SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1474 760X "

Sökning: L773:1474 760X

  • Resultat 1-50 av 165
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Berglund, Jonas, et al. (författare)
  • Novel origins of copy number variation in the dog genome
  • 2012
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 13:8, s. R73-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. RESULTS: We use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. CONCLUSIONS: A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.
  •  
3.
  • Bornelöv, Susanne, 1984-, et al. (författare)
  • Correspondence on Lovell et al. : identification of chicken genes previously assumed to be evolutionarily lost
  • 2017
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Through RNA-Seq analyses, we identified 137 genes that are missing in chicken, including the long-sought-after nephrin and tumor necrosis factor genes. These genes tended to cluster in GC-rich regions that have poor coverage in genome sequence databases. Hence, the occurrence of syntenic groups of vertebrate genes that have not been observed in Aves does not prove the evolutionary loss of such genes.
  •  
4.
  • Farnham, Andrea, et al. (författare)
  • Early career researchers want Open Science
  • 2017
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1474-760X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Open Science is encouraged by the European Union and many other political and scientific institutions. However, scientific practice is proving slow to change. We propose, as early career researchers, that it is our task to change scientific research into open scientific research and commit to Open Science principles.
  •  
5.
  • Gustafsson, Johan, 1976, et al. (författare)
  • BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq
  • 2021
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1474-7596. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The incorporation of unique molecular identifiers (UMIs) in single-cell RNA-seq assays makes possible the identification of duplicated molecules, thereby facilitating the counting of distinct molecules from sequenced reads. However, we show that the naïve removal of duplicates can lead to a bias due to a “pooled amplification paradox,” and we propose an improved quantification method based on unseen species modeling. Our correction called BUTTERFLY uses a zero truncated negative binomial estimator implemented in the kallisto bustools workflow. We demonstrate its efficacy across cell types and genes and show that in some cases it can invert the relative abundance of genes.
  •  
6.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
7.
  • Karlsson, Elinor K, et al. (författare)
  • Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B
  • 2013
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible.RESULTS: Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors.CONCLUSIONS: Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease.
  •  
8.
  •  
9.
  • Malyukova, Alena, et al. (författare)
  • Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia
  • 2024
  • Ingår i: Genome Biology. - 1474-7596 .- 1474-760X. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. Results: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. Conclusions: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.
  •  
10.
  • Nilsson, Björn, et al. (författare)
  • An improved method for detecting and delineating genomic regions with altered gene expression in cancer
  • 2008
  • Ingår i: GENOME BIOL. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 9:1, s. R13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic regions with altered gene expression are a characteristic feature of cancer cells. We present a novel method for identifying such regions in gene expression maps. This method is based on total variation minimization, a classical signal restoration technique. In systematic evaluations, we show that our method combines top-notch detection performance with an ability to delineate relevant regions without excessive over-segmentation, making it a significant advance over existing methods. Software (Rendersome) is provided.
  •  
11.
  • Nilsson, Björn, et al. (författare)
  • Threshold-free high-power methods for the ontological analysis of genome-wide gene expression studies
  • 2007
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 8:5, s. R74-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ontological analysis facilitates microarray data interpretation. We describe new ontological analysis methods which, unlike existing approaches, are threshold-free and statistically powerful. We perform extensive evaluations and introduce a new concept, detection spectra, to characterize methods. We show that different ontological analysis methods exhibit distinct detection spectra, and that it is critical to account for this diversity. Our results argue strongly against the continued use of existing methods, and provide directions towards an enhanced approach.
  •  
12.
  • Pochon, Zoé, et al. (författare)
  • aMeta : an accurate and memory-efficient ancient metagenomic profiling workflow
  • 2023
  • Ingår i: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of microbial data from archaeological samples is a growing field with great potential for understanding ancient environments, lifestyles, and diseases. However, high error rates have been a challenge in ancient metagenomics, and the availability of computational frameworks that meet the demands of the field is limited. Here, we propose aMeta, an accurate metagenomic profiling workflow for ancient DNA designed to minimize the amount of false discoveries and computer memory requirements. Using simulated data, we benchmark aMeta against a current state-of-the-art workflow and demonstrate its superiority in microbial detection and authentication, as well as substantially lower usage of computer memory.
  •  
13.
  • Sabin, Susanna, et al. (författare)
  • A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex
  • 2020
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1474-760X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although tuberculosis accounts for the highest mortality from a bacterial infection on a global scale, questions persist regarding its origin. One hypothesis based on modern Mycobacterium tuberculosis complex (MTBC) genomes suggests their most recent common ancestor followed human migrations out of Africa approximately 70,000 years before present. However, studies using ancient genomes as calibration points have yielded much younger dates of less than 6000 years. Here, we aim to address this discrepancy through the analysis of the highest-coverage and highest-quality ancient MTBC genome available to date, reconstructed from a calcified lung nodule of Bishop Peder Winstrup of Lund (b. 1605-d. 1679). RESULTS: A metagenomic approach for taxonomic classification of whole DNA content permitted the identification of abundant DNA belonging to the human host and the MTBC, with few non-TB bacterial taxa comprising the background. Genomic enrichment enabled the reconstruction of a 141-fold coverage M. tuberculosis genome. In utilizing this high-quality, high-coverage seventeenth-century genome as a calibration point for dating the MTBC, we employed multiple Bayesian tree models, including birth-death models, which allowed us to model pathogen population dynamics and data sampling strategies more realistically than those based on the coalescent. CONCLUSIONS: The results of our metagenomic analysis demonstrate the unique preservation environment calcified nodules provide for DNA. Importantly, we estimate a most recent common ancestor date for the MTBC of between 2190 and 4501 before present and for Lineage 4 of between 929 and 2084 before present using multiple models, confirming a Neolithic emergence for the MTBC.
  •  
14.
  • Sandve, Geir K., et al. (författare)
  • The Genomic HyperBrowser: Inferential genomics at the sequence level
  • 2010
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1474-760X .- 1465-6906. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.© 2010 Sandve et al.; licensee BioMed Central Ltd.
  •  
15.
  • Sheng, Zheya, et al. (författare)
  • Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment.
  • 2015
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Artificial selection provides a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions where allele-frequencies have diverged during selection. To avoid false positive signatures of selection, it is necessary to show that a sweep affects a selected trait before it can be considered adaptive. Here, we confirm candidate, genome-wide distributed selective sweeps originating from the standing genetic variation in a long-term selection experiment on high and low body weight of chickens.RESULTS: Using an intercross between the two divergent chicken lines, 16 adaptive selective sweeps were confirmed based on their association with the body weight at 56 days of age. Although individual additive effects were small, the fixation for alternative alleles across the loci contributed at least 40 % of the phenotypic difference for the selected trait between these lines. The sweeps contributed about half of the additive genetic variance present within and between the lines after 40 generations of selection, corresponding to a considerable portion of the additive genetic variance of the base population.CONCLUSIONS: Long-term, single-trait, bi-directional selection in the Virginia chicken lines has resulted in a gradual response to selection for extreme phenotypes without a drastic reduction in the genetic variation. We find that fixation of several standing genetic variants across a highly polygenic genetic architecture made a considerable contribution to long-term selection response. This provides new fundamental insights into the dynamics of standing genetic variation during long-term selection and adaptation.
  •  
16.
  • Shu, Huan, et al. (författare)
  • Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes
  • 2014
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 15:4, s. R62-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Histone variants establish structural and functional diversity of chromatin by affecting nucleosome stability and histone-protein interactions. H3.3 is an H3 histone variant that is incorporated into chromatin outside of S-phase in various eukaryotes. In animals, H3.3 is associated with active transcription and possibly maintenance of transcriptional memory. Plant H3 variants, which evolved independently of their animal counterparts, are much less well understood.RESULTS: We profile the H3.3 distribution in Arabidopsis at mono-nucleosomal resolution using native chromatin immunoprecipitation. This results in the precise mapping of H3.3-containing nucleosomes, which are not only enriched in gene bodies as previously reported, but also at a subset of promoter regions and downstream of the 3[prime] ends of active genes. While H3.3 presence within transcribed regions is strongly associated with transcriptional activity, H3.3 at promoters is often independent of transcription. In particular, promoters with GA motifs carry H3.3 regardless of the gene expression levels. H3.3 on promoters of inactive genes is associated with H3K27me3 at gene bodies. In addition, H3.3-enriched plant promoters often contain RNA Pol II considerably upstream of the transcriptional start site. H3.3 and RNA Pol II are found on active as well as on inactive promoters and are enriched at strongly regulated genes.CONCLUSIONS: In animals and plants, H3.3 organizes chromatin in transcribed regions and in promoters. The results suggest a function of H3.3 in transcriptional regulation and support a model that a single ancestral H3 evolved into H3 variants with similar sub-functionalization patterns in plants and animals.
  •  
17.
  • Yokoyama, Maho, et al. (författare)
  • Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA
  • 2018
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1474-760X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Fitness costs imposed on bacteria by antibiotic resistance mechanisms are believed to hamper their dissemination. The scale of these costs is highly variable. Some, including resistance of Staphylococcus aureus to the clinically important antibiotic mupirocin, have been reported as being cost-free, which suggests that there are few barriers preventing their global spread. However, this is not supported by surveillance data in healthy communities, which indicate that this resistance mechanism is relatively unsuccessful. Results: Epistasis analysis on two collections of MRSA provides an explanation for this discord, where the mupirocin resistance-conferring mutation of the ileS gene appears to affect the levels of toxins produced by S. aureus when combined with specific polymorphisms at other loci. Proteomic analysis demonstrates that the activity of the secretory apparatus of the PSM family of toxins is affected by mupirocin resistance. As an energetically costly activity, this reduction in toxicity masks the fitness costs associated with this resistance mutation, a cost that becomes apparent when toxin production becomes necessary. This hidden fitness cost provides a likely explanation for why this mupirocin-resistance mechanism is not more prevalent, given the widespread use of this antibiotic. Conclusions: With dwindling pools of antibiotics available for use, information on the fitness consequences of the acquisition of resistance may need to be considered when designing antibiotic prescribing policies. However, this study suggests there are levels of depth that we do not understand, and that holistic, surveillance and functional genomics approaches are required to gain this crucial information.
  •  
18.
  •  
19.
  •  
20.
  • Alsmark, Cecilia, et al. (författare)
  • Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes
  • 2013
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 14:2, s. R19-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. Results: We used a phylogenomic approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers, dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. Conclusions: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism are conserved among lineages, the genes making up those pathways can have very different origins in different eukaryotes. Thus, from the perspective of the effects of lateral gene transfer on individual gene ancestries in different lineages, eukaryotic metabolism appears to be chimeric.
  •  
21.
  • Ameur, Adam, et al. (författare)
  • Global and unbiased detection of splice junctions from RNA-seq data
  • 2010
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906. ; 11:3, s. R34-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a new strategy for de novo prediction of splice junctions in short-read RNA-seq data, suitable for detection of novel splicing events and chimeric transcripts. When tested on mouse RNA-seq data, > 31,000 splice events were predicted, of which 88% bridged between two regions separated by <= 100 kb, and 74% connected two exons of the same RefSeq gene. Our method also reports genomic rearrangements such as insertions and deletions.
  •  
22.
  • Andersen, M. R., et al. (författare)
  • Systemic analysis of the response of Aspergillus niger to ambient pH
  • 2009
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The filamentous fungus Aspergillus niger is an exceptionally efficient producer of organic acids, which is one of the reasons for its relevance to industrial processes and commercial importance. While it is known that the mechanisms regulating this production are tied to the levels of ambient pH, the reasons and mechanisms for this are poorly understood. Methods: To cast light on the connection between extracellular pH and acid production, we integrate results from two genome-based strategies: A novel method of genome-scale modeling of the response, and transcriptome analysis across three levels of pH. Results: With genome scale modeling with an optimization for extracellular proton-production, it was possible to reproduce the preferred pH levels for citrate and oxalate. Transcriptome analysis and clustering expanded upon these results and allowed the identification of 162 clusters with distinct transcription patterns across the different pH-levels examined. New and previously described pH-dependent cis-acting promoter elements were identified. Combining transcriptome data with genomic coordinates identified four pH-regulated secondary metabolite gene clusters. Integration of regulatory profiles with functional genomics led to the identification of candidate genes for all steps of the pal/pacC pH signalling pathway. Conclusions: The combination of genome-scale modeling with comparative genomics and transcriptome analysis has provided systems-wide insights into the evolution of highly efficient acidification as well as production process applicable knowledge on the transcriptional regulation of pH response in the industrially important A. niger. It has also made clear that filamentous fungi have evolved to employ several offensive strategies for out-competing rival organisms.
  •  
23.
  • Andersson, Anders, et al. (författare)
  • A transcriptional timetable of autumn senescence
  • 2004
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 5:4, s. R24-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background We have developed genomic tools to allow the genus Populus (aspens and cottonwoods) to be exploited as a full-featured model for investigating fundamental aspects of tree biology. We have undertaken large-scale expressed sequence tag (EST) sequencing programs and created Populus microarrays with significant gene coverage. One of the important aspects of plant biology that cannot be studied in annual plants is the gene activity involved in the induction of autumn leaf senescence. Results On the basis of 36,354 Populus ESTs, obtained from seven cDNA libraries, we have created a DNA microarray consisting of 13,490 clones, spotted in duplicate. Of these clones, 12,376 (92%) were confirmed by resequencing and all sequences were annotated and functionally classified. Here we have used the microarray to study transcript abundance in leaves of a free-growing aspen tree (Populus tremula) in northern Sweden during natural autumn senescence. Of the 13,490 spotted clones, 3,792 represented genes with significant expression in all leaf samples from the seven studied dates. Conclusions We observed a major shift in gene expression, coinciding with massive chlorophyll degradation, that reflected a shift from photosynthetic competence to energy generation by mitochondrial respiration, oxidation of fatty acids and nutrient mobilization. Autumn senescence had much in common with senescence in annual plants; for example many proteases were induced. We also found evidence for increased transcriptional activity before the appearance of visible signs of senescence, presumably preparing the leaf for degradation of its components.
  •  
24.
  • Andersson, Anders, et al. (författare)
  • Global analysis of mRNA stability in the archaeon Sulfolobus
  • 2006
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 7:10, s. R99-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Transcript half-lives differ between organisms, and between groups of genes within the same organism. The mechanisms underlying these differences are not clear, nor are the biochemical properties that determine the stability of a transcript. To address these issues, genome-wide mRNA decay studies have been conducted in eukaryotes and bacteria. In contrast, relatively little is known about RNA stability in the third domain of life, Archaea. Here, we present a microarray-based analysis of mRNA half-lives in the hyperthermophilic crenarchaea Sulfolobus solfataricus and Sulfolobus acidocaldarius, constituting the first genome-wide study of RNA decay in archaea. Results: The two transcriptomes displayed similar half-life distributions, with medians of about five minutes. Growth-related genes, such as those involved in transcription, translation and energy production, were over-represented among unstable transcripts, whereas uncharacterized genes were over-represented among the most stable. Half-life was negatively correlated with transcript abundance and, unlike the situation in other organisms, also negatively correlated with transcript length. Conclusion: The mRNA half-life distribution of Sulfolobus species is similar to those of much faster growing bacteria, contrasting with the earlier observation that median mRNA half-life is proportional to the minimal length of the cell cycle. Instead, short half-lives may be a general feature of prokaryotic transcriptomes, possibly related to the absence of a nucleus and/or more limited post-transcriptional regulatory mechanisms. The pattern of growth-related transcripts being among the least stable in Sulfolobus may also indicate that the short half-lives reflect a necessity to rapidly reprogram gene expression upon sudden changes in environmental conditions.
  •  
25.
  • Annacondia López, María Luz, et al. (författare)
  • Reprogramming of RNA silencing triggered by cucumber mosaic virus infection in Arabidopsis
  • 2021
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Background RNA silencing has an important role mediating sequence-specific virus resistance in plants. The complex interaction of viruses with RNA silencing involves the loading of viral small interfering RNAs (vsiRNAs) into its host ARGONAUTE (AGO) proteins. As a side effect of their antiviral activity, vsiRNAs loading into AGO proteins can also mediate the silencing of endogenous genes. Here, we analyze at the genome-wide level both aspects of the interference of cucumber mosaic virus (CMV) with the RNA silencing machinery of Arabidopsis thaliana. Results We observe CMV-derived vsiRNAs affect the levels of endogenous sRNA classes. Furthermore, we analyze the incorporation of vsiRNAs into AGO proteins with a described antiviral role and the viral suppressor of RNA silencing (VSR) 2b, by combining protein immunoprecipitation with sRNA high-throughput sequencing. Interestingly, vsiRNAs represent a substantial percentage of AGO-loaded sRNAs and displace other endogenous sRNAs. As a countermeasure, the VSR 2b loaded vsiRNAs and mRNA-derived siRNAs, which affect the expression of the genes they derive from. Additionally, we analyze how vsiRNAs incorporate into the endogenous RNA silencing pathways by exploring their target mRNAs using parallel analysis of RNA end (PARE) sequencing, which allow us to identify vsiRNA-targeted genes genome-wide. Conclusions This work exemplifies the complex relationship of RNA viruses with the endogenous RNA silencing machinery and the multiple aspects of virus resistance and virulence that this interaction induces.
  •  
26.
  • Ashelford, Kevin, et al. (författare)
  • Full genome re-sequencing reveals a novel circadian clock mutationin Arabidopsis
  • 2011
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 12, s. R28-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Map based cloning in Arabidopsis thaliana can be a difficult and time-consuming process,specifically if the phenotype is subtle and scoring labour intensive. An alternative to map basedcloning would be to directly sequence the whole genome of a mutant to uncover the mutationresponsible for the phenotype. Results: Here, we have re-sequenced the 120 Mb genome of a novel Arabidopsis clock mutant earlybird (ebi-1), using massively parallel sequencing by ligation. This process was further complicated by the fact that ebi-1 is in Wassilewskija (Ws-2), not the reference accession ofArabidopsis. The approach reveals evidence of DNA strand bias in the ethyl methanesulfonate(EMS) mutation process. We have demonstrated the utility of sequencing a backcrossed line andusing gene expression data to limit the number of SNP considered. Using new SNP informationwe have excluded a previously identified clock gene, PRR7. Finally, we have identified a SNPin the gene AtNFXL-2 as the likely cause of the ebi-1 phenotype and validated this bycharacterising a further allele. Conclusion: In Arabidopsis, as in other organisms, the (EMS) mutation load can be high. Here wedescribe how sequencing a backcrossed line, using functional genomics and analysing new SNPinformation can be used to reduce the number EMS mutations for consideration. Moreover, theapproach we describe here does not require out-crossing and scoring F2 mapping populations, anapproach which can be compromised by background effects. The strategy has broad utility andwill be an extremely useful tool to identify causative SNP in other organisms.
  •  
27.
  • Atla, Goutham, et al. (författare)
  • Genetic regulation of RNA splicing in human pancreatic islets
  • 2022
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X. ; 23, s. 1-28
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNon-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown.ResultsWe examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3.ConclusionsThese data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.
  •  
28.
  •  
29.
  • Balliu, Brunilda, et al. (författare)
  • Genetic regulation of gene expression and splicing during a 10-year period of human aging
  • 2019
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Molecular and cellular changes are intrinsic to aging and age-related diseases. Prior cross-sectional studies have investigated the combined effects of age and genetics on gene expression and alternative splicing; however, there has been no long-term, longitudinal characterization of these molecular changes, especially in older age.Results: We perform RNA sequencing in whole blood from the same individuals at ages 70 and 80 to quantify how gene expression, alternative splicing, and their genetic regulation are altered during this 10-year period of advanced aging at a population and individual level. We observe that individuals are more similar to their own expression profiles later in life than profiles of other individuals their own age. We identify 1291 and 294 genes differentially expressed and alternatively spliced with age, as well as 529 genes with outlying individual trajectories. Further, we observe a strong correlation of genetic effects on expression and splicing between the two ages, with a small subset of tested genes showing a reduction in genetic associations with expression and splicing in older age.Conclusions: These findings demonstrate that, although the transcriptome and its genetic regulation is mostly stable late in life, a small subset of genes is dynamic and is characterized by a reduction in genetic regulation, most likely due to increasing environmental variance with age.
  •  
30.
  • Banci, L, et al. (författare)
  • An idea whose time has come
  • 2007
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906. ; 8:11, s. 408-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
31.
  • Barile, M., et al. (författare)
  • Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation
  • 2021
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. Results Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. Conclusions By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.
  •  
32.
  • Barrenäs, Fredrik, et al. (författare)
  • Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms
  • 2012
  • Ingår i: Genome Biology. - : BioMed Central. - 1465-6906 .- 1474-760X .- 1465-6914. ; 13:6, s. R46-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Complex diseases are associated with altered interactions between thousands of genes. We developed a novel method to identify and prioritize disease genes, which was generally applicable to complex diseases.RESULTS: We identified modules of highly interconnected genes in disease-specific networks derived from integrating gene-expression and protein interaction data. We examined if those modules were enriched for disease-associated SNPs, and could be used to find novel genes for functional studies. First, we analyzed publicly available gene expression microarray and genome-wide association study (GWAS) data from 13, highly diverse, complex diseases. In each disease, highly interconnected genes formed modules, which were significantly enriched for genes harboring disease-associated SNPs. To test if such modules could be used to find novel genes for functional studies, we repeated the analyses using our own gene expression microarray and GWAS data from seasonal allergic rhinitis. We identified a novel gene, FGF2, whose relevance was supported by functional studies using combined small interfering RNA-mediated knock-down and gene expression microarrays. The modules in the 13 complex diseases analyzed here tended to overlap and were enriched for pathways related to oncological, metabolic and inflammatory diseases. This suggested that this union of the modules would be associated with a general increase in susceptibility for complex diseases. Indeed, we found that this union was enriched with GWAS genes for 145 other complex diseases.CONCLUSIONS: Modules of highly interconnected complex disease genes were enriched for disease-associated SNPs, and could be used to find novel genes for functional studies.
  •  
33.
  •  
34.
  • Bolivar, Paulina, et al. (författare)
  • GC-biased gene conversion conceals the prediction of the nearly neutral theory in avian genomes
  • 2019
  • Ingår i: Genome Biology. - : BMC. - 1465-6906 .- 1474-760X. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The nearly neutral theory of molecular evolution predicts that the efficacy of natural selection increases with the effective population size. This prediction has been verified by independent observations in diverse taxa, which show that life-history traits are strongly correlated with measures of the efficacy of selection, such as the d(N)/d(S) ratio. Surprisingly, avian taxa are an exception to this theory because correlations between life-history traits and d(N)/d(S) are apparently absent. Here we explore the role of GC-biased gene conversion on estimates of substitution rates as a potential driver of these unexpected observations.Results: We analyze the relationship between d(N)/d(S) estimated from alignments of 47 avian genomes and several proxies for effective population size. To distinguish the impact of GC-biased gene conversion from selection, we use an approach that accounts for non-stationary base composition and estimate d(N)/d(S) separately for changes affected or unaffected by GC-biased gene conversion. This analysis shows that the impact of GC-biased gene conversion on substitution rates can explain the lack of correlations between life-history traits and d(N)/d(S). Strong correlations between life-history traits and d(N)/d(S) are recovered after accounting for GC-biased gene conversion. The correlations are robust to variation in base composition and genomic location.Conclusions: Our study shows that gene sequence evolution across a wide range of avian lineages meets the prediction of the nearly neutral theory,the efficacy of selection increases with effective population size. Moreover, our study illustrates that accounting for GC-biased gene conversion is important to correctly estimate the strength of selection.
  •  
35.
  • Brolin, M, et al. (författare)
  • Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites
  • 2009
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 10:10, s. R117-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Single nucleotide polymorphisms are common in duplicated genes, causing functional preservation, alteration or silencing. The Plasmodium falciparum genes var2csa and Pf332 are duplicated in the haploid genome of the HB3 parasite line. Whereas the molecular function of Pf332 remains to be elucidated, VAR2CSA is known to be the main adhesin in placental parasite sequestration. Sequence variations introduced upon duplication of these genes provide discriminative possibilities to analyze allele-specific transcription with a bearing towards understanding gene dosage impact on parasite biology. Results: We demonstrate an approach combining real-time PCR allelic discrimination and discriminative RNA-FISH to distinguish between highly similar gene copies in P. falciparum parasites. The duplicated var2csa variants are simultaneously transcribed, both on a population level and intriguingly also in individual cells, with nuclear co-localization of the active genes and corresponding transcripts. This indicates transcriptional functionality of duplicated genes, challenges the dogma of mutually exclusive var gene transcription and suggests mechanisms behind antigenic variation, at least in respect to the duplicated and highly similar var2csa genes. Conclusions: Allelic discrimination assays have traditionally been applied to study zygosity in diploid genomes. The assays presented here are instead successfully applied to the identification and evaluation of transcriptional activity of duplicated genes in the haploid genome of the P. falciparum parasite. Allelic discrimination and gene or transcript localization by FISH not only provide insights into transcriptional regulation of genes such as the virulence associated var genes, but also suggest that this sensitive and precise approach could be used for further investigation of genome dynamics and gene regulation.
  •  
36.
  • Brownstein, Catherine A., et al. (författare)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
37.
  • Bürglin, Thomas R. (författare)
  • The Hedgehog protein family
  • 2008
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 9:11, s. 241-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hedgehog (Hh) pathway is one of the fundamental signal transduction pathways in animal development and is also involved in stem-cell maintenance and carcinogenesis. The hedgehog (hh) gene was first discovered in Drosophila, and members of the family have since been found in most metazoa. Hh proteins are composed of two domains, an amino-terminal domain HhN, which has the biological signal activity, and a carboxy-terminal autocatalytic domain HhC, which cleaves Hh into two parts in an intramolecular reaction and adds a cholesterol moiety to HhN. HhC has sequence similarity to the self-splicing inteins, and the shared region is termed Hint. New classes of proteins containing the Hint domain have been discovered recently in bacteria and eukaryotes, and the Hog class, of which Hh proteins comprise one family, is widespread throughout eukaryotes. The non-Hh Hog proteins have carboxy-terminal domains ( the Hog domain) highly similar to HhC, although they lack the HhN domain, and instead have other amino-terminal domains. Hog proteins are found in many protists, but the Hh family emerged only in early metazoan evolution. HhN is modified by cholesterol at its carboxyl terminus and by palmitate at its amino terminus in both flies and mammals. The modified HhN is released from the cell and travels through the extracellular space. On binding its receptor Patched, it relieves the inhibition that Patched exerts on Smoothened, a G-protein-coupled receptor. The resulting signaling cascade converges on the transcription factor Cubitus interruptus (Ci), or its mammalian counterparts, the Gli proteins, which activate or repress target genes.
  •  
38.
  •  
39.
  •  
40.
  • Ceron, Julian, et al. (författare)
  • Caenorhabditis elegans comes of age
  • 2008
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 9:6, s. 312-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
41.
  • Chen, Nansheng, et al. (författare)
  • Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics
  • 2006
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 7:12, s. R126-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes. Results: By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes ( including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5( mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5. Conclusion: Our comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome ( BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.
  •  
42.
  • Chen, Zhi-Qiang, et al. (författare)
  • Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis
  • 2021
  • Ingår i: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) identify loci underlying the variation of complex traits. One of the main limitations of GWAS is the availability of reliable phenotypic data, particularly for long-lived tree species. Although an extensive amount of phenotypic data already exists in breeding programs, accounting for its high heterogeneity is a great challenge. We combine spatial and factor-analytics analyses to standardize the heterogeneous data from 120 field experiments of 483,424 progenies of Norway spruce to implement the largest reported GWAS for trees using 134 605 SNPs from exome sequencing of 5056 parental trees.Results: We identify 55 novel quantitative trait loci (QTLs) that are associated with phenotypic variation. The largest number of QTLs is associated with the budburst stage, followed by diameter at breast height, wood quality, and frost damage. Two QTLs with the largest effect have a pleiotropic effect for budburst stage, frost damage, and diameter and are associated with MAP3K genes. Genotype data called from exome capture, recently developed SNP array and gene expression data indirectly support this discovery.Conclusion: Several important QTLs associated with growth and frost damage have been verified in several southern and northern progeny plantations, indicating that these loci can be used in QTL-assisted genomic selection. Our study also demonstrates that existing heterogeneous phenotypic data from breeding programs, collected over several decades, is an important source for GWAS and that such integration into GWAS should be a major area of inquiry in the future.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Daniel, Chammiran, et al. (författare)
  • Alu elements shape the primate transcriptome by cis-regulation of RNA editing
  • 2014
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures - a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results: We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions: We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought.
  •  
48.
  • Daniel, Chammiran, et al. (författare)
  • Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome
  • 2017
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adenosine to inosine (A-to-I) RNA editing has been shown to be an essential event that plays a significant role in neuronal function, as well as innate immunity, in mammals. It requires a structure that is largely double-stranded for catalysis but little is known about what determines editing efficiency and specificity in vivo. We have previously shown that some editing sites require adjacent long stem loop structures acting as editing inducer elements (EIEs) for efficient editing. Results: The glutamate receptor subunit A2 is edited at the Q/R site in almost 100% of all transcripts. We show that efficient editing at the Q/R site requires an EIE in the downstream intron, separated by an internal loop. Also, other efficiently edited sites are flanked by conserved, highly structured EIEs and we propose that this is a general requisite for efficient editing, while sites with low levels of editing lack EIEs. This phenomenon is not limited to mRNA, as non-coding primary miRNAs also use EIEs to recruit ADAR to specific sites. Conclusions: We propose a model where two regions of dsRNA are required for efficient editing: first, an RNA stem that recruits ADAR and increases the local concentration of the enzyme, then a shorter, less stable duplex that is ideal for efficient and specific catalysis. This discovery changes the way we define and determine a substrate for A-to-I editing. This will be important in the discovery of novel editing sites, as well as explaining cases of altered editing in relation to disease.
  •  
49.
  • de Vries, Ronald P, et al. (författare)
  • Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus
  • 2017
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus.ResultsWe have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli.ConclusionsMany aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.
  •  
50.
  • Delhomme, Nicolas (författare)
  • Sex without crossing over in the yeast Saccharomycodes ludwigii
  • 2021
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Intermixing of genomes through meiotic reassortment and recombination of homologous chromosomes is a unifying theme of sexual reproduction in eukaryotic organisms and is considered crucial for their adaptive evolution. Previous studies of the budding yeast species Saccharomycodes ludwigii suggested that meiotic crossing over might be absent from its sexual life cycle, which is predominated by fertilization within the meiotic tetrad. Results We demonstrate that recombination is extremely suppressed during meiosis in Sd. ludwigii. DNA double-strand break formation by the conserved transesterase Spo11, processing and repair involving interhomolog interactions are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers in its genome. A strong AT bias of spontaneous mutations and the absence of recombination are likely responsible for its unusually low genomic GC level. Conclusions Sd. ludwigii has followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent mating between products of the same meiotic event with the extreme suppression of meiotic recombination. This life style ensures preservation of heterozygosity throughout its genome and may enable the species to adapt to its environment and survive with only minimal levels of rare meiotic recombination. We propose Sd. ludwigii as an excellent natural forum for the study of genome evolution and recombination rates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 165
Typ av publikation
tidskriftsartikel (160)
forskningsöversikt (3)
annan publikation (2)
konstnärligt arbete (1)
Typ av innehåll
refereegranskat (151)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Lindblad-Toh, Kersti ... (8)
Ellegren, Hans (5)
Linnarsson, S (3)
Nilsson, Peter (3)
Hultman, CM (3)
Andersson, Anders (3)
visa fler...
Lundeberg, Joakim (3)
Sigurdsson, Snaevar (3)
Gyllensten, Ulf (3)
Richter, D. (2)
Nielsen, Jens B, 196 ... (2)
Uhlén, Mathias (2)
Katayama, S (2)
Cervera, A. (2)
Aberg, KA (2)
van den Oord, EJCG (2)
Clark, SL (2)
Magnusson, PKE (2)
Kumar, G (2)
Fioretos, Thoas (2)
Lind, Lars (2)
Andersson, Anders F. (2)
Conesa, A (2)
Pelechano, V (2)
Nilsson, Björn (2)
Benson, Mikael (2)
Rönnblom, Lars (2)
Pastinen, Tomi (2)
Isaksson, Anders (2)
Jansson, Stefan, 195 ... (2)
Carninci, P (2)
ERNBERG, I (2)
McCarthy, Mark I (2)
Wahlestedt, C (2)
Zhang, XG (2)
Hayashizaki, Y (2)
Stranneheim, Henrik (2)
Nilsson, Ove (2)
Bartek, J (2)
Andersson, Leif (2)
Spector, Tim D. (2)
Jarvelin, Marjo-Riit ... (2)
Swofford, Ross (2)
Lander, Eric S. (2)
Jacobsen, SEW (2)
Sandberg, Rickard (2)
Johansson, Mikael (2)
Wasserman, WW (2)
Eliasson, Lena (2)
Nelander, Sven (2)
visa färre...
Lärosäte
Karolinska Institutet (68)
Uppsala universitet (58)
Kungliga Tekniska Högskolan (17)
Sveriges Lantbruksuniversitet (17)
Umeå universitet (12)
Stockholms universitet (12)
visa fler...
Linköpings universitet (11)
Lunds universitet (10)
Göteborgs universitet (5)
Södertörns högskola (5)
Chalmers tekniska högskola (4)
Naturhistoriska riksmuseet (3)
Linnéuniversitetet (2)
Malmö universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (165)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (71)
Medicin och hälsovetenskap (41)
Lantbruksvetenskap (10)
Teknik (7)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy