SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1361 6587 OR L773:0741 3335 "

Sökning: L773:1361 6587 OR L773:0741 3335

  • Resultat 1-50 av 334
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tala, T., et al. (författare)
  • Toroidal and poloidal momentum transport studies in tokamaks
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 49:12B, s. B291-B302
  • Tidskriftsartikel (refereegranskat)abstract
    • The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. tau(E)/tau(phi)approximate to 1 have been reported on several tokamaks. It is more important though, to study the local transport both in the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity chi(phi eff)/chi(i.eff) among different tokamaks can be found. For example, the value of effective Prandtl number is typically around chi(phi eff)/chi(i.eff)approximate to 0.2 on JET while still tau(E)/tau(phi)approximate to 1 holds. Perturbative NBI modulation experiments on JET have shown, however, that a Prandtl number chi(phi)/chi(i) of around 1 is valid if there is an additional, significant inward momentum pinch which is required to explain the amplitude and phase behaviour of the momentum perturbation. The experimental results, i.e. the high Prandtl number and pinch, are in good qualitative and to some extent also in quantitative agreement with linear gyro-kinetic simulations. In contrast to the toroidal momentum transport which is clearly anomalous, the poloidal velocity is usually believed to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly affect the calculated radial electric field and therefore the E x B flow shear and hence modify and can significantly improve the simulation predictions. Several fluid turbulence codes have been used to identify the mechanism driving the poloidal velocity to such high values. CUTIE and TRB turbulence codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly by the flow due to the Reynold's stress. It is worth noting that these codes and models treat the equilibrium in a simplified way and this affects the geodesic curvature effects and geodesic acoustic modes. The neo-classical equilibrium is calculated more accurately in the GEM code and the simulations suggest that the spin-up of poloidal velocity is a consequence of the plasma profiles steepening when the ITB grows, following in particular the growth of the toroidal velocity within the ITB.
  •  
2.
  • Buller, Stefan, 1991, et al. (författare)
  • Neoclassical flows in deuterium-helium plasma density pedestals
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:5, s. 055019-
  • Tidskriftsartikel (refereegranskat)abstract
    • In tokamak transport barriers, the radial scale of profile variations can be comparable to a typical ion orbit width, which makes the coupling of the distribution function across flux surfaces important in the collisional dynamics. We use the radially global steady-state neoclassical delta f code PERFECT [Landreman et al 2014 Plasma Phys. Control. Fusion 56 045005] to calculate poloidal and toroidal flows, and radial fluxes, in the pedestal. In particular, we have studied the changes in these quantities as the plasma composition is changed from a deuterium bulk species with a helium impurity to a helium bulk with a deuterium impurity, under specific profile similarity assumptions. In the presence of sharp profile variations, the poloidally resolved radial fluxes are important for the total fluxes to be divergence-free, which leads to the appearance of poloidal return-flows. These flows exhibit a complex radial–poloidal structure that extends several orbit widths into the core and is sensitive to abrupt radial changes in the ion temperature gradient. We find that a sizable neoclassical toroidal angular momentum transport can arise in the radially global theory, in contrast to the local.
  •  
3.
  • Dalui, Malay, et al. (författare)
  • Influence of micromachined targets on laser accelerated proton beam profiles
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:3
  • Tidskriftsartikel (refereegranskat)abstract
    • High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 ×1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.
  •  
4.
  • Li, L., et al. (författare)
  • Toroidal modeling of plasma response to RMP fields in ITER
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic numerical study is carried out, computing the resistive plasma response to the resonant magnetic perturbation (RMP) fields for ITER plasmas, utilizing the toroidal code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). A number of factors are taken into account, including the variation of the plasma scenarios (from 15 MA Q = 10 inductive scenario to the 9 MA Q = 5 steady state scenario), the variation of the toroidal spectrum of the applied fields (n = 1, 2, 3, 4, with n being the toroidal mode number), the amplitude and phase variation of the currents in three rows of the RMP coils as designed for ITER, and finally a special case of mixed toroidal spectrum between the n = 3 and n = 4 RMP fields. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield 'optimal' curves that maximize a set of figures of merit, that are defined in this work to measure the plasma response. Other two-dimensional scans of the relative coil current phasing among three rows of coils, at fixed coil currents amplitude, reveal a single optimum for each coil configuration with a given n number, for the 15 MA ITER inductive plasma. On the other hand, scanning of the coil current amplitude, at fixed coil phasing, shows either synergy or cancellation effect, for the field contributions between the off-middle rows and the middle row of the RMP coils. Finally, the mixed toroidal spectrum, by combining the n = 3 and the n = 4 RMP field, results in a substantial local reduction of the amplitude of the plasma surface displacement.
  •  
5.
  • Taylor, M., et al. (författare)
  • Probing ultrafast proton induced dynamics in transparent dielectrics
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10-12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.
  •  
6.
  • van Wyk, F., et al. (författare)
  • Ion-scale turbulence in MAST: anomalous transport, subcritical transitions, and comparison to BES measurements
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:11, s. 114003-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the effect of varying the ion temperature gradient (ITG) and toroidal equilibrium scale sheared flow on ion-scale turbulence in the outer core of MAST by means of local gyrokinetic simulations. We show that nonlinear simulations reproduce the experimental ion heat flux and that the experimentally measured values of the ITG and the flow shear lie close to the turbulence threshold. We demonstrate that the system is subcritical in the presence of flow shear, i.e., the system is formally stable to small perturbations, but transitions to a turbulent state given a large enough initial perturbation. We propose that the transition to subcritical turbulence occurs via an intermediate state dominated by low number of coherent long-lived structures, close to threshold, which increase in number as the system is taken away from the threshold into the more strongly turbulent regime, until they fill the domain and a more conventional turbulence emerges. We show that the properties of turbulence are effectively functions of the distance to threshold, as quantified by the ion heat flux. We make quantitative comparisons of correlation lengths, times, and amplitudes between our simulations and experimental measurements using the MAST BES diagnostic. We find reasonable agreement of the correlation properties, most notably of the correlation time, for which significant discrepancies were found in previous numerical studies of MAST turbulence.
  •  
7.
  • Sundström, Andréas, 1994, et al. (författare)
  • Collisional effects on the electrostatic shock dynamics in thin-foil targets driven by an ultraintense short pulse laser
  • 2020
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 62:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We numerically investigate the impact of Coulomb collisions on the ion dynamics in high-Z, solid density caesium hydride and copper targets, irradiated by high-intensity (I approximate to 2-5x10(20) W cm(-2)), ultrashort (similar to 10 fs), circularly polarized laser pulses, using particle-in-cell simulations. Collisions significantly enhance electron heating, thereby strongly increasing the speed of a shock wave launched in the laser-plasma interaction. In the caesium hydride target, collisions between the two ion species heat the protons to similar to 100-1000 eV temperatures. However, in contrast to previous work (A E Turrellet al2015Nat. Commun.68905), this process happens in the upstream only, due to nearly total proton reflection. This difference is ascribed to distinct models used to treat collisions in dense/cold plasmas. In the case of a copper target, ion reflection can start as a self-amplifying process, bootstrapping itself. Afterwards, collisions between the reflected and upstream ions heat these two populations significantly. When increasing the pulse duration to 60 fs, the shock front more clearly decouples from the laser piston, and so can be studied without direct interference from the laser. The shock wave formed at early times exhibits properties typical of both hydrodynamic and electrostatic shocks, including ion reflection. At late times, the shock is seen to evolve into a hydrodynamic blast wave.
  •  
8.
  • Thorén, Emil, et al. (författare)
  • The MEMOS-U code description of macroscopic melt dynamics in fusion devices
  • 2021
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 63:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The MEMOS-U physics model, addressing macroscopic melt motion in large deformation and long displacement regimes, and its numerical schemes are presented. Discussion is centred on the shallow water application to the metallic melts induced by hot magnetized plasmas, where phase transitions and electromagnetic responses are pivotal. The physics of boundary conditions with their underlying assumptions are analysed and the sensitivity to experimental input uncertainties is emphasized. The JET transient tungsten melting experiment (Coenen et al 2015 Nucl. Fusion 55 023010) is simulated to illustrate the MEMOS-U predictive power and to highlight key aspects of tokamak melt dynamics.
  •  
9.
  • Aiba, N., et al. (författare)
  • Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (omega(*i)), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and omega(*i) effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in omega(*i). The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w*i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.
  •  
10.
  • Basiuk, V., et al. (författare)
  • Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth : effects on transport coefficients
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
  •  
11.
  • Bergsåker, Henric, et al. (författare)
  • Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.
  •  
12.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
13.
  • Cannas, Barbara, et al. (författare)
  • Nonlinear dynamic analysis of D-alpha signals for type I edge localized modes characterization on JET with a carbon wall
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the dynamic characteristics of type-I ELM time-series from the JET tokamak, the world's largest magnetic confinement plasma physics experiment, have been investigated. The dynamic analysis has been focused on the detection of nonlinear structure in D a radiation time series. Firstly, the method of surrogate data has been applied to evaluate the statistical significance of the null hypothesis of static nonlinear distortion of an underlying Gaussian linear process. Several nonlinear statistics have been evaluated, such us the time delayed mutual information, the correlation dimension and the maximal Lyapunov exponent. The obtained results allow us to reject the null hypothesis, giving evidence of underlying nonlinear dynamics. Moreover, no evidence of low-dimensional chaos has been found; indeed, the analysed time series are better characterized by the power law sensitivity to initial conditions which can suggest a motion at the 'edge of chaos', at the border between chaotic and regular non-chaotic dynamics. This uncertainty makes it necessary to further investigate about the nature of the nonlinear dynamics. For this purpose, a second surrogate test to distinguish chaotic orbits from pseudoperiodic orbits has been applied. In this case, we cannot reject the null hypothesis which means that the ELM time series is possibly pseudo-periodic. In order to reproduce pseudo-periodic dynamical properties, a periodic state-of-the-art model, proposed to reproduce the ELM cycle, has been corrupted by a dynamical noise, obtaining time series qualitatively in agreement with experimental time series.
  •  
14.
  • Chankin, A. , V, et al. (författare)
  • EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • EDGE2D-EIRENE (the 'code') simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E x B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL E-r was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E. x. B shear can be a player in the L-H transition physics (Delabie et al 2015 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 22-26 June 2015) paper O3.113 (http://ocs.ciemat.es/EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H-D-T) showed that the magnitude of the near SOL E-r is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E x B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, T-e, and SOL E-r. The possibility of a self-feeding mechanism for the increase in the SOL E-r via the interplay between poloidal E x B drift and target T-e is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target T-e and larger E-r, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E x B shear in the SOL is capable of suppressing turbulence.
  •  
15.
  • Citrin, J., et al. (författare)
  • Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations x 10(6-7) faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are
  •  
16.
  • Eriksson, Frida, 1986, et al. (författare)
  • Impact of fast ions on density peaking in JET : fluid and gyrokinetic modeling
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile.
  •  
17.
  • Eriksson, Frida, 1986, et al. (författare)
  • Interpretative and predictive modelling of Joint European Torus collisionality scans
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.
  •  
18.
  • Field, A. R., et al. (författare)
  • Dynamics and stability of divertor detachment in H-mode plasmas on JET
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics and stability of divertor detachment in N-2 seeded, type-I, ELMy H-mode plasmas with dominant NBI heating in the JET ITER-like wall device is studied by means of an integrated analysis of diagnostic data from several systems, classifying data relative to the ELM times. It is thereby possible to study the response of the detachment evolution to the control parameters (SOL input power, upstream density and impurity fraction) prevailing during the inter-ELM periods and the effect of ELMs on the detached divertor. A relatively comprehensive overview is achieved, including the interaction with the targets at various stages of the ELM cycle, the role of ELMs in affecting the detachment process and the overall performance of the scenario. The results are consistent with previous studies in devices with an ITER-like, metal wall, with the important advance of distinguishing data from intra-and inter-ELM periods. Operation without significant degradation of the core confinement can be sustained in the presence of strong radiation from the x-point region (MARFE).
  •  
19.
  • Garcia, J., et al. (författare)
  • A new mechanism for increasing density peaking in tokamaks : improvement of the inward particle pinch with edge E x B shearing
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 61:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing successful tokamak operation scenarios, as well as confident extrapolation of present-day knowledge requires a rigorous understanding of plasma turbulence, which largely determines the quality of the confinement. In particular, accurate particle transport predictions are essential due to the strong dependence of fusion power or bootstrap current on the particle density details. Here, gyrokinetic turbulence simulations are performed with physics inputs taken from a JET power scan, for which a relatively weak degradation of energy confinement and a significant density peaking is obtained with increasing input power. This way physics parameters that lead to such increase in the density peaking shall be elucidated. While well-known candidates, such as the collisionality, previously found in other studies are also recovered in this study, it is furthermore found that edge E x B shearing may adopt a crucial role by enhancing the inward pinch. These results may indicate that a plasma with rotational shear could develop a stronger density peaking as compared to a non-rotating one, because its inward convection is increased compared to the outward diffusive particle flux as long as this rotation has a significant on E x B flow shear stabilization. The possibly significant implications for future devices, which will exhibit much less torque compared to present day experiments, are discussed.
  •  
20.
  • Garcia, J., et al. (författare)
  • On the universality of power laws for tokamak plasma predictions
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y, 2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.
  •  
21.
  • Goniche, M., et al. (författare)
  • Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n(H)/n(e) but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I-p. =. 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4MA), tungsten accumulation can be only avoided with 5MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW, very low tungsten concentration in the core (similar to 10(-5)) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
  •  
22.
  • Guillemaut, C., et al. (författare)
  • Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I-sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I-sat measurements to the peak I-sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Maggi, C. F., et al. (författare)
  • Isotope effects on L-H threshold and confinement in tokamak plasmas
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.
  •  
27.
  • Nabais, F., et al. (författare)
  • Energetic ion losses 'channeling' mechanism and strategy for mitigation
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Results from two different sets of JET experiments are presented. In experiments in which toroidicity-induced Alfven eigenmodes (TAEs) localized at different radial locations had the same frequencies and toroidal mode numbers, the occurrence of enhanced losses after the excitation of TAEs in the core of the plasma was observed. On the contrary, enhanced losses were not observed if the TAEs localized at different radial locations had different frequencies and toroidal mode numbers. Numerical modeling indicates that, in the first set of experiments, the enhanced losses were caused by a combined effect of the TAEs localized at different radial locations. The TAEs localized in the plasma core transported energetic ions from the core to outer regions of the plasma. Then, the TAEs localized in outer regions of the plasma interacted with these ions just transported by the core-localized TAEs causing a further radial displacement of the ions to the plasma edge. This process eventually ends up causing the loss of the resonant ions. In the second set of experiments, it was found that TAEs localized in the plasma core and in outer regions did not interact with the same ions and so no enhanced losses were measured. Sheared profiles of the safety factor combined with flat mass density profiles lead to larger differences on the frequencies of the TAEs localized at different radial locations, eventually avoiding loss of energetic ions through the described mechanism.
  •  
28.
  • Orsitto, F. P., et al. (författare)
  • Approximate analytic expressions using Stokes model for tokamak polarimetry and their range of validity
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 61:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The analysis of the polarimetry measurements has the aim of validating models (De Marco and Segre 1972 Plasma Phys. 14 245), with a careful attention to the clarification of their limits of application. In this paper a new approximation method is introduced, the so-called special constant Omega direction (SCOD), which gives an analytical solution to the polarimetry exact Stokes model equations. The available approximate solutions (including SCOD) of the polarimetry propagation equations are presented, compared and their application limits determined, using a reference tokamak configuration, which is a simplified equilibrium for a circular tokamak. The SCOD approximation is compared successfully to the Stokes model in the context also of equilibria evaluated for two JET discharges. The approximation methods are analytical or very simple mathematical expressions which can also be used in equilibrium codes for their optimization.
  •  
29.
  • Silva, C., et al. (författare)
  • Geodesic acoustic mode evolution in L-mode approaching the L-H transition on JET
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Geodesic acoustic modes (GAMs) may generate strong oscillations in the radial electric field and therefore are considered as a possible trigger mechanism for the L-H transition. This contribution focuses on the characterization of GAMs in JET plasmas when approaching the L-H transition aiming at understanding their possible role in triggering the transition. GAM and turbulence characteristics are measured at the plasma edge using Doppler backscattering for different plasma current and line-averaged densities. The radial location of the GAM often moves further inside when neutral beam injection is applied possibly as a response to changes in the turbulence drive. GAMs are found to have modest amplitude at the transition except for high density discharges where GAMs are stronger, suggesting that the GAM is not responsible for facilitating the transition as the L-H power threshold also increases with density in the high density branch of the L-H transition. Our results suggest that the GAM alone does not play a leading role for causing the L-H transition at JET.
  •  
30.
  • Silva, C., et al. (författare)
  • Scaling of the geodesic acoustic mode amplitude on JET
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:8
  • Tidskriftsartikel (refereegranskat)abstract
    • This work aims at establishing the parameter space for the existence of geodesic acoustic modes (GAMs) on JET as well as investigating their driving and damping mechanisms predicted by different theoretical models. This was achieved using an experimental dataset of GAM measurements based on reflectometry with variations mainly on plasma current and line-averaged density. We present clear experimental evidence for the different mechanisms determining the GAM amplitude: turbulence drive, collisional and collisionless damping. Collisional damping is predicted to be dominant in the edge plasma across the explored JET parameter range contrary to our observations revealing that it is only effective at low plasma current, high density. Although the observed GAM suppression at high plasma current is in good agreement with the collisionless models, the estimated damping rates appear to be too small to explain our measurements.
  •  
31.
  • Tegnered, Daniel, 1987, et al. (författare)
  • Gyrokinetic simulations of particle transport in pellet fuelled JET discharges
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/L-n, a/L-T and plasma beta. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.
  •  
32.
  • Trier, E., et al. (författare)
  • ELM-induced cold pulse propagation in ASDEX Upgrade
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 61:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In ASDEX Upgrade, the propagation of cold pulses induced by type-I edge localized modes (ELMs) is studied using electron cyclotron emission measurements, in a dataset of plasmas with moderate triangularity. It is found that the edge safety factor or the plasma current are the main determining parameters for the inward penetration of the T-e perturbations. With increasing plasma current the ELM penetration is more shallow in spite of the stronger ELMs. Estimates of the heat pulse diffusivity show that the corresponding transport is too large to be representative of the inter-ELM phase. Ergodization of the plasma edge during ELMs is a possible explanation for the observed properties of the cold pulse propagation, which is qualitatively consistent with non-linear magneto-hydro-dynamic simulations.
  •  
33.
  • Cecconello, Marco, et al. (författare)
  • Study of the effect of sawteeth on fast ions and neutron emission in MAST using a neutron camera
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the sawtooth instability on the confinement of fast ions on MAST, and the impact it has on the neutron emission, has been studied in detail using the TRANSP/NUBEAM codes coupled to a full orbit following code. The sawtooth models in TRANSP/NUBEAM indicate that, on MAST, passing and trapped fast ions are redistributed in approximately equal number and on a level that is consistent with the observations. It has not been possible to discriminate between the different sawtooth models since their predictions are all compatible with the neutron camera observations. Full orbit calculations of the fast ion motion have been used to estimate the characteristic time scales and energy thresholds that according to theoretical predictions govern the fast ions redistribution: no energy threshold for the redistribution for either passing and trapped fast ions was found. The characteristic times have, however, frequencies that are comparable with the frequencies of a m = 1, n = 1 perturbation and its harmonics with toroidal mode numbers n = 2, ..., 4, suggesting that on spherical tokamaks, in addition to the classical sawtooth-induced transport mechanisms of fast ions by attachment to the evolving perturbation and the associated E x B drift, a resonance mechanism between the m = 1 perturbation and the fast ions orbits might be at play.
  •  
34.
  • Stockem, Anne, et al. (författare)
  • Suppression of the filamentation instability by a flow-aligned magnetic field : testing the analytic threshold with PIC simulations
  • 2008
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:2, s. 025002-1-25002-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of a flow-aligned and spatially homogeneous magnetic field on the filamentation instability (FI) is examined in a system of two equal counterstreaming non-relativistic cool electron beams. Particle-in-cell simulations that represent the plane perpendicular to the flow velocity vector confirm the reduction of the linear growth rate by the initial magnetic field. The FI is, however, not inhibited by a magnetic field with the critical strength, for which the solution of the linear dispersion relation predicts a full suppression. The saturation of the electromagnetic fields in the plasma involves a balance between the magnetic pressure gradient and the electric field resulting from the charge displacement. The simulations demonstrate that the magnetic energy gain and the field structure upon saturation do not depend on the initial magnetic field strength. This can be explained by the qualitative similarity of the spectrum of unstable wavenumbers, at least for subcritical strengths of the background magnetic field, and by the vanishing of the pressure gradient of a spatially homogeneous magnetic field. Magnetic trapping is apparently not the saturation mechanism for the considered plasma parameters. The spatial power spectrum of the saturated magnetic fields in the simulation plane can be approximated by a power-law function and the magnetic and electric spectra are similar at high wavenumbers. The final electron velocity distributions are comparable for all magnetic field strengths.
  •  
35.
  • Brandenburg, Axel (författare)
  • The critical role of magnetic helicity in astrophysical large-scale dynamos
  • 2009
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 51:12, s. 4043-
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of magnetic helicity in astrophysical large-scale dynamos is reviewed and compared with cases where there is no energy supply and an initial magnetic field can only decay. In both cases magnetic energy tends to get redistributed to larger scales. Depending on the efficiency of magnetic helicity fluxes the decay of a helical field can speed up. Likewise, the saturation of a helical dynamo can speed up through magnetic helicity fluxes. The astrophysical importance of these processes is reviewed in the context of the solar dynamo and an estimated upper limit for the magnetic helicity flux of 1046 Mx2/cycle is given.
  •  
36.
  • Brunsell, Per, et al. (författare)
  • Active control of multiple resistive wall modes
  • 2005
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 47:12 B, s. B25-B36
  • Tidskriftsartikel (refereegranskat)abstract
    •  A two-dimensional array of saddle coils at M-c poloidal and N-c toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition vertical bar n - n'vertical bar = N-c. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc x Nc = 4 x 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc x Nc = 4 x 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7-8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.
  •  
37.
  • Catto, Peter J., et al. (författare)
  • A unified treatment of kinetic effects in a tokamak pedestal
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 53, s. 054004-
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the effects of a finite pedestal radial electric field on ion orbits using a unified approach. We then employ these modified orbit results to retain finite E×B drift departures from flux surfaces in an improved drift-kinetic equation. The procedure allows us to make a clear distinction between transit averages and flux surface averages when solving this kinetic equation. The technique outlined here is intended to clarify and unify recent evaluations of the banana regime decrease and plateau regime alterations in the ion heat diffusivity; the reduction and possible reversal of the poloidal flow in the banana regime, and its augmentation in the plateau regime; the increase in the bootstrap current; and the enhancement of the residual zonal flow regulation of turbulence.
  •  
38.
  • Catto, P. J., et al. (författare)
  • Kinetic effects on a tokamak pedestal ion flow, ion heat transport and bootstrap current
  • 2013
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 55:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the effects of a finite radial electric field on ion orbits in a subsonic pedestal. Using a procedure that makes a clear distinction between a transit average and a flux surface average we are able to solve the kinetic equation to retain the modifications due to finite E X B drift orbit departures from flux surfaces. Our approach properly determines the velocity space localized, as well as the nonlocal, portion of the ion distribution function in the banana and plateau regimes in the small aspect ratio limit. The rapid variation of the poloidal ion flow coefficient and the electrostatic potential in the total energy modify previous banana regime evaluations of the ion flow, the bootstrap current, and the radial ion heat flux in a subsonic pedestal. In the plateau regime, the rapid variation of the poloidal flow coefficient alters earlier results for the ion flow and bootstrap current, while leaving the ion heat flux unchanged since the rapid poloidal variation of the total energy was properly retained.
  •  
39.
  • Cecconello, Marco, et al. (författare)
  • Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes
  • 2006
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 48:9, s. 1311-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the `slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non- resonant RWMs. This may be due to an indirect positive effect, through non- linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma- wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.
  •  
40.
  • Chapman, I.T., et al. (författare)
  • The Effect of Energetic Particles on Resistive Wall Mode Stability in MAST
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 53, s. 065022-
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistive wall mode (RWM) stability limits have been probed by MHD spectroscopy and numerical modelling. MAST plasmas have operated up to βN = 5.7, well above the predicted ideal kink no-wall limit or measured resonant field amplification limits due to a combination of rotation and kinetic damping. By varying the density, both the rotation and the fast ion distribution function have been changed dramatically. Detailed drift-kinetic modelling shows that whilst the contribution of energetic beam ions to RWM damping does increase at sufficiently high plasma rotation as to allow resonance with the fast ion precession frequency, the thermal ion damping always dominates over the fast ion contribution.
  •  
41.
  • Connor, J W, et al. (författare)
  • High-m kink/tearing modes in cylindrical geometry
  • 2014
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 56:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, Δ'. In the presence of a steep monotonic current gradient, Δ' becomes a function of a parameter, σ0, characterising the ratio of the maximum current gradient to magnetic shear and xs, characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current 'spike', so that there is a non-monotonic current profile, Δ' also depends on two parameters: κ, related to the ratio of the curvature of the current density at its maximum to the magnetic shear and xs, which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyrokinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.
  •  
42.
  • Corde, S., et al. (författare)
  • Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.
  •  
43.
  • Decker, Joan, 1977, et al. (författare)
  • Numerical characterization of bump formation in the runaway electron tail
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:2, s. 025016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham–Lorentz–Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting electron acceleration. The effect of the ALD force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker–Planck codes LUKE (Decker and Peysson 2004 Report EUR-CEA-FC-1736, Euratom-CEA), and CODE (Landreman et al 2014 Comput. Phys. Commun. 185 847). The time evolution of the distribution function is analyzed as a function of the relevant parameters: parallel electric field, background magnetic field, and effective charge. Under the action of the ALD force, we find that runaway electrons are subject to an energy limit, and that the electron distribution evolves towards a steady-state. In addition, a bump is formed in the tail of the electron distribution function if the electric field is sufficiently strong. The mechanisms leading to the bump formation and energy limit involve both the parallel and perpendicular momentum dynamics; they are described in detail. An estimate for the bump location in momentum space is derived. We observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could, in turn, pump energy from runaway electrons and alter their confinement.
  •  
44.
  • Dieckmann, Mark Eric, 1969-, et al. (författare)
  • Simulation of a collisionless planar electrostatic shock in a proton–electron plasma with a strong initial thermal pressure change
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - Bristol : Institute of Physics and IOP Publishing Limited. - 0741-3335 .- 1361-6587. ; 52:2, s. 025001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron–proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
  •  
45.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows
  • 2008
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50, s. 065020-1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnant blast shells can reach the flow speed vs = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed vb vs. For vb vs the Buneman or upper-hybrid instabilities dominate, while for vb vs the filamentation and mixed modes grow faster. Here the relevant waves for vb vs are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed vs is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to ~10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock. 
  •  
46.
  • Dumont, R. J., et al. (författare)
  • Multi-megawatt, gigajoule plasma operation in Tore Supra
  • 2014
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 56:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating several important technological elements required for long pulse operation in magnetic fusion devices, the Tore Supra tokamak routinely addresses the physics and technology issues related to this endeavor and, as a result, contributes essential information on critical issues for ITER. During the last experimental campaign, components of the radiofrequency system including an ITER relevant launcher (passive active multijunction (PAM)) and continuous wave/3.7 GHz klystrons, have been extensively qualified, and then used to develop steady state scenarios in which the lower hybrid (LH), ion cyclotron (IC) and electron cyclotron (EC) systems have been combined in fully stationary shots (duration similar to 150 s, injected power up to similar to 8MW, injected/extracted energy up to similar to 1 GJ). Injection of LH power in the 5.0-6.0MW range has extended the domain of accessible plasma parameters to higher densities and non-inductive currents. These discharges exhibit steady electron internal transport barriers (ITBs). We report here on various issues relevant to the steady state operation of future devices, ranging from operational aspects and limitations related to the achievement of long pulses in a fully actively cooled fusion device (e. g. overheating due to fast particle losses), to more fundamental plasma physics topics. The latter include a beneficial influence of IC resonance heating on the magnetohydrodynamic (MHD) stability in these discharges, which has been studied in detail. Another interesting observation is the appearance of oscillations of the central temperature with typical periods of the order of one to several seconds, caused by a nonlinear interplay between LH deposition, MHD activity and bootstrap current in the presence of an ITB.
  •  
47.
  • Eriksson, Jacob, et al. (författare)
  • Finite Larmor radii effects in fast ion measurements with neutron emission spectrometry
  • 2013
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 55:1, s. 015008-
  • Tidskriftsartikel (refereegranskat)abstract
    • When analysing data from fast ion measurements it is normally assumed that the gyro-phase distribution of the ions is isotropic within the field of view of the measuring instrument. This assumption is not valid if the Larmor radii of the fast ions are comparable to—or larger than—the gradient scale length in the spatial distribution of the ions, and if this scale length is comparable to—or smaller than—the width of the field of view of the measuring instrument. In this paper the effect of such an anisotropy is demonstrated by analysing neutron emission spectrometry data from a JET experiment with deuterium neutral beams together with radiofrequency heating at the third harmonic of the deuterium cyclotron frequency. In the experiment, the neutron time-of-flight spectrometer TOFOR was used to measure the neutrons from the d(d,n) 3 He-reaction. Comparison of the experimental data with Monte Carlo calculations shows that the finite Larmor radii of the fast ions need to be included in the modelling to get a good description of the data. Similar effects are likely to be important for other fast ion diagnostics, such as γ -ray spectroscopy and neutral particle analysis, as well.
  •  
48.
  • Gatu Johnson, Maria, et al. (författare)
  • Modelling and TOFOR measurements of scattered neutrons at JET
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 52:8, s. 085002-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the scattered and direct neutron fluxes in the line of sight (LOS) of the TOFOR neutron spectrometer at JET are simulated and the simulations compared with measurement results. The Monte Carlo code MCNPX is used in the simulations, with a vessel material composition obtained from the JET drawing office and neutron emission profiles calculated from TRANSP simulations of beam ion density profiles. The MCNPX simulations show that the material composition of the scattering wall has a large effect on the shape of the scattered neutron spectrum. Neutron source profile shapes as well as radial and vertical source displacements in the TOFOR LOS are shown to only marginally affect the scatter, while having a larger impact on the direct neutron flux. A matrix of simulated scatter spectra for mono-energetic source neutrons is created which is folded with an approximation of the source spectrum for each JET pulse studied to obtain a scatter component for use in the data analysis. The scatter components thus obtained are shown to describe the measured data. It is also demonstrated that the scattered flux is approximately constant relative to the total neutron yield as measured with the JET fission chambers, while there is a larger spread in the direct flux, consistent with simulations. The simulated effect on the integrated scattered/direct ratio of an increase with movements outward along the radial direction and a drop at higher values of the vertical plasma position is also reproduced in the measurements. Finally, the quantitative agreement found in scatter/direct ratios between simulations (0.185 ± 0.005) and measurements (0.187 ± 0.050) serves as a solid benchmark of the MCNPX model used.
  •  
49.
  • Gopal, A., et al. (författare)
  • MegaGauss magnetic field generation by ultra-short pulses at relativistic intensities
  • 2013
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 55:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the experimental studies on megaGauss magnetic field generation using a 35 femtosecond laser at relativistic intensities. The polarization change of the self-generated harmonics was recorded to estimate the magnetic field. A parameter scan was performed by varying the input laser intensity as well as the contrast ratio. External optical probing diagnostics were performed using the second harmonic of the incident laser. Additionally, the optical transition radiation from the rear of the target was also recorded.
  •  
50.
  • Hansson, M., et al. (författare)
  • Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 58:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 334
Typ av publikation
tidskriftsartikel (332)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (328)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Frassinetti, Lorenzo (71)
Cecconello, Marco (65)
Conroy, Sean (51)
Ericsson, Göran (51)
Hellsten, Torbjörn (48)
Hjalmarsson, Anders (48)
visa fler...
Eriksson, Jacob, Dr, ... (47)
Andersson Sundén, Er ... (46)
Weiszflog, Matthias (46)
Johnson, Thomas (45)
Zychor, I (44)
Menmuir, Sheena (43)
Hellesen, Carl, 1980 ... (42)
Possnert, Göran, 195 ... (42)
Sjöstrand, Henrik, 1 ... (42)
Bykov, Igor (41)
Rubel, Marek (40)
Binda, Federico, 198 ... (40)
Skiba, Mateusz, 1985 ... (40)
Ström, Petter (39)
Bergsåker, Henric (38)
Petersson, Per (38)
Weckmann, Armin (37)
Tholerus, Emmi (34)
Dzysiuk, Nataliia (34)
Rachlew, Elisabeth, ... (33)
Giroud, C (31)
Garcia-Carrasco, Alv ... (27)
Ratynskaia, Svetlana (25)
Ongena, J (22)
Van Eester, D (21)
Graves, J.P. (21)
Elevant, Thomas (20)
Ivanova, Darya (20)
Joffrin, E (19)
Stefanikova, Estera (19)
Crombe, K (18)
Lerche, E (18)
Asp, E (17)
Mayoral, M.L. (17)
Loarte, A (16)
Rachlew, Elisabeth (16)
Strand, Pär, 1968 (16)
Olivares, Pablo Vall ... (16)
Alper, B (15)
Coffey, I (15)
Mantica, P (15)
Saarelma, S (15)
Chapman, I.T. (15)
Sharapov, S. E. (15)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (183)
Uppsala universitet (102)
Chalmers tekniska högskola (83)
Linköpings universitet (18)
Umeå universitet (11)
Lunds universitet (8)
visa fler...
Göteborgs universitet (3)
Stockholms universitet (1)
visa färre...
Språk
Engelska (334)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (290)
Teknik (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy