SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1558 2531 "

Sökning: L773:1558 2531

  • Resultat 1-50 av 138
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasiasl, Taher, et al. (författare)
  • A Flexible Cystoscope Based on Hydrodynamic Cavitation for Tumor Tissue Ablation
  • 2022
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9294 .- 1558-2531. ; 69:1, s. 513-524
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Hydrodynamic cavitation is characterized by the formation of bubbles inside a flow due to local reduction of pressure below the saturation vapor pressure. The resulting growth and violent collapse of bubbles lead to a huge amount of released energy. This energy can be implemented in different fields such as heat transfer enhancement, wastewater treatment and chemical reactions. In this study, a cystoscope based on small scale hydrodynamic cavitation was designed and fabricated to exploit the destructive energy of cavitation bubbles for treatment of tumor tissues. The developed device is equipped with a control system, which regulates the movement of the cystoscope in different directions. According to our experiments, the fabricated cystoscope was able to locate the target and expose cavitating flow to the target continuously and accurately. The designed cavitation probe embedded into the cystoscope caused a significant damage to prostate cancer and bladder cancer tissues within less than 15 minutes. The results of our experiments showed that the cavitation probe could be easily coupled with endoscopic devices because of its small diameter. We successfully integrated a biomedical camera, a suction tube, tendon cables, and the cavitation probe into a 6.7 mm diameter cystoscope, which could be controlled smoothly and accurately via a control system. The developed device is considered as a mechanical ablation therapy, can be a solid alternative for minimally invasive tissue ablation methods such as radiofrequency (RF) and laser ablation, and could have lower side effects compared to ultrasound therapy and cryoablation.
  •  
2.
  • Aberg, P., et al. (författare)
  • Skin cancer identification using multifrequency electrical impedance - A potential screening tool
  • 2004
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 51:12, s. 2097-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical bio-impedance can be used to assess skin cancers and other cutaneous lesions. The aim of this study was to distinguish skin cancer from benign nevi using multifrequency impedance spectra. Electrical impedance spectra of about 100 skin cancers and 511 benign nevi were measured. Impedance of reference skin was measured ipsi-laterally to the lesions. The impedance relation between lesion and reference skin was used to distinguish the cancers from the nevi. It was found that it is possible to separate malignant melanoma from benign nevi with 75% specificity at 100% sensitivity, and to distinguish nonmelanoma skin cancer from benign nevi with 87% specificity at 100% sensitivity. The power of skin cancer detection using electrical impedance is as good as, or better than, conventional visual screening made by general practitioners.
  •  
3.
  • Ahlström, Christer, et al. (författare)
  • Assessing Aortic Stenosis using Sample Entropy of the Phonocardiographic Signal in Dogs
  • 2008
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 55:8, s. 2107-2109
  • Tidskriftsartikel (refereegranskat)abstract
    • In aortic valve stenosis (AS), heart murmurs arise as an effect of turbulent blood flow distal to the obstructed valves. With increasing AS severity, the flow becomes more unstable, and the ensuing murmur becomes more complex. We hypothesize that these hemodynamic flow changes can be quantified based on the complexity of the phonocardiographic (PCG) signal. In this study, sample entropy (SampEn) was investigated as a measure of complexity using a dog model. Twenty-seven boxer dogs with various degrees of AS were examined with Doppler echocardiography, and the peak aortic flow velocity (Vmax) was used as a reference of AS severity. SampEn correlated to Vmax with R = 0.70 using logarithmic regression. In a separate analysis, significant differences were found between physiologic murmurs and murmurs caused by AS (p < 0.05), and the area under a receiver operating characteristic curve was calculated to 0.96. Comparison with previously presented PCG measures for AS assessment showed improved performance when using SampEn, especially for differentiation between physiological murmurs and murmurs caused by mild AS. Studies in patients will be needed to properly assess the technique in humans.
  •  
4.
  • Ala, Tirdad Seifi, et al. (författare)
  • Alpha Oscillations During Effortful Continuous Speech: From Scalp EEG to Ear-EEG
  • 2023
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0018-9294 .- 1558-2531. ; 70:4, s. 1264-1273
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The purpose of this study was to investigate alpha power as an objective measure of effortful listening in continuous speech with scalp and ear-EEG. Methods: Scalp and ear-EEG were recorded simultaneously during presentation of a 33-s news clip in the presence of 16-talker babble noise. Four different signal-to-noise ratios (SNRs) were used to manipulate task demand. The effects of changes in SNR were investigated on alpha event-related synchronization (ERS) and desynchronization (ERD). Alpha activity was extracted from scalp EEG using different referencing methods (common average and symmetrical bi-polar) in different regions of the brain (parietal and temporal) and ear-EEG. Results: Alpha ERS decreased with decreasing SNR (i.e., increasing task demand) in both scalp and ear-EEG. Alpha ERS was also positively correlated to behavioural performance which was based on the questions regarding the contents of the speech. Conclusion: Alpha ERS/ERD is better suited to track performance of a continuous speech than listening effort. Significance: EEG alpha power in continuous speech may indicate of how well the speech was perceived and it can be measured with both scalp and Ear-EEG.
  •  
5.
  • Alcaraz Martinez, Raul, et al. (författare)
  • Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings
  • 2011
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 58, s. 1441-1449
  • Tidskriftsartikel (refereegranskat)abstract
    • The problem of classifying short atrial fibrillatory segments in ambulatory ECG recordings as being either paroxysmal or persistent is addressed by investigating a robust approach to signal characterization. The method comprises preprocessing, estimation of the dominant atrial frequency for the purpose of controlling the subbands of a filter bank, and computation of the relative subband (harmonics) energy and the subband sample entropy. Using minimum-error-rate classification of different feature vectors, a dataset consisting of 24-h ambulatory recordings from 50 subjects with either paroxysmal (26) or persistent (24) atrial fibrillation (AF) was analyzed on a 10-s segment basis; a total of 212196 segments were classified. The best performance in terms of area under the receiver operating characteristic curve was obtained for a feature vector defined by the subband sample entropy of the dominant atrial frequency and the relative harmonics energy, resulting in a value of 0.923, whereas that of the dominant atrial frequency was equal to 0.826. It is concluded that paroxysmal and persistent AF can be discriminated from short segments with good accuracy at any time of an ambulatory recording.
  •  
6.
  • Asplund, Maria, et al. (författare)
  • Construction of wire electrodesand 3D woven logicas a potential technology forneuroprosthetic implants
  • 2008
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • New strategies to improve neuron coupling to neuroelectronic implants are needed. In particular, tomaintain functional coupling between implant and neurons, foreign body response like encapsulation must meminimized. Apart from modifying materials to mitigate encapsulation it has been shown that with extremely thinstructures, encapsulation will be less pronounced. We here utilize wire electrochemical transistors (WECTs) usingconducting polymer coated fibers. Monofilaments down to 10 μm can be successfully coated and weaved intocomplex networks with built in logic functions, so called textile logic. Such systems can control signal patterns at alarge number of electrode terminals from a few addressing fibres. Not only is fibre size in the range where lessencapsulation is expected but textiles are known to make successful implants because of their soft and flexiblemechanical properties. Further, textile fabrication provides versatility and even three dimensional networks arepossible. Three possible architectures for neuroelectronic systems are discussed. WECTs are sensitive to dehydrationand materials for better durability or improved encapsulation is needed for stable performance in biologicalenvironments.
  •  
7.
  • Bailon, R, et al. (författare)
  • A robust method for ECG-Based estimation of the respiratory frequency during stress testing
  • 2006
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 53:7, s. 1273-1285
  • Tidskriftsartikel (refereegranskat)abstract
    • A robust method is presented for electrocardiogram (ECG)-based estimation of the respiratory frequency during stress testing. Such ECGs contain highly nonstationary noise and exhibit changes in QRS morphology which, when combined with the dynamic nature of the respiratory frequency, make most existing methods break down. The present method exploits the oscillatory pattern of the rotation angles of the heart's electrical axis as induced by respiration. The series of rotation angles, obtained from least-squares loop alignment, is subject to power spectral analysis and estimation of the respiratory frequency. Robust techniques are introduced to handle the nonstationary properties of exercise ECGs. The method is evaluated by means of both simulated signals, and ECG/airflow signals recorded from 14 volunteers and 20 patients during stress testing. The resulting respiratory frequency estimation error is, for simulated signals, equal to 0.5% +/- 0.2%, mean SD (0.002 +/- 0.001 Hz), whereas the error between respiratory frequencies of the ECG-derived method and the airflow signals is 5.9 % +/- 4 % (0.022 +/- 0.016 Hz). The results suggest that the method is highly suitable for analysis of noisy ECG signals recorded during stress testing.
  •  
8.
  • Barbé, Kurt, et al. (författare)
  • Fractional-Order Time Series Models for Extracting the Haemodynamic Response From Functional Magnetic Resonance Imaging Data
  • 2012
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 59:8, s. 2264-2272
  • Tidskriftsartikel (refereegranskat)abstract
    • The postprocessing of functional magnetic resonance imaging (fMRI) data to study the brain functions deals mainly with two objectives: signal detection and extraction of the haemodynamic response. Signal detection consists of exploring and detecting those areas of the brain that are triggered due to an external stimulus. Extraction of the haemodynamic response deals with describing and measuring the physiological process of activated regions in the brain due to stimulus. The haemodynamic response represents the change in oxygen levels since the brain functions require more glucose and oxygen upon stimulus that implies a change in blood flow. In the literature, different approaches to estimate and model the haemodynamic response have been proposed. These approaches can be discriminated in model structures that either provide a proper representation of the obtained measurements but provide no or a limited amount of physiological information, or provide physiological insight but lacks a proper fit to the data. In this paper, a novel model structure is studied for describing the haemodynamics in fMRI measurements: fractional models. We show that these models are flexible enough to describe the gathered data with the additional merit of providing physiological information.
  •  
9.
  • Barquero-Perez, Oscar, et al. (författare)
  • On the influence of heart rate and coupling interval prematurity on heart rate turbulence
  • 2017
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 64:2, s. 302-309
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Heart rate turbulence (HRT) has been successfully explored for cardiac risk stratification. While HRT is known to be influenced by the heart rate (HR) and the coupling interval (CI), nonconcordant results have been reported on how the CI influences HRT. The purpose of this study is to investigate HRT changes in terms of CI and HR by means of an especially designed protocol. Methods: A dataset was acquired from 11 patients with structurally normal hearts for which CI was altered by different pacing trains and HR by isoproterenol during electrophysiological study (EPS). The protocol was designed so that, first, the effect of HR changes on HRT and, second, the combined effect of HR and CI could be explored. As a complement to the EPS dataset, a database of 24-h Holters from 61 acute myocardial infarction (AMI) patients was studied for the purpose of assessing risk. Data analysis was performed by using different nonlinear ridge regression models, and the relevance of model variables was assessed using resampling methods. The EPS subjects, with and without isoproterenol, were analyzed separately. Results: The proposed nonlinear regression models were found to account for the influence of HR and CI on HRT, both in patients undergoing EPS without isoproterenol and in low-risk AMI patients, whereas this influence was absent in high-risk AMI patients. Moreover, model coefficients related to CI were not statistically significant, p > 0.05, on EPS subjects with isoproterenol. Conclusion: The observed relationship between CI and HRT, being in agreement with the baroreflex hypothesis, was statistically significant (p < 0.05), when decoupling the effect of HR and normalizing the CI by the HR. Significance: The results of this study can help to provide new risk indicators that take into account physiological influence on HRT, as well as to model how this influence changes in different cardiac conditions.
  •  
10.
  • Bayford, Richard H., et al. (författare)
  • Locating Functionalized Gold Nanoparticles Using Electrical Impedance Tomography
  • 2022
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : IEEE. - 0018-9294 .- 1558-2531. ; 69:1, s. 494-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: An imaging device to locate functionalised nanoparticles, whereby therapeutic agents are transported from the site of administration specifically to diseased tissues, remains a challenge for pharmaceutical research. Here, we show a new method based on electrical impedance tomography (EIT) to provide images of the location of gold nanoparticles (GNPs) and the excitation of GNPs with radio frequencies (RF) to change impedance permitting an estimation of their location in cell models Methods: We have created an imaging system using quantum cluster GNPs as contrast agent, activated with RF fields to heat the functionalized GNPs, which causes a change in impedance in the surrounding region. This change is then identified with EIT. Results: Images of impedance changes of around 80 ± 4% are obtained for a sample of citrate stabilized GNPs in a solution of phosphate-buffered saline. A second quantification was carried out using colorectal cancer cells incubated with culture media, and the internalization of GNPs into the colorectal cancer cells was undertaken to compare them with the EIT images. When the cells were incubated with functionalised GNPs, the change was more apparent, approximately 40 ± 2%. This change was reflected in the EIT image as the cell area was more clearly identifiable from the rest of the area. Significance: EIT can be used as a new method to locate functionalized GNPs in human cells and help in the development of GNP-based drugs in humans to improve their efficacy in the future.
  •  
11.
  • Bayford, Richard H., et al. (författare)
  • Locating Functionalized Gold Nanoparticles Using Electrical Impedance Tomography
  • 2022
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : IEEE. - 0018-9294 .- 1558-2531. ; 69:1, s. 494-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: An imaging device to locate functionalised nanoparticles, whereby therapeutic agents are transported from the site of administration specifically to diseased tissues, remains a challenge for pharmaceutical research. Here, we show a new method based on electrical impedance tomography (EIT) to provide images of the location of gold nanoparticles (GNPs) and the excitation of GNPs with radio frequencies (RF) to change impedance permitting an estimation of their location in cell models Methods: We have created an imaging system using quantum cluster GNPs as contrast agent, activated with RF fields to heat the functionalized GNPs, which causes a change in impedance in the surrounding region. This change is then identified with EIT. Results: Images of impedance changes of around 80 +/- 4% are obtained for a sample of citrate stabilized GNPs in a solution of phosphate-buffered saline. A second quantification was carried out using colorectal cancer cells incubated with culture media, and the internalization of GNPs into the colorectal cancer cells was undertaken to compare them with the EIT images. When the cells were incubated with functionalised GNPs, the change was more apparent, approximately 40 +/- 2%. This change was reflected in the EIT image as the cell area was more clearly identifiable from the rest of the area. Significance: EIT can be used as a new method to locate functionalized GNPs in human cells and help in the development of GNP-based drugs in humans to improve their efficacy in the future.
  •  
12.
  • Berbari, EJ, et al. (författare)
  • High-resolution analysis of ambulatory electrocardiograms to detect possible mechanisms of premature ventricular beats
  • 2005
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 52:4, s. 593-598
  • Tidskriftsartikel (refereegranskat)abstract
    • For generations of electrocardiogram (ECG) analysis, the presence of premature ventricular beats (PVBs) has been characterized as a common event in the ECG without regard to the mechanism which has caused the PVB in the first place. At best, the coupling interval with the preceding sinus beat may be noted. This viewpoint persisted throughout the era of automated ECG analysis, as well as influencing the treatment of more life threatening events by PVB suppression strategies alone. This study proposed three hypotheses which would link the PVB to a specific mechanism or milieu. Each of these hypotheses requires significant signal processing of the continuously recorded high resolution ECG. Data are presented which demonstrate that abnormal intra-QRS potentials may be linked to a reentrant mechanism for the PVBs and that many patients have significant changes in these potentials in the sinus beats preceding the PVB. Changes in the characteristics of the repolarization as measured in the T/U wave period were also observed and could be linked to triggered activity mechanism for some PVBs. Finally, the role of subclinical ST segment changes also indicates that low grade ischemia may play a role in modulating either PVB mechanism. The data generated by this study suggest that a new view toward PVB mechanism as measured by ECG characteristics may warrant a more rational approach to renewed interest identifying the malignant PVBs and their eventual clinical management.
  •  
13.
  • Bro, Viktor, 1991-, et al. (författare)
  • Continuous and discrete Volterra-Laguerre models with  delay for modeling of smooth pursuit eye movements
  • 2023
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : IEEE. - 0018-9294 .- 1558-2531. ; 70:1, s. 97-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The mathematical modeling of the human smooth pursuit system from eye-tracking data is considered. Recently developed algorithms for the estimation of Volterra-Laguerre (VL) models with explicit time delay are applied in continuous and discrete time formulations to experimental data collected from Parkinsonian patients in different medication states and healthy controls. The discrete VL model with an explicit time delay and the method for its estimation are first introduced in this paper. The estimated parameters of a second-order VL model are shown to capture the ocular dynamics both in health and disease. The possibility of including the estimated time delay, along with the VL kernel parameters, into the set of the model parameters is explored. The results obtained in continuous VL modeling are compared with those in discrete time to discern the effects due to the sampling enforced by the eye tracker used for data acquisition.
  •  
14.
  •  
15.
  •  
16.
  • Carlson, Jonas, et al. (författare)
  • Classification of Electrocardiographic P-wave Morphology
  • 2001
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 1558-2531 .- 0018-9294. ; 48:4, s. 401-405
  • Tidskriftsartikel (refereegranskat)abstract
    • The atrial activity of the human heart is normally visible in the electrocardiogram as a P-wave. In patients with intermittent atrial fibrillation, a different P-wave morphology can sometimes be seen, indicating atrial conduction defects. The purpose of this study was to develop a method to discriminate between such P-waves and normal ones. 20 recordings of each type were used in a classification which, based on impulse response analysis of the P-wave and linear discrimination between various parameters, produced a correct classification in 37 of the 40 recordings (sensitivity 95%, specificity 90%)
  •  
17.
  •  
18.
  • Chiari, Lorenzo, et al. (författare)
  • Audio-biofeedback for balance improvement: an accelerometry-based system.
  • 2005
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 52:12, s. 2108-11
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces a prototype audio-biofeedback system for balance improvement through the sonification using trunk kinematic information. In tests of this system, normal healthy subjects performed several trials in which they stood quietly in three sensory conditions while wearing an accelerometric sensory unit and headphones. The audio-biofeedback system converted in real-time the two-dimensional horizontal trunk accelerations into a stereo sound by modulating its frequency, level, and left/right balance. Preliminary results showed that subjects improved balance using this audio-biofeedback system and that this improvement was greater the more that balance was challenged by absent or unreliable sensory cues. In addition, high correlations were found between the center of pressure displacement and trunk acceleration, suggesting accelerometers may be useful for quantifying standing balance.
  •  
19.
  • Cipriani, Christian, et al. (författare)
  • A novel concept for a prosthetic hand with bidirectional non-invasive interface: a feasibility study
  • 2009
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 56:11, s. 2739-2743
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in Undetermined A conceptually novel prosthesis consisting of a mechatronic hand, an electromyographic classifier, and a tactile display has been developed and evaluated by addressing problems related to controllability in prosthetics: intention extraction, perception, and feeling of ownership. Experiments have been performed, and encouraging results for a young transradial amputee are reported.
  •  
20.
  • Clarke, Alexander Kenneth, et al. (författare)
  • Deep learning for robust decomposition of high-density surface EMG signals
  • 2021
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 68:2, s. 526-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Blind source separation (BSS) algorithms, such as gradient convolution kernel compensation (gCKC), can efficiently and accurately decompose high-density surface electromyography (HD-sEMG) signals into constituent motor unit (MU) action potential trains. Once the separation matrix is blindly estimated on a signal interval, it is also possible to apply the same matrix to subsequent signal segments. Nonetheless, the trained separation matrices are sub-optimal in noisy conditions and require that incoming data undergo computationally expensive whitening. One unexplored alternative is to instead use the paired HD-sEMG signal and BSS output to train a model to predict MU activations within a supervised learning framework. A gated recurrent unit (GRU) network was trained to decompose both simulated and experimental unwhitened HD-sEMG signal using the output of the gCKC algorithm. The results on the experimental data were validated by comparison with the decomposition of concurrently recorded intramuscular EMG signals. The GRU network outperformed gCKC at low signal-to-noise ratios, proving superior performance in generalising to new data. Using 12 seconds of experimental data per recording, the GRU performed similarly to gCKC, at rates of agreement of 92.5% (84.5%-97.5%) and 94.9% (88.8%-100.0%) respectively for GRU and gCKC against matched intramuscular sources.
  •  
21.
  • Corino, Valentina D. A., et al. (författare)
  • An Atrioventricular Node Model for Analysis of the Ventricular Response During Atrial Fibrillation
  • 2011
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 58:12, s. 3386-3395
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces a model of the atrioventricular node function during atrial fibrillation (AF), and describes the related ECG-based estimation method. The proposed model is defined by parameters that characterize the arrival rate of atrial impulses, the probability of an impulse choosing either one of the two atrioventricular nodal pathways, the refractory periods of these pathways, and the prolongation of the refractory periods. These parameters are estimated from the RR intervals using maximum likelihood estimation, except for the shorter refractory period which is estimated from the RR interval Poincare plot, and the mean arrival rate of atrial impulses by the AF frequency. Simulations indicated that 200-300 RR intervals are generally needed for the estimates to be accurate. The model was evaluated on 30-min ECG segments from 36 AF patients. The results showed that 88% of the segments can be accurately modeled when the estimated probability density function (PDF) and an empirical PDF were at least 80% in agreement. The model parameters were estimated during head-up tilt test to assess differences caused by sympathetic stimulation. Both refractory periods decreased as a result of stimulation, and the likelihood of an impulse choosing the pathway with the shorter refractory period increased.
  •  
22.
  • Corino, Valentina D. A., et al. (författare)
  • Improved Time-Frequency Analysis of Atrial Fibrillation Signals Using Spectral Modeling
  • 2008
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 55:12, s. 2723-2730
  • Tidskriftsartikel (refereegranskat)abstract
    • In patients with atrial fibrillation (AF), the fibrillatory frequency trend and the time-dependent spectral characteristics can be investigated using a spectral profile technique. The spectral profile is updated by fitting each short-time spectrum. The aim of this study is to develop model-based means for stricter control on the update of the spectral profile. A spectral model defined by a superposition of Gaussian functions is suggested for describing the fundamental and harmonics of the atrial waves during AF, thereby accounting for basic characteristics of the typical AF spectrum. The model parameters are obtained from weighted least squares fitting of the model to the observed spectrum. The method was tested on simulated signals as well as on 48 ECG recordings from 15 patients with persistent AF. Using simulated signals, we assessed the accuracy in terms of magnitude and width or the spectral peaks. For SNR = 0 dB, the maximum normalized error was less than 0.2 when estimating magnitude of both the fundamental and the harmonics, whereas it was less than 0.15 for the fundamental and 0.7 for the harmonics with respect to the estimation of the width. We observed a marked Improvement while tracking the main fibrillatory frequency as the error was reduced by more than 50% In comparison with the original method. Analyzing ECGs, reliable spectral profiles were obtained In all recordings, even In those cases (5/48) that were not well characterized by the original method.
  •  
23.
  •  
24.
  • Fagergren, Anders, et al. (författare)
  • Precision grip force dynamics : A system identification approach
  • 2000
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9294 .- 1558-2531. ; 47:10, s. 1366-1375
  • Tidskriftsartikel (refereegranskat)abstract
    • A linear model of the dynamics of the human precision grip is presented. The transfer function is identified as representing the peripheral motor subsystem, from the motoneuron pool to the final production of a grip force between the tip of the index finger and the thumb. The transfer function captures the limiting isometric muscle dynamics that, e.g., cortical motor areas have to act through. When identifying the transfer function we introduce a novel technique, common subsystem identification. This characterizes a specific subsystem in a complex biomechanical system. This technique requires data from two functionally different experiments that both involve the subsystem of interest. Two transfer functions, one for each experiment, are then estimated using a linear black box technique. The common mathematical factors, represented by poles and zeros, are used to form a new transfer function. It is concluded that this transfer function represents the common biological subsystem involved in both experiments. Here, we use one active and one reactive isometric grip force experiment to capture the subsystem of interest, i.e., the motoneuron pool, motor units, muscles, tendons and fingertip tissue. The characteristics of the dynamics are in agreement with previously published experiments on human neuro-muscular systems. The model, H(s) = 280/(s(2) + 22s + 280), is well suited for the representation of a force producing end-effector in simulations including a control system with sensory feedback.
  •  
25.
  • Fernández Schrunder, Alejandro, 1993-, et al. (författare)
  • A Finite Element Analysis and Circuit Modelling Methodology for Studying Electrical Impedance Myography of Human Limbs
  • 2022
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9294 .- 1558-2531. ; 69:1, s. 244-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Electrical impedance myography (EIM) measures bioimpedance over muscles. This paper proposes a circuit-based modelling methodology originated from finite element analysis (FEA), to emulate tissues and effects from anthropometric variations, and electrode placements, on EIM measurements. The proposed methodology is demonstrated on the upper arms and lower legs. Methods: FEA evaluates impedance spectra (Z-parameters), sensitivity, and volume impedance density for variations of subcutaneous fat thickness (tf), muscle thickness (tm), and inter-electrode distance (IED), on limb models over 1Hz-1MHz frequency range. The limbs models are based on simplified anatomical data and dielectric properties from published sources. Contributions of tissues to the total impedance are computed from impedance sensitivity and density. FEA Z-parameters are imported into a circuit design environment, and used to develop a three Cole dispersion circuit-based model. FEA and circuit model simulation results are compared with measurements on ten human subjects. Results: Muscle contributions are maximized at 31.25kHz and 62.5kHz for the upper arm and lower leg, respectively, at 4cm IED. The circuit model emulates variations in tf and tm, and simulates up to 89 times faster than FEA. The circuit model matches subjects measurements with RMS errors < 36.43 and < 17.28, while FEA does with < 36.59 and < 4.36. Conclusions: We demonstrate that FEA is able to estimate the optimal frequencies and electrode placements, and circuit-based modelling can accurately emulate the limbs bioimpedance. Significance: The proposed methodology facilitates studying the impact of biophysical principles on EIM, enabling the development of future EIM acquisition systems.
  •  
26.
  • Fhager, Andreas, 1976, et al. (författare)
  • Image Reconstruction in Microwave Tomography Using a Dielectric Debye Model
  • 2012
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 59:1, s. 156 - 166
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, quantitative dielectric image reconstruction based on broadband microwave measurements is investigated. A time-domain-based algorithm is derived where Debye model parameters are reconstructed in order to take into account the strong dispersive behavior found in biological tissue. The algorithm is tested with experimental and numerical data in order to verify the algorithm and to investigate improvements in the reconstructed image resulting from the improved description of the dielectric properties of the tissue when using broadband data. The comparison is made in relation to the more commonly used conductivity model. For the evaluation, two examples were considered, the first was a lossy saline solution and the second was less lossy tap water. Both liquids are strongly dispersive and used as a background medium in the imaging examples. The results show that the Debye model algorithm is of most importance in the tap water for a bandwidth of more than 1.5 GHz. Also the saline solution exhibits a dispersive behavior but since the losses restrict the useful bandwidth, the Debye model is of less significance even if somewhat larger and stronger artifacts can be seen in the conductivity model reconstructions.
  •  
27.
  • Fransson, Per-Anders, et al. (författare)
  • Postural Control Adaptation during Galvanic Vestibular and Vibratory Proprioceptive Stimulation
  • 2003
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 50:12, s. 1310-1319
  • Tidskriftsartikel (refereegranskat)abstract
    • he objective for this study was to investigate whether the adaptation of postural control was similar during galvanic vestibular stimulation and during vibratory proprioceptivestimulation of the calf muscles. Healthy subjects were tested during erect stance with eyes open or closed. An analysis method designed to consider the adaptive adjustments was used to evaluate the motion dynamics and the evoked changes of posture and stimulation response.Galvanic vestibular stimulation induced primarily lateral body movements and vibratory proprioceptive stimulation induced anteroposterior movements. The lateral body sway generated by the galvanic stimulation was proportionally smaller and contained more high-frequency movements (0.1 Hz) than the anteroposterior body sway induced by the vibratory stimulation. The adaptive adjustments of the body sway to the stimulation had similar time course and magnitude during galvanic and vibratory stimulation. The perturbations induced by stimulation were gradually reduced within the same time range (15–20 s) and both kinds of stimulation induced a body leaning whose direction was dependent on stimulus. The similarities in the adjustmentpatterns suggest that postural control operates in the same way independent of the receptor systems affected by the disturbance and irrespective of whether the motion responses were induced in a lateral or anteroposterior direction.
  •  
28.
  • Fredén Jansson, Karl-Johan, 1988, et al. (författare)
  • MRI Induced Torque and Demagnetization in Retention Magnets for a Bone Conduction Implant
  • 2014
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9294 .- 1558-2531. ; 61:6, s. 1887-1893
  • Tidskriftsartikel (refereegranskat)abstract
    • Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% +/- 2.5% and 0.20 +/- 0.01 Nm, respectively and 71.4% +/- 19.1% and 0.18 +/- 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.
  •  
29.
  • Garcia, J., et al. (författare)
  • Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring
  • 2000
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 1558-2531 .- 0018-9294. ; 47:9, s. 1195-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • A new detector is presented which finds changes in the repolarization phase (ST-T complex) of the cardiac cycle. It operates by applying a detection algorithm to the filtered root mean square (rms) series of differences between the beat segment (ST segment or ST-T complex) and an average pattern segment. The detector has been validated using the European ST-T database, which contains ST-T complex episodes manually annotated by cardiologists, resulting in sensitivity/positive predictivity of 85/86%, and 85/76%, for ST segment deviations and ST-T complex changes, respectively. The proposed detector has a performance similar to those which have a more complicated structure. The detector has the advantage of finding both ST segment deviations and entire ST-T complex changes thereby providing a wider characterization of the potential ischemic events. A post-processing stage, based on a cross-correlation analysis for the episodes in the rms series, is presented. With this stage subclinical events with repetitive pattern were found in around 20% of the recordings and improved the performance to 90/85%, and 89/76%, for ST segment and ST-T complex changes, respectively.
  •  
30.
  • Garcia, J, et al. (författare)
  • ECG-based detection of body position changes in ischemia monitoring
  • 2003
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 50:6, s. 677-685
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this gaper is to analyze and detect changes in body position (BPC) during electrocardiogram (ECG) recording. These changes are often manifested as shifts in the, electrical axis and may be misclassified as ischemic changes during. ambulatory monitoring. We investigate two ECG signal processing methods for detecting BPCs. Different schemes for feature extraction are used (spatial and scalar), while preprocessing, trend postprocessing and detection are identical. The spatial approach is based on VCG loop rotation angles and the scalar approach is based on the Karhunen-Loeve transform (KLT) coefficients. The methods are evaluated on two different databases: a database with annotated BPCs and the STAFF III database with recordings from rest and during angioplasty-induced ischemia but not including BPCs. The angle-based detector results in performance values of detection probability P-D = 95%, false alarm probability P-F = 3% in the BPC database and false alarm rate in the STAFF III database in control ECCs during rest R-F(c) = 2 h(-1) (episodes per hour) and in ischemia recordings during angioplasty R-F(a) = 7 h(-1), whereas the KLT-based detector produces values of P-D = 89%, P-F = 3%, R-F(c) = 4 h(-1), and RF(a) = 11 h-1, respectively. Including information on noise level in the detection process to reduce the number of false alarms, performance values of P-D similar or equal to 90%, P-F similar or equal to 1%, R-F(c) similar or equal to 1 h(-1) and R-F(a) similar or equal to 2 h(-1) are obtained with both methods. It is concluded that reliable detection of BPCs may be achieved using the ECG signal and should work in parallel to ischemia detectors.
  •  
31.
  • Garde, Ainara, et al. (författare)
  • Correntropy-Based Spectral Characterization of Respiratory Patterns in Patients With Chronic Heart Failure
  • 2010
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 57:8, s. 1964-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • A correntropy-based technique is proposed for the characterization and classification of respiratory flow signals in chronic heart failure (CHF) patients with periodic or nonperiodic breathing (PB or nPB, respectively) and healthy subjects. The correntropy is a recently introduced, generalized correlation measure whose properties lend themselves to the definition of a correntropy-based spectral density (CSD). Using this technique, both respiratory and modulation frequencies can be reliably detected at their original positions in the spectrum without prior demodulation of the flow signal. Single-parameter classification of respiratory patterns is investigated for three different parameters extracted from the respiratory and modulation frequency bands of the CSD, and one parameter defined by the correntropy mean. The results show that the ratio between the powers in the modulation and respiratory frequency bands provides the best result when classifying CHF patients with either PB or nPB, yielding an accuracy of 88.9%. The correntropy mean offers excellent performance when classifying CHF patients versus healthy subjects, yielding an accuracy of 95.2% and discriminating nPB patients from healthy subjects with an accuracy of 94.4%.
  •  
32.
  • Gil, Eduardo, et al. (författare)
  • Heart Rate Turbulence Analysis Based on Photoplethysmography
  • 2013
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 60:11, s. 3149-3155
  • Tidskriftsartikel (refereegranskat)abstract
    • The goal of this paper is to determine whether the photoplethysmography (PPG) can replace the ECG-based detection of heart rate turbulence. Using the PPG, classification of ventricular premature beats (VPBs) is accomplished with a linear classifier. The two conventional parameters turbulence onset and slope are studied together with a recently introduced parameter characterizing turbulence shape. Performance is studied on a dataset with 4131 VPBs, recorded from a total of 27 patients in different clinical contexts (hemodialysis treatment, intensive care monitoring, and electrophysiological study). The sensitivity/specificity of VPB classification was found to be 90.5/99.9%, with an accuracy of 99.3%, suggesting that classification of VPBs can be reliable made from the PPG. The main difference between the two types of turbulence analysis stems from the fact that the pulse transit time varies largely immediately after the VPB. Out of the 22 patients which had a sufficient number of VPBs, the outcome of the ECG-and PPG-based analysis was identical in 21. It is concluded that the PPG may serve as a surrogate technique for the ECG in turbulence analysis.
  •  
33.
  • Golnabi, Amir H., et al. (författare)
  • 3-D Microwave Tomography Using the Soft Prior Regularization Technique: Evaluation in Anatomically Realistic MRI-Derived Numerical Breast Phantoms
  • 2019
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 66:9, s. 2566-2575
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Fusion of magnetic resonance imaging (MRI) breast images with microwave tomography is accomplished through a soft prior technique, which incorporates spatial information (from MRI), i. e., accurate boundary location of different regions of interest, into the regularization process of the microwave image reconstruction algorithm. Methods: Numerical experiments were completed on a set of three-dimensional (3-D) breast geometries derived from MR breast data with different parenchymal densities, as well as a simulated tumor to evaluate the performance over a range of breast shapes, sizes, and property distributions. Results: When the soft prior regularization technique was applied, both permittivity and conductivity relative root mean square error values decreased by more than 87% across all breast densities, except in two cases where the error decrease was only 55% and 78%. In addition, the incorporation of structural priors increased contrast between tumor and fibroglandular tissue by 59% in permittivity and 192% in conductivity. Conclusion: This study confirmed that the soft prior algorithm is robust in 3-D and can function successfully across a range of complex geometries and tissue property distributions. Significance: This study demonstrates that our microwave tomography is capable of recovering accurate tissue property distributions when spatial information from MRI is incorporated through soft prior regularization.
  •  
34.
  • Griss, Patrick, et al. (författare)
  • Characterization of micromachined spiked biopotential electrodes
  • 2002
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 49:6, s. 597-604
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the characterization of dry spiked biopotential electrodes and test their suitability to be used in anesthesia monitoring systems based on the measurement of electroencephalographic signals. The spiked electrode consists of an array of microneedles penetrating the outer skin layers. We found a significant dependency of the electrode-skin-electrode impedance (ESEI) on the electrode size (i.e., the number of spikes) and the coating material of the spikes. Electrodes larger than 3 x 3 mm(2) coated with Ag-AgCl have sufficiently low ESEI to be well suited for electroencephalograph (EEG) recordings. The maximum measured ESEI was 4.24 kOmega and 87 kOmega, at 1 kHz and 0.6 Hz, respectively. The minimum ESEI was 0.65 kOmega an 16 kOmega, at the same frequencies. The ESEI of spiked electrodes is stable over an extended period of time. The arithmetic mean of the generated dc offset voltage is 11.8 mV immediately after application on the skin and 9.8 mV after 20-30 min. A spectral study of the generated potential difference revealed that the ac part was unstable at frequencies below approximately 0.8 Hz. Thus, the signal does not interfere with a number of clinical applications using real-time EEG. Comparing raw EEG recordings of the spiked electrode with commercial Zipprep electrodes showed that both signals were similar. Due to the mechanical strength of the silicon microneedles and the fact that neither skin preparation nor electrolytic gel is required, use of the spiked electrode is convenient. The spiked electrode is very comfortable for the patient.
  •  
35.
  • Guo, Yu, et al. (författare)
  • A sparse representation method for magnetic resonance spectroscopy quantification
  • 2010
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : IEEE. - 0018-9294 .- 1558-2531. ; 57:7, s. 1620-1627
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a sparse representation method is proposed for magnetic resonance spectroscopy (MRS) quantification. An observed MR spectrum is composed of a set of metabolic spectra of interest, a baseline and a noise. To separate the spectra of interest, the a priori knowledge about these spectra, such as signal models, the peak frequencies, and linewidth ranges of different resonances, is first integrated to construct a dictionary. The separation of the spectra of interest is then performed by using a pursuit algorithm to find their sparse representations with respect to the dictionary. For the challenging baseline problem, a wavelet filter is proposed to filter the smooth and broad components of both the observed spectra and the basis functions in the dictionary. The computation of sparse representation can then be carried out by using the remaining data. Simulation results show the good performance of this wavelet filtering-based strategy in separating the overlapping components between the baselines and the spectra of interest, when no appropriate model function for the baseline is available. Quantifications of in vivo brain MR spectra from tumor patients in different stages of progression demonstrate the effectiveness of the proposed method.
  •  
36.
  • Gyllensten, Illapha Cuba, et al. (författare)
  • Identifying Types of Physical Activity With a Single Accelerometer : Evaluating Laboratory-trained Algorithms in Daily Life
  • 2011
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 58:9, s. 2656-2663
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 +/- 9; BMI: 23.0 +/- 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 +/- 4.3%, 91.4 +/- 6.7%, and 92.2 +/- 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 +/- 10.4%, 74.8 +/- 9.7%, and 72.2 +/- 10.3%; p<0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
  •  
37.
  •  
38.
  • Hammarberg (Hansson), Björn, et al. (författare)
  • Novel ideas for fast muscle action potential simulations using the line source model
  • 2004
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 51:11, s. 1888-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a signal processing approach, we analyze the line source model for muscle action potential (AP) modeling. We show that the original model presents a tradeoff between violating the Nyquist criterion on one hand and using a discretization frequency that is unnecessarily high with respect to the bandwidth of the generated AP on the other. Here, we present an improved line source model that, compared to the original, allows a lower discretization frequency while retaining the accuracy by simply introducing a continuous-time anti-aliasing filter. Moreover, a transfer function form of the transmembrane current is presented that promote the use of sophisticated signal processing methods on these type of signals. Both continuous-time and discrete-time models are presented. We also address and analyze the implications of the finite length of the muscle fibers. Including this in the model is straightforward, owing to the convolutional form of the line source model, and is manifested by a simple transformation of the associated weighting function. AP modeling is discussed for the three different electrode models: the concentric needle electrode, the single fiber electrode, and the macro electrode. The presented model is suitable for modeling large motor units, where both accuracy and computational efficiency are important factors. To simplify the selection of the discretization interval, we derive what we call the cumulative cutoff frequency that provides an estimate of the required Nyquist frequency.
  •  
39.
  • Hansson-Sandsten, Maria, et al. (författare)
  • Multiple window correlation analysis of HRV power and respiratory frequency
  • 2007
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 54:10, s. 1770-1779
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we evaluate the correlation estimate, based on multiple window spectrum analysis, between the respiratory center frequency and the high-frequency band of the heartrate variability (HRV) power. One aim is to examine whether a more restricted frequency range would better capture respiratory related HR variation, especially when the HR variation is changing rapidly. The respiratory peak is detected and a narrow-banded measure of the high-frequency (HF) band of the HRV is defined as the respiratory frequency +/-0.05 Hz. We compare the mean square error of the correlation estimate between the frequency of the respiratory peak and the power of the HRV with the power in the usual 0.12-0.4 Hz frequency band. Different multiple window spectrum techniques are used for the estimation of the respiratory frequency as well as for the power of the HRV. We compare the peak-matched multiple windows with the Welch method while evaluating the two different HF-power estimates mentioned above. The results show that using a more narrow band for the power estimation gives stronger correlation which indicates that the estimate of the power is more robust.
  •  
40.
  •  
41.
  • Helgason, Hannes, et al. (författare)
  • Adaptive Multiscale Complexity Analysis of Fetal Heart Rate
  • 2011
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 0018-9294 .- 1558-2531. ; 58:8, s. 2186-2193
  • Tidskriftsartikel (refereegranskat)abstract
    • Per partum fetal asphyxia is a major cause of neonatal morbidity and mortality. Fetal heart rate monitoring plays an important role in early detection of acidosis, an indicator for asphyxia. This problem is addressed in this paper by introducing a novel complexity analysis of fetal heart rate data, based on producing a collection of piecewise linear approximations of varying dimensions from which a measure of complexity is extracted. This procedure specifically accounts for the highly nonstationary context of labor by being adaptive and multiscale. Using a reference dataset, made of real per partum fetal heart rate data, collected in situ and carefully constituted by obstetricians, the behavior of the proposed approach is analyzed and illustrated. Its performance is evaluated in terms of the rate of correct acidosis detection versus the rate of false detection, as well as how early the detection is made. Computational cost is also discussed. The results are shown to be extremely promising and further potential uses of the tool are discussed. MATLAB routines implementing the procedure will be made available at the time of publication.
  •  
42.
  • Helpard, Luke, et al. (författare)
  • An Approach for Individualized Cochlear Frequency Mapping Determined From 3D Synchrotron Radiation Phase-Contrast Imaging
  • 2021
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9294 .- 1558-2531. ; 68:12, s. 3602-3611
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Cochlear implants are traditionally programmed to stimulate according to a generalized frequency map, where individual anatomic variability is not considered when selecting the centre frequency of stimulation of each implant electrode. However, high variability in cochlear size and spatial frequency distributions exist among individuals. Generalized cochlear implant frequency maps can result in large pitch perception errors and reduced hearing outcomes for cochlear implant recipients. The objective of this work was to develop an individualized frequency mapping technique for the human cochlea to allow for patient-specific cochlear implant stimulation.Methods: Ten cadaveric human cochleae were scanned using synchrotron radiation phase-contrast imaging (SR-PCI) combined with computed tomography (CT). For each cochlea, ground truth angle-frequency measurements were obtained in three-dimensions using the SR-PCI CT data. Using an approach designed to minimize perceptual error in frequency estimation, an individualized frequency function was determined to relate angular depth to frequency within the cochlea.Results: The individualized frequency mapping function significantly reduced pitch errors in comparison to the current gold standard generalized approach.Conclusion and Significance: This paper presents for the first time a cochlear frequency map which can be individualized using only the angular length of cochleae. This approach can be applied in the clinical setting and has the potential to revolutionize cochlear implant programming for patients worldwide.
  •  
43.
  • Henriksson, Mikael, et al. (författare)
  • A Statistical Atrioventricular Node Model Accounting for Pathway Switching During Atrial Fibrillation
  • 2016
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 63:9, s. 1842-1849
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The atrioventricular (AV) node plays a central role in atrial fibrillation (AF) as it influences the conduction of impulses from the atria into the ventricles. In the present paper, the statistical dual pathway AV node model, previously introduced by us, is modified so that it accounts for atrial impulse pathway switching even if the preceding impulse did not cause a ventricular activation. Methods: The proposed change in model structure implies that the number of model parameters subjected to maximum likelihood estimation is reduced from five to four. The model is evaluated using the data acquired in the RATe control in Atrial Fibrillation (RATAF) study, involving 24- h ECG recordings from 60 patients with permanent AF. Results: When fitting the models to the RATAF database, similar results were obtained for both the present and the previous model, with a median fit of 86%. The results show that the parameter estimates characterizing refractory period prolongation exhibit considerably lower variation when using the present model, a finding that may be ascribed to fewer model parameters. Conclusion: The new model maintains the capability to model RR intervals, while providing more reliable parameters estimates. Significance: The model parameters are expected to convey novel clinical information, and may be useful for predicting the effect of rate control drugs.
  •  
44.
  • Henriksson, Mikael, et al. (författare)
  • Model-based Assessment of f-Wave Signal Quality in Patients with Atrial Fibrillation
  • 2018
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 65:11, s. 2600-2611
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The detection and analysis of atrial fibrillation (AF) in the ECG is greatly influenced by signal quality. The present study proposes and evaluates a model-based f-wave signal quality index (SQI), denoted S, for use in the QRST-cancelled ECG signal. Methods: S is computed using a harmonic f-wave model, allowing for variation in frequency and amplitude. The properties of S are evaluated on both f-waves and P-waves using 378 12-lead ECGs, 1875 single-lead ECGs, and simulated signals. Results: S decreases monotonically when noise is added to f-wave signals, even for noise which overlaps spectrally with f-waves. Moreover, S is shown to be closely associated with the accuracy of AF frequency estimation, where S>0.3 implies accurate estimation. When S is used as a measure of f-wave presence, AF detection performance improves: the sensitivity increases from 97.0% to 98.1% and the specificity increases from 97.4% to 97.8% when compared to the reference detector. Conclusion: The proposed SQI represents a novel approach to assessing f-wave signal quality, as well as to determining whether f-waves are present. Significance: The use of S improves the detection of AF and benefits the analysis of noisy ECGs.
  •  
45.
  • Holm, M., et al. (författare)
  • A New Method for Analysis of Atrial Activation during Chronic Atrial Fibrillation in Man
  • 1996
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 1558-2531 .- 0018-9294. ; 43:2, s. 198-210
  • Tidskriftsartikel (refereegranskat)abstract
    • To further clarify the mechanisms maintaining chronic atrial fibrillation (CAF), a method identifying preferable activation patterns of the atria during fibrillation, by time averaging of multiple discrete excitation vectors, was developed. Repeated recordings, each of 56 atrial bipolar electrograms simultaneously acquired during 8 s, were made at multiple sites in the right atrial free wall and the left atrial appendage in 16 patients with CAF using a 2.17/spl times/3.54 cm electrode array. The local activation times (LAT's) in each recording were estimated as the median activation time at the respective measurement point. By calculating the time difference between the LAT's at adjacent measurement points in two spatial dimensions, a direction vector was created for each activation wave passing each set of measurement points, a total of 42 sets. By time averaging of the individual direction vectors (typically n=55) at each set of measurement points, preferable activation patterns were determined. Three types of activation patterns were found: 1) inconsistent activation (n=5), 2) consistent activation with preferential propagation directions (n=7) and 3) consistent activation with impulses originating from a localizable site within the recording area (n=4). All activation patterns were reproducible and the two latter patterns were proven significant using statistical tests. It is concluded that this new method is useful in further clarification of the mechanisms involved in the maintenance of atrial fibrillation.
  •  
46.
  • Holmer, Mattias, et al. (författare)
  • Extracting a Cardiac Signal From the Extracorporeal Pressure Sensors of a Hemodialysis Machine
  • 2015
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 62:5, s. 1305-1315
  • Tidskriftsartikel (refereegranskat)abstract
    • Although patients undergoing hemodialysis treatment often suffer from cardiovascular disease, monitoring of cardiac rhythm is not performed on a routine basis. Without requiring any extra sensor, this study proposes a method for extracting a cardiac signal from the built-in extracorporeal venous pressure sensor of the hemodialysis machine. The extraction is challenged by the fact that the cardiac component is much weaker than the pressure component caused by the peristaltic blood pump. To further complicate the extraction problem, the cardiac component is difficult to separate when the pump and heart rates coincide. The proposed method estimates a cardiac signal by subtracting an iteratively refined blood pump model signal from the signal measured at the extracorporeal venous pressure sensor. The method was developed based on simulated pressure signals, and evaluated on clinical pressure signals acquired during hemodialysis treatment. The heart rate estimated from the clinical pressure signal was compared to that derived from a photoplethysmographic reference signal, resulting in a difference of 0.07 +/- 0.84 beats/min. The accuracy of the heartbeat occurrence times was studied for different strengths of the cardiac component, using both clinical and simulated signals. The results suggest that the accuracy is sufficient for analysis of heart rate and certain arrhythmias.
  •  
47.
  • Janusauskas, A, et al. (författare)
  • Detection of transient-evoked otoacoustic emissions and the design of time windows
  • 2002
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 1558-2531 .- 0018-9294. ; 49:2, s. 132-139
  • Tidskriftsartikel (refereegranskat)abstract
    • A new approach to the design of time windows is presented for detection of transient-evoked otoacoustic emissions (TEOAE). The windows are designed with reference to a minimum mean square error criterion involving the correlation properties of the ensemble of responses. Latency information is introduced in the detection process by windowing at different scales that result from wavelet decomposition. The significance of both subject- and population-specific time windows is investigated. The detection performance is evaluated on a health screen database consisting of 4989 records. The results show that the present Approach to windowing yields a significantly better performance in separating normal-hearing subjects from hearing-impaired subjects when compared to detection based on unwindowed signals. With time windowing, the specificity increased with almost 15% at a fixed sensitivity of 90%.
  •  
48.
  • Johansson, Fredrik, et al. (författare)
  • The influence of porous silicon on axonal outgrowth in vitro.
  • 2008
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 55:4, s. 1447-1449
  • Tidskriftsartikel (refereegranskat)abstract
    • Axonal outgrowth on smooth and porous silicon surfaces was studied in organ culture. The pore size of the silicon substrata varied between 100 and 1500 nm. We found that axons preferred to grow and elongate on porous silicon surfaces only when pores of (150-500 nm) are available.
  •  
49.
  •  
50.
  • Johansson, Rolf, et al. (författare)
  • Identification of Human Postural Dynamics
  • 1988
  • Ingår i: IEEE Transactions on Biomedical Engineering. - 1558-2531. ; 3, s. 858-869
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 138
Typ av publikation
tidskriftsartikel (138)
Typ av innehåll
refereegranskat (136)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Sörnmo, Leif (32)
Sandberg, Frida (8)
Stridh, Martin (8)
Laguna, Pablo (7)
Johansson, Rolf (5)
Muceli, Silvia, 1981 (5)
visa fler...
Laguna, P. (5)
Sandsten, Maria (4)
Pahlm, Olle (4)
Karlsson, Stefan (4)
Börjesson, Per Ola (3)
Soltesz, Kristian (3)
Magnusson, Måns (3)
Olsson, Bertil (3)
Marozas, Vaidotas (3)
Martinez, Juan Pablo (3)
Gil, Eduardo (3)
Bayford, Richard H. (3)
Zhong, J. (2)
Garcia, J. (2)
Gustafsson, Mats (2)
Wallman, Lars (2)
Lundqvist, D (2)
Stemme, Göran (2)
Li, Jian (2)
Whitmarsh, S. (2)
Nilsson, Gert, 1947- (2)
Salerud, Göran, 1954 ... (2)
Händel, Peter, 1962- (2)
Kalaboukhov, Alexei, ... (2)
Winkler, Dag, 1957 (2)
Nordebo, Sven (2)
Fransson, Per-Anders (2)
Meurling, Carl (2)
Olsson, Lars E (2)
Jönsson, Peter (2)
McKelvey, Tomas, 196 ... (2)
Wårdell, Karin (2)
Granlund, Gösta H. (2)
Nehorai, Arye (2)
Oostenveld, R (2)
Reinfeldt, Sabine, 1 ... (2)
Wu, Yu (2)
Petrenas, Andrius (2)
Pueyo, Esther (2)
Sornmo, Leif (2)
Griss, Patrick (2)
Barquero-Perez, Osca ... (2)
Garcia-Alberola, Arc ... (2)
Ivanenko, Yevhen (2)
visa färre...
Lärosäte
Lunds universitet (59)
Linköpings universitet (17)
Chalmers tekniska högskola (15)
Kungliga Tekniska Högskolan (14)
Uppsala universitet (13)
Karolinska Institutet (11)
visa fler...
Göteborgs universitet (6)
Umeå universitet (6)
Linnéuniversitetet (3)
Mälardalens universitet (2)
Högskolan Kristianstad (1)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Örebro universitet (1)
Jönköping University (1)
Gymnastik- och idrottshögskolan (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (138)
Forskningsämne (UKÄ/SCB)
Teknik (87)
Medicin och hälsovetenskap (30)
Naturvetenskap (12)
Samhällsvetenskap (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy