period. Heatwaves reduced net photosynthetic rates in both current and future conditions, while respiration rates were elevated under heatwaves in the current conditions only. Following the recovery period, there was little evidence of heatwaves having lasting negative effects on growth, photosynthesis or respiration. Exposure to heatwaves, future ocean conditions or both caused an increase in the degree of saturation of fatty acids. This adjustment may have counteracted negative effects of elevated temperatures by decreasing membrane fluidity, which increases at higher temperatures. Furthermore, P. comosa appeared to down-regulate the energetically expensive carbon-concentrating mechanism (CCM) in the future conditions with a reduction in delta(13) C values detected in these treatments. Any saved energy arising from this down-regulation was not invested in growth and was likely invested in the adjustment of fatty acid composition. This adjustment is a mechanism by which P. comosa and other seaweeds may tolerate the negative effects of ocean warming and marine heatwaves through benefits arising from ocean acidification.
  •  
48.
  • Bruder, Andreas, et al. (författare)
  • Biotic interactions modify multiple-stressor effects on juvenile brown trout in an experimental stream food web
  • 2017
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 23:9, s. 3882-3894
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co-occurring stressors result in biological responses that cannot be predicted from single-stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple-stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow-through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (−12% compared to controls) and condition (−8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (−25% compared to controls) and abundance of dominant invertebrate prey (−30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple-stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations.
  •  
49.
  • Brunet, Jörg (författare)
  • Combining multiple investigative approaches to unravel functional responses to global change in the understorey of temperate forests
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
  •  
50.
  • Brunet, Jörg (författare)
  • Drivers of temporal changes in temperate forest plant diversity vary across spatial scales
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21, s. 3726-3737
  • Tidskriftsartikel (refereegranskat)abstract
    • Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 490
Typ av publikation
tidskriftsartikel (449)
forskningsöversikt (40)
annan publikation (1)
Typ av innehåll
refereegranskat (479)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Nilsson, Mats (22)
Peichl, Matthias (18)
Lindroth, Anders (14)
Smith, Benjamin (14)
Laudon, Hjalmar (13)
Arneth, Almut (13)
visa fler...
Rousk, Johannes (12)
Dorrepaal, Ellen (11)
Ciais, Philippe (10)
Weyhenmeyer, Gesa A. (10)
Uddling, Johan, 1972 (10)
Gundale, Michael (10)
Bastviken, David (9)
Bååth, Erland (9)
Brunet, Jörg (8)
Rinnan, Riikka (8)
Hylander, Kristoffer (7)
Bishop, Kevin (7)
Tagesson, Torbern (7)
Futter, Martyn (7)
Reichstein, Markus (7)
Lenoir, Jonathan (7)
Kätterer, Thomas (7)
Klemedtsson, Leif, 1 ... (7)
Aerts, Rien (7)
Öquist, Mats (7)
Olofsson, Johan (7)
Christensen, Torben (7)
Luoto, Miska (6)
De Frenne, Pieter (6)
Ciais, P. (6)
Canadell, Josep G. (6)
Pleijel, Håkan, 1958 (6)
Blenckner, Thorsten (6)
Peñuelas, Josep (6)
Nilsson Hegethorn, M ... (6)
Aalto, Juha (5)
Tranvik, Lars J. (5)
Nordin, Annika (5)
Malhi, Yadvinder (5)
Jackson, Robert B. (5)
Gårdmark, Anna (5)
Michelsen, Anders (5)
Linder, Sune (5)
Sobek, Sebastian (5)
Sykes, Martin (5)
Elberling, Bo (5)
Müller, Christoph (5)
Palmqvist, Kristin (5)
Kamenos, Nicholas A. (5)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (173)
Lunds universitet (138)
Umeå universitet (84)
Stockholms universitet (67)
Göteborgs universitet (54)
Uppsala universitet (51)
visa fler...
Linnéuniversitetet (16)
Linköpings universitet (14)
Chalmers tekniska högskola (8)
Kungliga Tekniska Högskolan (4)
Karlstads universitet (4)
Högskolan i Halmstad (2)
Mittuniversitetet (2)
RISE (2)
Naturhistoriska riksmuseet (2)
IVL Svenska Miljöinstitutet (2)
Högskolan i Gävle (1)
Mälardalens universitet (1)
Jönköping University (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (489)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (424)
Lantbruksvetenskap (128)
Samhällsvetenskap (5)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy