SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1520 4812 "

Sökning: L773:1520 4812

  • Resultat 1-50 av 82
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Sara, et al. (författare)
  • Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules
  • 2008
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 19:1, s. 235-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.
  •  
2.
  • Altai, Mohamed, et al. (författare)
  • Influence of Nuclides and Chelators on Imaging Using Affibody Molecules : Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with Ga-68 and In-111 via Maleimido Derivatives of DOTA and NODAGA
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:6, s. 1102-1109
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more of personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use should increase sensitivity of HER2 imaging. The chemical nature of the generator-produced positron-emitting radionuclide Ga-68 of radionuclides and chelators influences the biodistribution of Affibody molecules, providing an opportunity to further increase the imaging contrast. The aim of the study was to compare maleimido derivatives of DOTA and NODAGA for site-specific labeling of a recombinant Z(HER2:2395) HER2-binding Affibody molecule with Ga-68. DOTA and NODAGA were site-specifically conjugated to the Z(HER2:2395) Affibody molecule having a C-terminal cysteine and labeled with Ga-68 and In-111. All labeled conjugates retained specificity to HER2 in vitro. Most of the cell-associated activity was membrane-bound with a minor difference in internalization rate. All variants demonstrated specific targeting of xenografts and a high tumor uptake. The xenografts were dearly visualized using all conjugates. The influence of chelator on the biodistribution and targeting properties was much less pronounced for Ga-68 than for In-111. The tumor uptake of Ga-68-NODAGA-Z(HER2:2395) and Ga-68-NODAGA-Z(HER2:2395) and tumor-to-blood ratios at 2 h p.i. did not differ significantly. However, the tumor-to-liver ratio was significantly higher for Ga-68-NODAGA- Z(HER2:2395) (8 +/- 2 vs 5.0 +/- 0.3) offering the advantage of better liver metastases visualization. In conclusion, influence of chelators on biodistribution of Affibody molecules depends on the radionuclides and reoptimization of labeling chemistry is required when a radionuclide label is changed.
  •  
3.
  • Aneheim, Emma, 1982, et al. (författare)
  • Synthesis and Evaluation of Astatinated N-[2-(Maleimido)ethyl]-3-(trimethylstannyl)benzamide Immunoconjugates
  • 2016
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1520-4812 .- 1043-1802. ; 27:3, s. 688-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 μm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies.
  •  
4.
  • Appelqvist, Hanna, et al. (författare)
  • Specific Imaging of Intracellular Lipid Droplets Using a Benzothiadiazole Derivative with Solvatochromic Properties
  • 2017
  • Ingår i: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 28:5, s. 1363-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Altered lipid metabolism and extensive lipid storage in cells have been associated with various medical disorders, including cancer. The development of fluorescent probes that specifically accumulate in lipid deposits is therefore of great interest in order to study pathological processes that are linked to dysregulated lipogenesis. In the present study, we present a small fluorescent benzothiadiazole dye that specifically stains lipid droplets in living and fixated cells. The photophysical characterization of the probe revealed strong solvatochromic behavior, large Stokes shifts, and high fluorescent quantum yields in hydrophobic solvents. In addition, the fluorophore exhibits a nontoxic profile and a high signal-to-noise ratio in cells (i.e., lipid droplets vs cytosol), which make it an excellent candidate for studying lipid biology using confocal fluorescent microscopy.
  •  
5.
  • Arukuusk, Piret, et al. (författare)
  • Differential Endosomal Pathways for Radically Modified Peptide Vectors
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:10, s. 1721-1732
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current work we characterize the uptake mechanism of two NickFect family members, NF51 and NF1, related to the biological activity of transfected plasmid DNA (pDNA). Both vectors condense pDNA into small negatively charged nanoparticles that transfect He La cells with equally high efficacy and the delivery is mediated by SCARA3 and SCARA.5 receptors. NF1 condenses DNA into less homogeneous and less stable nanoparticles than NF51. NF51/pDNA nanoparticles enter the cells via macropinocytosis, while NF1/pDNA complexes use clathrin- or caveolae-mediated endocytosis and macropinocytosis. Analysis of separated endosomal compartments uncovered lysomotropic properties of NF51 that was also proven by cotransfection with chloroquine. In summary we characterize how radical modifications in peptides, such as introducing a kink in the structure of NF51 or including extra negative charge by phospho-tyrosine substitution in NF1, resulted in equally high efficacy for gene delivery, although this efficacy is achieved by using differential transfection pathways.
  •  
6.
  • Beuttler, Julia, et al. (författare)
  • Targeting of Epidermal Growth Factor Receptor (EGFR)-Expressing Tumor Cells with Sterically Stabilized Affibody Liposomes (SAL)
  • 2009
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 20:6, s. 1201-1208
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are small and stable antigen-binding molecules derived from the B domain of protein A. We applied a bivalent, high-affinity epidermal growth factor receptor (EGFR)-specific affibody molecule for the generation of targeted PEGylated liposomes. These sterically stabilized affibody liposomes (SAL) were produced by chemical coupling of the cysteine-modified affibody molecule to maleimide-PEG(2000)-DSPE and subsequent insertion into PEGylated liposomes. These SAL showed strong and selective binding to EGFR-expressing tumor cell lines. Binding was dependent on the amount of inserted affibody molecule-lipid conjugates and could be blocked by soluble EGF. Approximately 30% of binding activity was still retained after 6 days of incubation in human plasma at 37 degrees C. Binding of SAL to cells led to efficient internalization of the liposomes. Using mitoxantrone-loaded liposomes, we observed for SAL, compared to untargeted liposomes, an enhanced cytotoxicity toward EGFR-expressing cells. In summary, we show that SAL can be easily prepared from affibody molecules and thus may be suitable for the development of carrier systems for targeted delivery of drugs.
  •  
7.
  • Blom, Elisabeth, 1979-, et al. (författare)
  • 68Ga-Labeling of Biotin Analogues and their Characterization
  • 2009
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 20:6, s. 1146-1151
  • Tidskriftsartikel (refereegranskat)abstract
    • Biotin- and Ga-68-based tracers have been suggested as tools that could be used to monitor the survival of avidin-coated islets of Langerhans isolated from pancreas and used in transplantation, i.e., to liver. Three biotin analogues with various alkyl and poly(ethylene glycol) (PEG) chains coupled to DOTA were synthesized and labeled with Ga-68. The Ga-68 labeling was studied at room temperature as well as elevated temperature using either conventional or microwave heating. Radioactivity incorporation reached 95% within 5 and 2 min using the, respectively, conventional and microwave heating modes. The specific activity of the tracers was improved by preconcentration and purification of the generator eluate. The binding of the labeled and nonlabeled conjugates to avidin in solution was compared to the binding of native biotim. All compounds maintained good affinity for avidin, though introducing the linkers and chelator, especially the PEG-groups, somewhat decreased the binding affinity. The extent of binding of the labeled compounds to avidin was 54-91% after 5 min. Blocking experiments were performed confirming the specificity of the binding of biotin analogues to avidin. The stability of the three labeled compounds in human serum was studied. The stability of the biotin analogue 8 (65% within 30 min) and avidin-biotin complex (80% within 120 min) might be sufficient for the monitoring of the islets of Langerhans. The tracers will be evaluated in in vitro experiments of avidin-coated islets of Langerhans and in transplantation models in vivo.
  •  
8.
  • Bohl Kullberg, Erika, et al. (författare)
  • Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents
  • 2002
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 13:4, s. 737-743
  • Tidskriftsartikel (refereegranskat)abstract
    • Liposomes are of interest as drug delivery tools for therapy of cancer and infectious diseases. We investigated conjugation of epidermal growth factor, EGF, to liposomes using the micelle-transfer method. EGF was conjugated to the distal end of PEG−DSPE lipid molecules in a micellar solution and the EGF−PEG−DSPE lipids were then transferred to preformed liposomes, either empty or containing the DNA-binding compound, water soluble acridine, WSA. We found that the optimal transfer conditions were a 1-h incubation at 60 °C. The final conjugate, 125I-EGF−liposome−WSA, contained approximately 5 mol % PEG, 10−15 EGF molecules at the liposome surface, and 104 to 105 encapsulated WSA molecules could be loaded. The conjugate was shown to have EGF-receptor-specific cellular binding in cultured human glioma cells.
  •  
9.
  •  
10.
  • Colak, Burcu, et al. (författare)
  • Impact of the Molecular Environment on Thiol-Ene Coupling For Biofunctionalization and Conjugation
  • 2016
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 27:9, s. 2111-2123
  • Tidskriftsartikel (refereegranskat)abstract
    • Thiol-ene radical coupling is increasingly used for the biofunctionalization of biomaterials and the formation of 3D hydrogels enabling cell encapsulation. Indeed, thiol-ene chemistry presents interesting features that are particularly attractive for platforms requiring specific reactions of peptides or proteins, in particular, in situ, during cell culture or encapsulation. Despite such interest, little is known about the factors impacting thiol-ene chemistry in situ, under biologically relevant conditions. Here we explore some of the molecular parameters controlling photoinitiated thiol-ene couplings with a series of alkenes and thiols, including peptides, in buffered conditions. H-1 NMR and HPLC were used to quantify the efficiency of couplings and the impact of the pH of the buffer, as well as the molecular structure and local microenvironment close to alkenes and thiols to be coupled. Some of these observations are supported by molecular dynamics and quantum mechanics calculations. An important finding of our work is that the plc of thiols (and its variation upon changes in molecular structure) have a striking impact on coupling efficiencies. Similarly, positively charged and aromatic amino acids are found to have some impact on thiol-ene couplings. Hence, our study demonstrates that molecular design should be carefully selected in order to achieve high biofunctionalization levels in biomaterials with peptides or promote the efficient formation of peptide-based hydrogels.
  •  
11.
  •  
12.
  • Eiríksdóttir, Emelía, et al. (författare)
  • Cellular Internalization Kinetics of (Luciferin-)Cell-Penetrating Peptide Conjugates
  • 2010
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 21:9, s. 1662-1672
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) belong to a class of delivery vectors that have been extensively used for the cellular delivery of various, otherwise impermeable, macromolecules. However, results on the cellular internalization efficacy of CPPs obtained from various laboratories are sometimes challenging to compare because of differences in the experimental setups. Here, for the first time, the cellular uptake kinetics of eight well-established CPPs is compared in HeLa pLuc 705 cells using a recently published releasable luciferin assay. Using this assay, the kinetic behavior of cytosolic entry of these luciferin-CPP conjugates are registered in real time. Our data reveal that the uptake rate of CPPs reaches its maximum either in seconds or in tens of minutes, depending on the CPP used. Tat and higher concentrations of MAP and TP10 display fast internalization profiles that resemble the kinetic profile of membrane-permeable free luciferin. The uptake of the other peptides, pVec, penetratin, M918, and EB I, is much slower and is consistent with the reported observations of endocytosis being the predominant internalization mechanism. Additionally, to some extent, the latter CPPs can be clustered into subgroups which are based on time points when the most pronounced uptake rates are observed. This may indicate once more involvement of various (concentration dependent) mechanisms in the uptake of CPPs. In summary, the variances in the internalization profiles for the CPPs demonstrate the importance of measuring kinetics instead of only relying on simple end-point studies, and with the luciferin CPP assay, more lucid information can be retrieved when studying the internalization mechanisms of CPPs.
  •  
13.
  • Ekerljung, Lina, 1980-, et al. (författare)
  • Generation and Evaluation of Bispecific Affibody Molecules for Simultaneous Targeting of EGFR and HER2
  • 2012
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 23:9, s. 1802-1811
  • Tidskriftsartikel (refereegranskat)abstract
    • Co-expression of several ErbB receptors has been found in many cancers and has been linked with increased aggressiveness of tumors and a worse patient prognosis. This makes the simultaneous targeting of two surface receptors by using bispecific constructs an increasingly appreciated strategy. Here we have generated six such bispecific targeting proteins, which each comprising two monomeric affibody molecules with specific binding to either of the two human epidermal growth factor receptors, EGFR and HER2, respectively. The bispecific constructs were designed with (i) alternative positioning (N- or C-terminal) of the different affibody molecules, (ii) two alternative peptide linkers (Gly4Ser)3 or (Ser4Gly)3, and (iii) affibody molecules with different affinity (nanomolar or picomolar) for HER2. Using both Biacore technology and cell binding assays it was demonstrated that all six constructs could bind simultaneously to both their target proteins. N-terminal positioning of the monomeric affibody molecules was favorable to promote the binding to respective target. Interestingly, bispecific constructs containing the novel (Ser4Gly)3 linker displayed a higher affinity in cell binding, as compared to constructs containing the more conventional linker, (Gly4Ser)3. It could further be concluded that bispecific constructs (but not the monomeric affibody molecules) induced dimerization and phosphorylation of EGFR in SKBR3 cells, which express fairly high levels of both receptors. It was also investigated whether the bispecific binding would influence cell growth or sensitize cells for ionizing radiation, but no such effects were observed.
  •  
14.
  • Enander, Karin, 1972-, et al. (författare)
  • A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte
  • 2008
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 19:9, s. 1864-1870
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design, synthesis, and functional evaluation of peptide-based fluorescent constructs for wavelength-ratiometric biosensing of a protein analyte. The concept was shown using the high-affinity model interaction between the 18 amino acid peptide pTMVP and a recombinant antibody fragment, Fab57P. pTMVP was functionalized in two different positions with 6-bromomethyl-2-(2-furanyl)-3-hydroxychromone, an environmentally sensitive fluorophore with a two-band emission. The equilibrium dissociation constant of the interaction between pTMVP and Fab57P was largely preserved upon labeling. The biosensor ability of the labeled peptide constructs was evaluated in terms of the relative intensity change of the emission bands from the normal (N*) and tautomer (T*) excited-state species of the fluorophore (IN*/IT*) upon binding of Fab57P. When the peptide was labeled in the C terminus, the IN*/I T* ratio changed by 40% upon analyte binding, while labeling close to the residues most important for binding resulted in a construct that completely lacked ratiometric biosensor ability. Integrated biosensor elements for reagentless detection, where peptides and ratiometric fluorophores are combined to ensure robustness in both recognition and signaling, are expected to become an important contribution to the design of future protein quantification assays in immobilized formats. © 2008 American Chemical Society.
  •  
15.
  • Eriste, Elo, et al. (författare)
  • Peptide-Based Glioma-Targeted Drug Delivery Vector gHoPe2
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:3, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas are therapeutically challenging cancers with poor patient prognosis. New drug delivery strategies are needed to achieve a more efficient chemotherapy-based approach against brain tumors. The current paper demonstrates development of a tumor-targeted delivery vector that is based on a cell-penetrating peptide pVEC and a novel glioma-targeting peptide sequence gHo. The unique tumor-homing peptide gHo was identified using in vitro phage display technology. The novel delivery vector, which we designated as gHoPe2, was constructed by a covalent conjugation of pVEC, gHo, and a cargo; the latter could be either a labeling moiety (such as a fluorescent marker) or a cytostatic entity. Using a fluorescent marker, we demonstrate efficient uptake of the vector in glioma cells and selective labeling of glioma xenograft tumors in a mouse model. This is the first time that we know where in vitro phage display has yielded an efficient, in vivo working vector. We also demonstrate antitumor efficacy of the delivery vector gHoPe2 using a well-characterized chemotherapeutic drug doxorubicin. Vectorized doxorubicin proved to be more efficient than the free drug in a mouse glioma xenograft model after systemic administration of the drugs. In conclusion, we have characterized a novel glioma-homing peptide gHo, demonstrated development of a new and potential glioma-targeted drug delivery vector gHoPe2, and demonstrated the general feasibility of the current approach for constructing cell-penetrating peptide-based targeted delivery systems.
  •  
16.
  •  
17.
  • Fyrner, Timmy, et al. (författare)
  • Derivatization of a bioorthogonal protected trisaccharide linker : towards multimodal tools for chemical biology
  • 2012
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 23:6, s. 1333-1340
  • Tidskriftsartikel (refereegranskat)abstract
    • When cross-linking biomolecules to surfaces or to other biomolecules, the use of appropriate spacer molecules is of great importance. Mimicking the naturally occurring spacer molecules will give further insight into their role and function, possibly unveil important issues regarding the importance of the specificity of carbohydrate-based anchor moieties, in e.g., glycoproteins and glycosylphosphatidylinositols. Herein, we present the synthesis of a lactoside-based trisaccharide, potentially suitable as a heterobifunctional bioorthogonal linker molecule whereon valuable chemical handles have been conjugated. An amino-derivative having thiol functionality shows promise as novel SPR-surfaces. Furthermore, the trisaccharide has been conjugated to a cholesterol moiety in combination with a fluorophore which successfully assemble on the cell surface in lipid microdomains, possibly lipid-rafts. Finally, a CuI-catalyzed azide-alkyne cycloaddition reaction (CuAAC) confirms the potential use of oligosaccharides as bioorthogonal linkers in chemical biology.
  •  
18.
  • Garousi, Javad, et al. (författare)
  • Influence of the N -Terminal Composition on Targeting Properties of Radiometal-Labeled Anti-HER2 Scaffold Protein ADAPT6
  • 2016
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 27:11, s. 2678-2688
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide-imaging-based stratification of patients to targeted therapies makes cancer treatment more personalized and therefore more efficient. Albumin-binding domain derived affinity proteins (ADAPTs) constitute a novel group of imaging probes based on the scaffold of an albumin binding domain (ABD). To evaluate how different compositions of the N-terminal sequence of ADAPTS influence their biodistribution, a series of human epidermal growth factor receptor type 2 (HER2)-binding ADAPT6 derivatives with different N-terminal sequences were created: GCH(6)DANS (2), GC(HE)(3)DANS (3), GCDEAVDANS (4), and GCVD.ANS(5). These were compared with the parental variant: GCSS(HE)(3)DEAVDANS (1). All variants were site-specifically conjugated with a maleimido-derivative of a DOTA chelator and labeled with In-III. Binding to HER2-expressing cells in vitro, in vivo biodistribution as well as targeting properties of the new variants were compared with properties of the In-III-labeled parental ADAPT variant 1 (In-III-DOTA-1). The composition of the N-terminal sequence had an apparent influence on biodistribution of ADAPT6 in mice. The use of a hexahistidine tag in (InD)-In-III-OTA-2 was associated with elevated hepatic uptake compared to the (HE)(3)-containing counterpart, In-III-DOTA-3. All new variants without a hexahistidine tag demonstrated lower uptake in blood, lung, spleen, and muscle compared to uptake in the parental variant. The best new variants, In-III-DOTA-3 and In-III-DOTA-5, provided tumor uptakes of 14.6 +/- 2.4 and 12.5 +/- 1.3% ID/g at 4 h after injection, respectively. The tumor uptake of In-III-DOTA-3 was significantly higher than the uptake of the parental In-III-DOTA-1 (9.1 +/- 2.0% ID/g). The tumor-to-blood ratios of 395 +/- 75 and 419 +/- 91 at 4 h after injection were obtained for In-III-DOTA-5 and (IIII)n-DOTA-3, respectively. In conclusion, the N-terminal sequence composition affects the biodistribution and targeting properties of ADAPT-based imaging probes, and its optimization may improve imaging contrast.
  •  
19.
  • Hederos (Håkansson), Sofia, et al. (författare)
  • Ligand-Directed Labeling of a Single Lysine Residue in hGST A1-1 Mutants
  • 2005
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 16:4, s. 1009-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, we discovered that human glutathione transferase (hGST) A1-1 could be site-specifically acylated on a tyrosine residue (Y9) to form ester products using thiolesters of glutathione (GS-thiolesters) as acylating reagents. Out of a total of 20 GS-thiolester reagents tested, 15 (75%) are accepted by hGST A1-1 and thus this is a very versatile reaction. The present investigation was aimed at obtaining a more stable product, an amide bond, between the acyl group and the protein, in order to further increase the value of the reaction. Three lysine mutants (Y9K, A216K, and Y9F/A216K) were therefore prepared and screened against a panel of 18 GS-thiolesters. The Y9K mutant did not react with any of the reagents. The double mutant Y9F/A216K reacted with only one reagent, but in contrast, the A216K mutant could be acylated at the introduced lysine 216 with eight (44%) of the GS-thiolesters. The reaction can take place in the presence of glutathione and even in a crude cell lysate for five (28%) of the reagents. Through the screening process we obtained some basic rules relating to reagent requirements. We have thus produced a mutant (A216K) that can be rapidly and site-specifically modified at a lysine residue to form a stable amide linkage with a range of acyl groups. One of the successful reagents is a fluorophore that potentially can be used in downstream protein purification and protein fusion applications.
  •  
20.
  •  
21.
  • Ilyas, Humaira, et al. (författare)
  • Effect of PEGylation on Host Defense Peptide Complexation with Bacterial Lipopolysaccharide
  • 2021
  • Ingår i: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 32:8, s. 1729-1741
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugation with poly(ethylene glycol) ("PEGylation") is a widely used approach for improving the therapeutic propensities of peptide and protein drugs through prolonging bloodstream circulation, reducing toxicity and immunogenicity, and improving proteolytic stability. In the present study, we investigate how PEGylation affects the interaction of host defense peptides (HDPs) with bacterial lipopolysaccharide (LPS) as well as HDP suppression of LPS-induced cell activation. In particular, we investigate the effects of PEGylation site for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), a peptide displaying potent anti-inflammatory effects, primarily provided by its N-terminal part. PEGylation was performed either in the N-terminus, the C-terminus, or in both termini, keeping the total number of ethylene groups (n = 48) constant. Ellipsometry showed KYE28 to exhibit pronounced affinity to both LPS and its hydrophobic lipid A moiety. The PEGylated peptide variants displayed lower, but comparable, affinity for both LPS and lipid A, irrespective of the PEGylation site. Furthermore, both KYE28 and its PEGylated variants triggered LPS aggregate disruption. To investigate the peptide structure in such LPS complexes, a battery of nuclear magnetic resonance (NMR) methods was employed. From this, it was found that KYE28 formed a well-folded structure after LPS binding, stabilized by hydrophobic domains involving aromatic amino acids as well as by electrostatic interactions. In contrast, the PEGylated peptide variants displayed a less well-defined secondary structure, suggesting weaker LPS interactions in line with the ellipsometry findings. Nevertheless, the N-terminal part of KYE28 retained helix formation after PEGylation, irrespective of the conjugation site. For THP1-Xblue-CD14 reporter cells, KYE28 displayed potent suppression of LPS activation at simultaneously low cell toxicity. Interestingly, the PEGylated KYE28 variants displayed similar or improved suppression of LPS-induced cell activation, implying the underlying key role of the largely retained helical structure close to the N-terminus, irrespective of PEGylation site. Taken together, the results show that PEGylation of HDPs can be done insensitively to the conjugation site without losing anti-inflammatory effects, even for peptides inducing such effects through one of its termini.
  •  
22.
  •  
23.
  • Justus, Eugen, et al. (författare)
  • Synthesis, liposomal preparation, and in vitro toxicity of two novel dodecaborate cluster lipids for boron neutron capture therapy
  • 2007
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 18:4, s. 1287-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • A new class of lipids, contg. the closo-dodecaborate cluster, has been synthesized. Two lipids, S-(N, N-(2-dimyristoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-14) and S-(N, N-(2-dipalmitoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-16) are described. Both of them have a double-tailed lipophilic part and a headgroup carrying two neg. charges. Differential scanning calorimetry shows that B-6-14 and B-6-16 bilayers have main phase transition temps. of 18.8 and 37.9 DegC, resp. Above the transition temp. of 18.8 DegC, B-6-14 can form liposomal vesicles, representing the first boron-contg. lipid with this capability. Upon cooling below the transition temp., stiff bilayers are formed. When incorporated into liposomal formulations with equimolar amts. of distearoyl phosphatidylcholine (DSPC) and cholesterol, stable liposomes are obtained. The z-potential measurements indicate that both B-6-14- and B-6-16-contg. vesicles are neg. charged, with the most neg. potential described of any liposome so far. The liposomes are of high potential value as transporters of boron to tumor cells in treatments based on boron neutron capture therapy (BNCT). Liposomes prepd. from B-6-14 were slightly less toxic in V79 Chinese hamster cells (IC50 5.6 mM) than unformulated Na2B12H11SH (IC50 3.9 mM), while liposomes prepd. from B-6-16 were not toxic even at 30 mM.
  •  
24.
  • Kanje, Sara, 1986-, et al. (författare)
  • Site-Specific Photolabeling of the IgG Fab Fragment Using a Small Protein G Derived Domain
  • 2016
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812.
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies are widely used reagents for recognition in both clinic and research laboratories all over the world. For many applications, antibodies are labeled through conjugation to different reporter molecules or therapeutic agents. Traditionally, antibodies are covalently conjugated to reporter molecules via primary amines on lysines or thiols on cysteines. While efficient, such labeling is variable and nonstoichiometric and may affect an antibody’s binding to its target. Moreover, an emerging field for therapeutics is antibody–drug conjugates, where a toxin or drug is conjugated to an antibody in order to increase or incorporate a therapeutic effect. It has been shown that homogeneity and controlled conjugation are crucial in these therapeutic applications. Here we present two novel protein domains developed from an IgG-binding domain of Streptococcal Protein G. These domains show obligate Fab binding and can be used for site-specific and covalent attachment exclusively to the constant part of the Fab fragment of an antibody. The two different domains can covalently label IgG of mouse and human descent. The labeled antibodies were shown to be functional in both an ELISA and in an NK-cell antibody-dependent cellular cytotoxicity assay. These engineered protein domains provide novel tools for controlled labeling of Fab fragments and full-length IgG.
  •  
25.
  • Kettisen, Karin, et al. (författare)
  • Potential Electron Mediators to Extract Electron Energies of RBC Glycolysis for Prolonged in Vivo Functional Lifetime of Hemoglobin Vesicles
  • 2015
  • Ingår i: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1520-4812 .- 1043-1802. ; 26:4, s. 746-754
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of potential blood substitutes.
  •  
26.
  • Kilk, Kalle, et al. (författare)
  • Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain : Comparison with the penetratin peptide
  • 2001
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 12:6, s. 911-916
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular translocation into a human Bowes melanoma cell line was investigated and compared for penetratin and pIsl, two peptides that correspond to the third helices of the related homeodomains, from the Antennapedia transcription factor of Drosophila and the rat insulin-1 gene enhancer protein, respectively. Both biotinylated peptides internalized into the cells with similar efficacy, yielding an analogous intracellular distribution. When a large cargo protein, 63 kDa avidin, was coupled to either peptide, efficient cellular uptake for both the peptide−protein complexes was observed. The interactions between each peptide and SDS micelles were studied by fluorescence spectroscopy and acrylamide quenching of the intrinsic tryptophan (Trp) fluorescence. Both peptides interacted strongly and almost identically with the membrane mimicking environment. Compared to penetratin, the new transport peptide pIsl has only one Trp residue, which simplifies the interpretation of the fluorescence spectra and in addition has a native Cys residue, which may be used for alternative coupling reactions of cargoes of different character.
  •  
27.
  • Kondrashov, Mikhail, et al. (författare)
  • Multiple Applications of a Novel Biarsenical Imaging Probe in Fluorescence and PET Imaging of Melanoma
  • 2021
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 32:3, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • A new fluorescent biarsenical peptide labeling probe was synthesized and labeled with the radioactive isotopes C-11 and F-18. The utility of this probe was demonstrated by installing each of these isotopes into a melanocortin 1 receptor (MC1R) binding peptide, which targets melanoma tumors. Its applicability was further showcased by subsequent in vitro imaging in cells as well as in vivo imaging in melanoma xenograft mice by fluorescence and positron emission tomography.
  •  
28.
  • Konrad, Anna, et al. (författare)
  • Covalent Immunoglobulin Labeling through a Photoactivable Synthetic Z Domain
  • 2011
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 22:12, s. 2395-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, labeling of antibodies has been performed by covalent conjugation to amine or carboxyl groups. These methods are efficient but suffer from nonspecificity, since all free and available amine/carboxyl groups have the possibility to react. This drawback may lead to uncontrolled levels and locations of the labeling. Hence, the labeled molecules might behave differently and, possibly, the binding site of the antibody will also be affected. In this project, we have developed a highly stringent method for labeling of antibodies by utilizing an immunoglobulin-binding domain from protein A, the Z domain. Domain Z has been synthesized with an amino acid analogue, benzoylphenylalanine, capable of forming covalent attachment to other amino acids upon UV-exposure. This feature has been used for directed labeling of immunoglobulins and subsequent use of these in different assays.
  •  
29.
  • Kwiatkowski, Marek, et al. (författare)
  • Facile Synthesis of N-Acyl-aminoacyl-pCpA for Preparation of Mischarged Fully Ribo tRNA
  • 2014
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 25:11, s. 2086-2091
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical synthesis of N-acyl-aminoacyl-pdCpA and its ligation to tRNA(minus) CA is widely used for the preparation of unnatural aminoacyl-tRNA substrates for ribosomal translation. However, the presence of the unnatural deoxyribose can decrease incorporation yield in translation and there is no straightforward method for chemical synthesis of the natural ribo version. Here, we show that pCpA is surprisingly stable to treatment with strong organic bases provided that anhydrous conditions are used. This allowed development of a facile method for chemical aminoacylation of pCpA. Preparative synthesis of pCpA was also simplified by using t-butyl-dithiomethyl protecting group methodology, and a more reliable pCpA postpurification treatment method was developed. Such aminoacyl-pCpA analogues ligated to tRNA(minus) CA transcripts are highly active in a purified translation system, demonstrating utility of our synthetic method.
  •  
30.
  •  
31.
  • Lehto, Tõnis, et al. (författare)
  • Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides
  • 2017
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 28:3, s. 782-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Modifying cell-penetrating peptides (CPPs) with fatty acids has long been used to improve peptide-mediated nucleic acid delivery. In this study we have revisited this phenomenon with a systematic approach where we developed a structure activity relationship to describe the role of the acyl chain length in the transfection process. For that we took a well studied CPP, PepFectl4, as the basis and varied its N-terminal acyl chain length from 2 to 22 carbons. To evaluate the delivery efficiency, the peptides were noncovalently complexed with a splice-correcting oligonucleotide (SCO) and tested in HeLa pLuc705 reporter cell line. Our results demonstrate that biological splice-correction activity emerges from acyl chain of 12 carbons and increases linearly with each additional carbon. To assess the underlying factors regarding how the transfection efficacy of these complexes is dependent on hydrophobicity, we used an array of different methods. For the functionally active peptides (C12-22) there was no apparent difference in their physicochemical properties, including complex formation efficiency, hydrodynamic size, and zeta potential. Moreover, membrane activity studies with peptides and their complexes with SCOs confirmed that the toxicity of the complexes at higher molar ratios is mainly caused by the free fraction of the peptide which is not incorporated into the peptide/oligonucleotide complexes. Finally, we show that the increase in splice-correcting activity correlates with the ability of the complexes to associate with the cells. Collectively these studies lay the ground work for how to design highly efficient CPPs and how to optimize their oligonucleotide complexes for lowest toxicity without losing efficiency.
  •  
32.
  • Lindbo, Sarah, et al. (författare)
  • Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.
  • 2016
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 27:3, s. 716-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.
  •  
33.
  • Lindegren, Sture, 1960, et al. (författare)
  • Synthesis and biodistribution of 211At-labeled, biotinylated, and charge-modified poly-L-lysine: evaluation for use as an effector molecule in pretargeted intraperitoneal tumor therapy.
  • 2002
  • Ingår i: Bioconjugate chemistry. - 1043-1802 .- 1520-4812. ; 13:3, s. 502-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-L-lysine (7, 21, and 204 kDa) has been evaluated as an effector carrier for use in pretargeted intraperitoneal tumor therapy. For the synthesis, the epsilon-amino groups on the poly-L-lysine were modified in three steps utilizing conjugate biotinylation with biotin amidocaproate N-hydroxysuccinimide ester (BANHS), conjugate radiolabeling with (211)At using the intermediate reagent N-succinimidyl 3-(trimethylstannyl)benzoate (m-MeATE), and charge modification using succinic anhydride, resulting in an increase in the molecular weight of approximately 80% of the final product. The labeling of the m-MeATE reagent and subsequent conjugation of the polymer were highly efficient with overall radiochemical yields in the range of 60-70%. The in vitro avidin binding ability of the modified polymer was almost complete (90-95%), as determined by binding to avidin beads using a convenient filter tube assay. Following intraperitoneal (ip) injection in athymic mice, the 13 kDa polymer product was cleared mainly via the kidneys with fast kinetics (biological half-live T(b) approximately 2 h) and with low whole-body retention. The clearance of the 38 kDa polymer was distributed between kidneys and liver, and the 363 kDa polymer was mainly sequestered by the liver with a T(b) of 8 h. Increased tissue uptake in the thyroid, lungs, stomach, and spleen following the distribution of the large effector molecules (38 and 363 kDa) suggests that degradation of the polymers by the liver may release some of the label as free astatine/astatide.
  •  
34.
  • Liu, Li-Hong, et al. (författare)
  • Photoinitiated Coupling of Unmodified Monosaccharides to Iron Oxide Nanoparticles for Sensing Proteins and Bacteria
  • 2009
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 20:7, s. 1349-1355
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a versatile approach for the immobilization of unmodified monosaccharides onto iron oxide nanoparticles. Covalent coupling of the carbohydrate onto iron oxide nanoparticle surfaces was accomplished by the CH insertion reaction of photochemically activated phosphate-functionalized perfluorophenylazides (PFPAs), and the resulting glyconanoparticles were characterized by IR, TGA, and TEM. The surface-bound D-mannose showed the recognition ability toward Concanavalin A and Escherichia coli strain ORN178 that possesses mannose-specific receptor sites. Owing to the simplicity and versatility of the technique, together with the magnetic property of iron oxide nanoparticles, the methodology developed in this study serves as a general approach for the preparation of magnetic glyconanoparticles to be used in clinical diagnosis, sensing, and decontamination.
  •  
35.
  • Lorents, Annely, et al. (författare)
  • Arginine-Rich Cell-Penetrating Peptides Require Nucleolin and Cholesterol-Poor Subdomains for Translocation across Membranes
  • 2018
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 29:4, s. 1168-1177
  • Tidskriftsartikel (refereegranskat)abstract
    • Proficient transport vectors called cell-penetrating peptides (CPPs) internalize into eukaryotic cells mostly via endocytic pathways and facilitate the uptake of various cargo molecules attached to them. However, some CPPs are able to induce disturbances in the plasma membrane and translocate through it seemingly in an energy-independent manner. For understanding this phenomenon, giant plasma membrane vesides (GPMVs) derived from the cells are a beneficial model system, since GPMVs have a complex membrane composition comparable to the cells yet lack cellular energy dependent mechanisms. We investigated the translocation of arginine-rich CPPs into GPMVs with different membrane compositions. Our results demonstrate that lower cholesterol content favors accumulation of nona-arginine and, additionally, sequestration of cholesterol increases the uptake of the CPPs in vesicles with higher cholesterol packing density. Furthermore, the proteins on the surface of vesicles are essential for the uptake of arginine-rich CPPs: downregulation of nudeolin decreases the accumulation and digestion of proteins on the membrane suppresses translocation even more efficiently.
  •  
36.
  • Lundin, Per, et al. (författare)
  • Distinct Uptake Routes of Cell-Penetrating Peptide Conjugates
  • 2008
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 19:12, s. 2535-2542
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are a growing family of peptides that have opened a new avenue in drug delivery, allowing various hydrophilic macromolecules to enter cells. In accordance with most other cationic delivery vectors, CPPs seem to rely mostly on endocytosis for internalization. However, due to conflicting results the exact endocytic pathways for CPP uptake have not yet been resolved. Here, we evaluated the ability of seven CPPs, with different chemical properties, to convey peptide nucleic acids (PNAs) inside cells. Assays based on both splice correction, generating biologically active read-out, and on traditional fluorescence measurements were utilized. The same assays were employed to assess different endocytic pathways and the dependence on extracellular heparan sulfates for internalization. Both highly cationic CPPs (M918, penetratin, and Tat) and amphipathic peptides (transportan, TP10, MAP, and pVEC) were investigated in this study. Conjugate uptake relied on endocytosis for all seven peptides but splice-correcting activity varied greatly for the investigated CPPs. The exact endocytic internalization routes were evaluated through the use of well-known endocytosis inhibitors and tracers. In summary, the different chemical properties of CPPs have little correlation with their ability to efficiently deliver splice-correcting PNA. However, conjugates of polycationic and amphipathic peptides appear to utilize different internalization routes.
  •  
37.
  • Mislovicova, D, et al. (författare)
  • Neoglycoconjugates of mannan with bovine serum albumin and their interaction with lectin concanavalin A
  • 2002
  • Ingår i: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1520-4812 .- 1043-1802. ; 13:1, s. 136-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Neoglycoconjugates were prepared from mannan isolated from yeast Saccharomyces cerevisiae and activated by periodate oxidation to create aldehyde groups. Various degrees of oxidation introduced 11-28 aldehyde groups per mannan molecule and simultaneously resulted in a molar mass decrease from 46 to 44.5-31 kDa. The activated mannans were subsequently conjugated with bovine serum albumin forming neoglycoconjugates. Some parameters of these mannan-bovine serum albumin conjugates were characterized: saccharide content 25-30% w/w, molar mass within the range 169-246 kDa, and polydispersion (M-w/M-n) from 2.8 to 3.6. The interaction of these conjugates with lectin concanavalin A was studied using three different methods: W quantitative precipitation in solution; (ii) sorption to concanavalin A immobilized on bead cellulose; and (iii) kinetic measurement of the interaction by surface plasmon resonance. Quantitative precipitation assay showed only negligible differences in the precipitation course of original mannan and the corresponding mannan-bovine serum albumin conjugates. Both the sorption method (equilibrium method) and the surface plasmon resonance measurement (kinetic method) demonstrates that the values of dissociation constant K-D of all synthetic neoglycoconjugates were within the range 10(-7)-10(-8) mol.L-1 (close to K-D = 10(-1) mol-L-1 determined by the sorption method for the original mannan). In conclusion, characterization of synthetic neoglycoconjugates confirmed that the method used for their preparation retained the ability of mannan moiety to interact with concanavalin A.
  •  
38.
  • Moschos, Sterghios Athanasios, et al. (författare)
  • Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity
  • 2007
  • Ingår i: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1520-4812 .- 1043-1802. ; 18:5, s. 1450-1459
  • Tidskriftsartikel (refereegranskat)abstract
    • The therapeutic application of siRNA shows promise as an alternative approach to small-molecule inhibitors for the treatment of human disease. However, the major obstacle to its use has been the difficulty in delivering these large anionic molecules in vivo. In this study, we have investigated whether siRNA-mediated knockdown of p38 MAP kinase mRNA in mouse lung is influenced by conjugation to the nonviral delivery vector cholesterol and the cell penetrating peptides (CPP) TAT(48-60) and penetratin. Initial studies in the mouse fibroblast L929 cell line showed that siRNA conjugated to cholesterol, TAT(48-60), and penetratin, but not siRNA alone, achieved a limited reduction of p38 MAP kinase mRNA expression. Intratracheal administration of siRNA resulted in localization within macrophages and scattered epithelial cells and produced a 30-45% knockdown of p38 MAP kinase mRNA at 6 h. As with increasing doses of siRNA, conjugation to cholesterol improved upon the duration but not the magnitude of mRNA knockdown, while penetratin and TAT(48-60) had no effect. Importantly, administration of the penetratin or TAT(48-60) peptides alone caused significant reduction in p38 MAP kinase mRNA expression, while the penetratin-siRNA conjugate activated the innate immune response. Overall, these studies suggest that conjugation to cholesterol may extend but not increase siRNA-mediated p38 MAP kinase mRNA knockdown in the lung. Furthermore, the use of CPP may be limited due to as yet uncharacterized effects upon gene expression and a potential for immune activation.
  •  
39.
  • Mume, Eskender, et al. (författare)
  • Evaluation of ((4-Hydroxyphenyl)ethyl)maleimide for Site-Specific Radiobromination of Anti-HER2 Affibody
  • 2005
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 16:6, s. 1547-1555
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a new class of small phage-display selected proteins using a scaffold domain of the bacterial receptor protein A. They can be selected for specific binding to a large variety of protein targets. An affibody molecule binidng with high affinity to a tumor antigen HER2 was recently developed for radionuclide diagnostics and therapy in vivo. The use of hte positron-emitting nuclide 76Br(T½ = 16.2 h) could imporve the sensitivity of detection of HER2-expressing tumors. A site-specific radiobromination o fa cysteine-containing variant of the anti-HER2 affibody, (ZHER2:4)2-Cys, using ((4-hydroxpyphenyl)ethyl)maleimide (HPEM), was evaluated in this study. It was found that HPEM can be radiobrominated with an efficiency of 83+0.4% and thereafter coupled to freshly reduced conjugate to exceed 97%. The label was stable against challenge with large excess of nonlabeled bromide and in a high molar strengt solution. In vitro cell tests demonstraded that radiobrominated affibody binds specifically to the HER2-expressing cel-line, SK-OV-3. Biodistribution studies in nude mice bearing SK-OV-3 xenografts have shown tumor accumulation of 4.8 ? 2.2% IA/g and good tumor-to-normal tissue ratios.
  •  
40.
  • Myrberg, Helena, et al. (författare)
  • Design of a Tumor-Homing Cell-Penetrating Peptide
  • 2008
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 19:1, s. 70-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemotherapy is often limited by toxicity to normal cells. Therefore, an ideal anticancer drug should discriminate between normal tissue and tumors. This would require a target receptor molecule mostly present in tumors. The cyclic peptide cCPGPEGAGC (PEGA) is a homing peptide that has previously been shown to accumulate in breast tumor tissue in mice. PEGA peptide does not cross the plasma membrane per se; however, when attached to the cell-penetrating peptide pVEC, the conjugate is taken up by different breast cancer cells in vitro. Additionally, the homing capacity of the PEGA-pVEC is conserved in vivo, where the conjugate mainly accumulates in blood vessels in breast tumor tissue and, consequently is taken up. Furthermore, we show that the efficacy of the anticancer drug, chlorambucil, is increased more than 4 times when the drug is conjugated to the PEGA-pVEC chimeric peptide. These data demonstrate that combining a homing sequence with a cell-penetrating sequence yields a peptide that combines the desirable properties of the parent peptides. Such peptides may be useful in diagnostics and delivery of therapeutic agents to an intracellular location in a specific tumor target tissue.
  •  
41.
  • Myrberg, Helena, et al. (författare)
  • Protein delivery by the cell-penetrating peptide YTA2
  • 2007
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 18:1, s. 170-174
  • Tidskriftsartikel (refereegranskat)abstract
    • In most cases, the transport of cell-penetrating peptide (CPP) with a cargo molecule over the plasma membrane requires a cross-linking of the cargo molecule to the peptide. Lately, a method of cargo delivery, coincubation with CPP, has been applied. We have studied uptake and toxicity of the CPP, YTA2, in the Bowes human melanoma cell line and human MDA-MB-231 breast cancer cell line and compared the results with known cell-penetrating peptides. The results show that fluoresceinyl YTA2 is taken up by the Bowes cells with 3.23 nmol/mg protein and shows low membrane toxicity to the cells with an EC50 of 60 μM. Furthermore, we show that YTA2 is capable of delivering cargo proteins, such as β-galactosidase and tetramethyl rhodamine iso-thiocyanate (TRITC) labeled streptavidin into cells by coincubation. The delivery of TRITC-labeled streptavidin was quantified to 42.4 pmol streptavidin/mg protein. The delivery of proteins into the cells by mere coincubation is an advantage, since the chemical coupling between the CPP and the cargo molecule, which adds time-consuming synthesis and purification steps, can be omitted. In addition, the flexibility in CPP cargo delivery is increased.
  •  
42.
  • Myrhammar, Anders, et al. (författare)
  • Photocontrolled Reversible Binding between the Protein A-Derived Z Domain and Immunoglobulin G
  • 2020
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 31:3, s. 622-630
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoisomerization of the trans and cis isomers of azobenzene derivatives has been used to control the function of biomolecules in a reversible and nondestructive manner. In this study, affibody molecules, representing a class of small, helical proteins that can be engineered for binding to a wide range of target proteins, have been investigated by the incorporation of a photoswitchable azobenzene derivative in the molecule. Three different Z domain variants were produced by solid phase peptide synthesis and conjugated by thiol-directed chemistry to an azobenzene-based photoswitch. The proteins were screened for binding to and light elution from an IgG-sepharose affinity column. One of the tested Z variants, Z(C3), showed efficient binding to the column and could be eluted by irradiation with light at 400 nm. In a reverse affinity chromatography assay, where the Z(C3) variant was coupled to sepharose, human IgG1 could be captured to the column and partially eluted by light. Further studies of the azobenzene-conjugated Z(C3) domain by surface plasmon resonance (SPR) confirmed the high affinity binding to IgG, and circular dichroism (CD) spectroscopy showed that the protein has a high alpha-helical secondary structure content.
  •  
43.
  • Nestor, Marika, et al. (författare)
  • Biodistribution of the chimeric monoclonal antibody U36 radioiodinated with a closo-dodecaborate-containing linker : Comparison with other radioiodination methods
  • 2003
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 14:4, s. 805-10
  • Tidskriftsartikel (refereegranskat)abstract
    • We have evaluated the applicability of the [(4-isothiocyanatobenzylammonio)undecahydro-closo-dodecaborate (1-)] (DABI) linker molecule for antibody radiohalogenation and compared it to radiohalogenation using the linker N-succinimidyl 4-iodobenzoate (PIB) and to direct radiohalogenation using Chloramine T. These studies were performed to assess the potential of DABI conjugates and to optimize the biological properties of halogen-labeled cMAb U36. The three conjugates were evaluated in vitro for their specificity and affinity and in vivo for their biodistribution patterns in normal mice at 1.5, 6, 24, and 96 h pi. Labeling efficiencies of direct CAT labeling, indirect PIB labeling, and indirect DABI labeling were 90-95%, 60%, and 68%, respectively. This resulted in a PIB:cMAb U36 molar ratio of 1.8-2.5 and a DABI:cMAb U36 molar ratio of 4.1. The in vitro data demonstrated specific binding for all conjugates and similar affinities with values around 1 x 10(8) M(-)(1). However, the in vivo data revealed accumulation of the radioiodine uptake in thyroid for the directly labeled conjugate, with a value 10 times higher than the indirectly labeled conjugates 96 h pi. Both the (125)I-PIB-cMAb U36 and (125)I-DABI-cMAb U36 conjugates yielded a low thyroid uptake with no accumulation, indicating different catabolites for these conjugates. This may favor the use of the indirectly labeled conjugates for future studies. Apart from the specific results obtained, these findings also demonstrate how the right linker molecule will provide additional opportunities to further improve the properties of an antibody-radionuclide conjugate.
  •  
44.
  • Norberg, Oscar, et al. (författare)
  • Photo-Click Immobilization of Carbohydrates on Polymeric Surfaces - A Quick Method to Functionalize Surfaces for Biomolecular Recognition Studies
  • 2009
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 20:12, s. 2364-2370
  • Tidskriftsartikel (refereegranskat)abstract
    • Methods to rapidly functionalize specific polymeric surfaces with alkynes, which can subsequently be linked to azide-containing carbohydrates, are presented. The methods comprise two main concepts: azide photoligation and Cu-catalyzed azide-alkyne cycloaddition. 2-Azidoethyl-functionalized CL-D-mannopyranoside was synthesized and covalently attached to alkyne-functionalized polymeric surfaces using the techniques. The protein recognition properties of the carbollydrate-presenting surfaces were evaluated using quartz crystal microbalance biosensor instrumentation.
  •  
45.
  • Padari, Kart, et al. (författare)
  • S4(13)-PV Cell-Penetrating Peptide Forms Nanoparticle-Like Structures to Gain Entry Into Cells
  • 2010
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 21:4, s. 774-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite increasing interest in cell-penetrating peptides (CPPs) as carriers for drugs and in gene therapy, the current understanding of their exact internalization mechanism is still far from complete. The cellular translocation of CPPs and their payloads has been mostly described by fluorescence- and activity-based methods, leaving the more detailed characterization at the ultrastructural level almost out of attention. Herein, we used transmission electron microscopy to characterize the membrane interaction and internalization of a cell-penetrating peptide S4(13)-PV. We demonstrate that S4(13)-PV peptide forms spherical nanoparticle-like regular structures upon association with cell surface glycosaminoglycans on the plasma membrane. Insertion of S4(13)-PV particles into plasma membrane induces disturbances and leads to the vesicular uptake of peptides by cells. We propose that for efficient cellular translocation S4(13)-PV peptides have to assemble into particles of specific size and shape. The spherical peptide particles are not dissociated in intracellular vesicles but often retain their organization and remain associated with the membrane of vesicles, destabilizing them and promoting the escape of peptides into cytosol. Lowering the temperature and inhibition of dynamins' activity reduce the internalization of S4(13)-PV peptides, but do not block it completely. Our results provide an ultrastructural insight into the interaction mode of CPPs with the plasma membrane and the distribution in cells, which might help to better understand how CPPs cross the biological membranes and gain access into cells.
  •  
46.
  • Perols, Anna, et al. (författare)
  • Influence of DOTA Chelator Position on Biodistribution and Targeting Properties of In-111-Labeled Synthetic Anti-HER2 Affibody Molecules
  • 2012
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 23:8, s. 1661-1670
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with Tc-99m at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K-D values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1) K50-DOTA showed a slightly lower melting point (57 degrees C) compared to DOTA-A1-Z(HER2:S1) (64 degrees C) and DOTA-K5S-Z(HER2:S1) (62 degrees C), but all variants showed good refolding properties after heat treatment All conjugates were successfully labeled with In-III resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in L5174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1) and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.
  •  
47.
  • Perols, Anna, et al. (författare)
  • Site-Specific Photoconjugation of Antibodies Using Chemically Synthesized IgG-Binding Domains
  • 2014
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 25:3, s. 481-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Pc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the e-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG I, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.
  •  
48.
  • Ramapanicker, Ramesh, et al. (författare)
  • Powerful binders for the D-dimer by conjugation of the GPRP peptide to polypeptides from a designed set : illustrating a general route to new binders for proteins
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:1, s. 17-25
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthetic tetrapeptide GPRP based on the amino-terminal GPR sequence of the fibrin α-chain, binds the D-dimer protein with a dissociation constant KD of 25 μM. The D-dimer protein, a well-known biomarker for thrombosis, contains two cross-linked D fragments from the fibrinogen protein formed upon degradation of the fibrin gel, the core component of blood clots. In order to develop a specific high-affinity binder for the D-dimer protein, GPRP was conjugated via an aliphatic spacer to each member of a set of sixteen polypeptides designed for the development of binder molecules for proteins in general. The binders were individually characterised and ranked using surface plasmon resonance (SPR) analysis. The dissociation constant of the complex formed from the D-dimer and 4-D15L8-GPRP labelled with fluorescein was determined by fluorescense titration and found to be 3 nM, an affinity four orders of magnitude higher than that of free GPRP. According to SPR analysis binding was completely inhibited by free GPRP at mM concentrations and the polypeptide conjugate was therefore shown to bind specifically to the binding site of GPRP. Affinities were further enhanced by dimerisation of the polypeptide conjugates via a bifunctional linker resulting in dissociation constants that were further decreased (affinities increased) by factors of 2-4. The results suggest an efficient route to specific binders for proteins based on short peptides with affinites that need only to be modest, thus shortening the time of binder development dramatically.
  •  
49.
  • Rosik, Daniel, et al. (författare)
  • Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody Molecules Radiofluorinated at the N-Terminus via Oxime Formation with F-18-4-Fluorobenzaldehyde
  • 2014
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 25:1, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a class of affinity agents for molecular imaging based on a non-immunoglobulin protein scaffold. Previous studies have demonstrated high contrast for in vivo imaging of cancer-associated molecular abnormalities using Affibody molecules. Using the radionuclide F-18 for labeling and PET as the imaging modality, the sensitivity of molecular imaging using Affibody molecules can be further increased. The use of oxime formation between an aminooxy-functionalized peptide and F-18-fluorobenzaldehyde (F-18-FBA) is a promising way of radiolabeling of targeting peptides. However, previous studies demonstrated that application of this method to Affibody molecules is associated with high liver uptake. We hypothesized that incorporation of a triglutamyl spacer between the aminooxy moiety and the N-terminus of a synthetic Affibody molecule would decrease the hepatic uptake of the F-18-N-(4-fluorobenzylidine)oxime) (F-18-FBO)-labeled tracer. To verify this, we have produced two variants of the HER2-targeting Z(HER2:342) Affibody molecule by peptide synthesis: OA-PEP4313, where aminooxyacetic acid was conjugated directly to the N-terminal alanine, and OA-E-3-PEP4313, where a triglutamyl spacer was introduced between the aminooxy moiety and the N-terminus. We have found that the use of the spacer is associated with a minor decrease of affinity, from K-D = 49 pM to K-D = 180 pM. Radiolabeled F-18-FBO-E-3-PEP4313 demonstrated specific binding to HER2-expressing ovarian carcinoma SKOV-3 cells and slow internalization. Biodistribution studies in mice demonstrated that the use of a triglutamyl linker decreased uptake of radioactivity in liver 2.7-fold at 2 h after injection. Interestingly, radioactivity uptake in kidneys was also reduced (2.4-fold). Experiments in BALB/C nu/nu mice bearing SKOV-3 xenografts demonstrated HER2-specific uptake of F-18-FBO-E-3-PEP4313 in tumors. At 2 h pi, the tumor uptake (20 +/- 2% ID/g) exceeded uptake in liver 5-fold and uptake in kidneys 3.6-fold. The tumor-to-blood ratio was 21 +/- 3. The microPET/CT imaging experiment confirmed the biodistribution data. In conclusion, the use of a triglutamyl spacer is a convenient way to improve the biodistribution profile of Affibody molecules labeled at the N-terminus using F-18-FBA. It provides a tracer capable of producing high-contrast images of HER2-expressing tumors.
  •  
50.
  • Schoch, Juliane, et al. (författare)
  • Site-Specific One-Pot Dual Labeling of DNA by Orthogonal Cycloaddition Chemistry
  • 2012
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 23:7, s. 1382-1386
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioorthogonal reactions are of high interest in biosciences as they allow the introduction of fluorescent dyes, affinity tags, or other unnatural moieties into biomolecules. The site-specific attachment of two or more different labels is particularly demanding and typically requires laborious multistep syntheses. Here, we report that the most popular cycloaddition in bioconjugation, the copper-catalyzed azide–alkyne click reaction (CuAAC), is fully orthogonal to the inverse electron-demand Diels–Alder reaction (DAinv). We demonstrate that both bioorthogonal reactions can be conducted concurrently in a one-pot reaction by just mixing all components. Orthogonality has been established even for highly reactive trans-cyclooctene-based dienophiles (with rate constants up to 380 000 M–1 s–1). These properties allow for the convenient site-specific one-step preparation of oligonucleotide FRET probes and related reporters needed in cellular biology and biophysical chemistry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 82
Typ av publikation
tidskriftsartikel (81)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (82)
Författare/redaktör
Tolmachev, Vladimir (18)
Orlova, Anna (15)
Eriksson Karlström, ... (12)
Langel, Ülo (11)
Sandström, Mattias (6)
Honarvar, Hadis (5)
visa fler...
Altai, Mohamed (4)
Hober, Sophia (4)
Rosik, Daniel (4)
Abrahmsén, Lars (4)
Yan, Mingdi (4)
Viljanen, Johan (4)
Nilsson, Peter (3)
Strand, Joanna (3)
Stromberg, R (3)
Ahlgren, Sara (3)
Gedda, Lars (3)
Feldwisch, Joachim (3)
Tran, Thuy (3)
Sjöberg, Stefan (3)
Perols, Anna (3)
Selvaraju, Ram Kumar (3)
Carlsson, Jörgen (3)
Tegler, Lotta (3)
Lundqvist, Hans (2)
Hällbrink, Mattias (2)
Ramström, Olof (2)
Westerlund, Kristina (2)
Edwards, Katarina (2)
Aili, Daniel (2)
Hammarström, Per (2)
Sundin, Anders (2)
Sjöberg, Anna (2)
Wållberg, Helena (2)
Wennborg, Anders (2)
Långström, Bengt (2)
Gurdap, CO (2)
Bäck, Tom, 1964 (2)
Lindegren, Sture, 19 ... (2)
Börjesson, Karl, 198 ... (2)
Velikyan, Irina (2)
Garousi, Javad (2)
Sezgin, E (2)
El-Andaloussi, Samir (2)
Fink, J (2)
Broo, Kerstin, 1970 (2)
Konradsson, Peter (2)
Hansen, Mats (2)
Arukuusk, Piret (2)
Margus, Helerin (2)
visa färre...
Lärosäte
Uppsala universitet (27)
Kungliga Tekniska Högskolan (23)
Karolinska Institutet (13)
Stockholms universitet (12)
Linköpings universitet (10)
Göteborgs universitet (8)
visa fler...
Lunds universitet (7)
Chalmers tekniska högskola (3)
Umeå universitet (1)
Malmö universitet (1)
visa färre...
Språk
Engelska (82)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (44)
Medicin och hälsovetenskap (20)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy