SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1744 4292 "

Sökning: L773:1744 4292

  • Resultat 1-50 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adoue, Veronique, et al. (författare)
  • Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs
  • 2014
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 10:10, s. 754-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most complex disease-associated genetic variants are located in non-coding regions and are therefore thought to be regulatory in nature. Association mapping of differential allelic expression (AE) is a powerful method to identify SNPs with direct cis-regulatory impact (cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found 40-60% of these cis-rSNPs to be shared across cell types. We uncover a new class of cis-rSNPs, which disrupt footprint-derived de novo motifs that are predominantly bound by repressive factors and are implicated in disease susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new approach for genome-wide functional validation of transcription factor-SNP interactions. By perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive analysis of cis-variation in four cell populations and provide new tools for the identification of functional variants associated to complex diseases.
  •  
2.
  • Ali, Muhammad, et al. (författare)
  • High-throughput discovery of functional disordered regions
  • 2018
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 14:5
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Partially or fully intrinsically disordered proteins are widespread in eukaryotic proteomes and play important biological functions. With the recognition that well defined protein structure is not a fundamental requirement for function come novel challenges, such as assigning function to disordered regions. In their recent work, Babu and colleagues (Ravarani etal,) took on this challenge by developing IDR-Screen, a robust high-throughput approach for identifying functions of disordered regions.
  •  
3.
  •  
4.
  • Azimi, Alireza, et al. (författare)
  • Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors
  • 2018
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel therapies are undergoing clinical trials, for example, the Hsp90 inhibitor, XL888, in combination with BRAF inhibitors for the treatment of therapy-resistant melanomas. Unfortunately, our data show that this combination elicits a heterogeneous response in a panel of melanoma cell lines including PDX-derived models. We sought to understand the mechanisms underlying the differential responses and suggest a patient stratification strategy. Thermal proteome profiling (TPP) identified the protein targets of XL888 in a pair of sensitive and unresponsive cell lines. Unbiased proteomics and phosphoproteomics analyses identified CDK2 as a driver of resistance to both BRAF and Hsp90 inhibitors and its expression is regulated by the transcription factor MITF upon XL888 treatment. The CDK2 inhibitor, dinaciclib, attenuated resistance to both classes of inhibitors and combinations thereof. Notably, we found that MITF expression correlates with CDK2 upregulation in patients; thus, dinaciclib would warrant consideration for treatment of patients unresponsive to BRAF-MEK and/or Hsp90 inhibitors and/or harboring MITF amplification/overexpression.
  •  
5.
  • Bachmann, Julie, et al. (författare)
  • Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range
  • 2011
  • Ingår i: Molecular Systems Biology. - : Nature Publishing Group / European Molecular Biology Organization. - 1744-4292 .- 1744-4292. ; 7:516
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
  •  
6.
  • Bader, J. M., et al. (författare)
  • Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease
  • 2020
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higherCSFlevels of tau, but we lack knowledge of systems-wide changes ofCSFprotein levels that accompanyAD. Here, we present a highly reproducible mass spectrometry (MS)-based proteomics workflow for the in-depth analysis ofCSFfrom minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins byADstatus (> 1,000 proteins,CV < 20%). Proteins with previous links to neurodegeneration such as tau,SOD1, andPARK7 differed most strongly byADstatus, providing strong positive controls for our approach.CSFproteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature.
  •  
7.
  • Beck, Martin, et al. (författare)
  • The quantitative proteome of a human cell line
  • 2011
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of mathematical models of biological processes, the simulation of these processes under different conditions, and the comparison and integration of multiple data sets are explicit goals of systems biology that require the knowledge of the absolute quantity of the system's components. To date, systematic estimates of cellular protein concentrations have been exceptionally scarce. Here, we provide a quantitative description of the proteome of a commonly used human cell line in two functional states, interphase and mitosis. We show that these human cultured cells express at least similar to 10 000 proteins and that the quantified proteins span a concentration range of seven orders of magnitude up to 20 000 000 copies per cell. We discuss how protein abundance is linked to function and evolution. Molecular Systems Biology 7: 549; published online 8 November 2011; doi:10.1038/msb.2011.82
  •  
8.
  • Benz, Caroline, et al. (författare)
  • Proteome-scale mapping of binding sites in the unstructured regions of the human proteome
  • 2022
  • Ingår i: Molecular Systems Biology. - : EMBO Press. - 1744-4292 .- 1744-4292. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of similar to 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteomewide discovery of SLiM-based interactions.
  •  
9.
  • Buchser, William J., et al. (författare)
  • Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology
  • 2010
  • Ingår i: Molecular Systems Biology. - : Nature Publishing Group. - 1744-4292 .- 1744-4292. ; 6, s. 391-
  • Tidskriftsartikel (refereegranskat)abstract
    • Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth, such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our functional assays. We also identified novel positive and negative neurite growth regulators. These include neuronal-developmentally regulated kinases such as the activin receptor, interferon regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2) and choline kinase alpha (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no established functions in neuronal function, but were sufficient to promote neurite growth. In addition, pathway analysis revealed that members of signaling pathways involved in cancer progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways significantly inhibited neurite formation.
  •  
10.
  •  
11.
  • Buetti-Dinh, Antoine, 1984-, et al. (författare)
  • Control and signal processing by transcriptional interference
  • 2009
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 5, s. Article ID: 300-
  • Tidskriftsartikel (refereegranskat)abstract
    • A transcriptional activator can suppress gene expression by interfering with transcription initiated by another activator. Transcriptional interference has been increasingly recognized as a regulatory mechanism of gene expression. The signals received by the two antagonistically acting activators are combined by the polymerase trafficking along the DNA. We have designed a dual-control genetic system in yeast to explore this antagonism systematically. Antagonism by an upstream activator bears the hallmarks of competitive inhibition, whereas a downstream activator inhibits gene expression non-competitively. When gene expression is induced weakly, the antagonistic activator can have a positive effect and can even trigger paradoxical activation. Equilibrium and non-equilibrium models of transcription shed light on the mechanism by which interference converts signals, and reveals that self-antagonism of activators imitates the behavior of feed-forward loops. Indeed, a synthetic circuit generates a bell-shaped response, so that the induction of expression is limited to a narrow range of the input signal. The identification of conserved regulatory principles of interference will help to predict the transcriptional response of genes in their genomic context.
  •  
12.
  • Chen, Yu, 1990, et al. (författare)
  • Proteome constraints reveal targets for improving microbial fitness in nutrient-rich environments
  • 2021
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade-offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient-rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome-constrained genome-scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose-limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model-based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient-rich environments and thus form targets of fitness improvement.
  •  
13.
  •  
14.
  • Edfors, Fredrik, et al. (författare)
  • Gene-specific correlation of RNA and protein levels in human cells and tissues
  • 2016
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.
  •  
15.
  • Eraslan, Basak, et al. (författare)
  • Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues
  • 2019
  • Ingår i: Molecular Systems Biology. - : WILEY. - 1744-4292 .- 1744-4292. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.
  •  
16.
  • Gjuvsland, Arne B, et al. (författare)
  • Disentangling genetic and epigenetic determinants of ultrafast adaptation.
  • 2016
  • Ingår i: Molecular systems biology. - : EMBO. - 1744-4292. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Jouhten, P., et al. (författare)
  • Predictive evolution of metabolic phenotypes using model-designed environments
  • 2022
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 18:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.
  •  
23.
  • Jörnsten, Rebecka, 1971, et al. (författare)
  • Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
  • 2011
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease-driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long- and short-term survivors. Our method constructs causal network models of gene expression by combining genome-wide DNA- and RNA-level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease-relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53-interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large-scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Krantz, Marcus, 1975, et al. (författare)
  • Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway.
  • 2009
  • Ingår i: Molecular systems biology. - : EMBO. - 1744-4292. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal-transduction pathway with systematic perturbations in components' expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal-transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models.
  •  
28.
  •  
29.
  • Larsson, Ida, et al. (författare)
  • Modeling glioblastoma heterogeneity as a dynamic network of cell states
  • 2021
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.
  •  
30.
  • Lawson, Michael J., et al. (författare)
  • In situ genotyping of a pooled strain library after characterizing complex phenotypes
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present a proof-of-principle experiment that extends advanced live cell microscopy to the scale of pool-generated strain libraries. We achieve this by identifying the genotypes for individual cells in situ after a detailed characterization of the phenotype. The principle is demonstrated by single-molecule fluorescence time-lapse imaging of Escherichia coli strains harboring barcoded plasmids that express a sgRNA which suppresses different genes in the E.coli genome through dCas9 interference. In general, the method solves the problem of characterizing complex dynamic phenotypes for diverse genetic libraries of cell strains. For example, it allows screens of how changes in regulatory or coding sequences impact the temporal expression, location, or function of a gene product, or how the altered expression of a set of genes impacts the intracellular dynamics of a labeled reporter.
  •  
31.
  • Lee, SangWook, et al. (författare)
  • Network analyses identify liver-specific targets for treating liver diseases
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed integrative network analyses to identify targets that can be used for effectively treating liver diseases with minimal side effects. We first generated co-expression networks (CNs) for 46 human tissues and liver cancer to explore the functional relationships between genes and examined the overlap between functional and physical interactions. Since increased de novo lipogenesis is a characteristic of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC), we investigated the liver-specific genes co-expressed with fatty acid synthase (FASN). CN analyses predicted that inhibition of these liver-specific genes decreases FASN expression. Experiments in human cancer cell lines, mouse liver samples, and primary human hepatocytes validated our predictions by demonstrating functional relationships between these liver genes, and showing that their inhibition decreases cell growth and liver fat content. In conclusion, we identified liver-specific genes linked to NAFLD pathogenesis, such as pyruvate kinase liver and red blood cell (PKLR), or to HCC pathogenesis, such as PKLR, patatin-like phospholipase domain containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin type 9 (PCSK9), all of which are potential targets for drug development.
  •  
32.
  •  
33.
  • Lu, Hongzhong, 1987, et al. (författare)
  • Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection
  • 2021
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.
  •  
34.
  • Lundberg, Emma, et al. (författare)
  • Defining the transcriptome and proteome in three functionally different human cell lines
  • 2010
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 6, s. 450-
  • Tidskriftsartikel (refereegranskat)abstract
    • An essential question in human biology is how cells and tissues differ in gene and protein expression and how these differences delineate specific biological function. Here, we have performed a global analysis of both mRNA and protein levels based on sequence-based transcriptome analysis (RNA-seq), SILAC-based mass spectrometry analysis and antibody-based confocal microscopy. The study was performed in three functionally different human cell lines and based on the global analysis, we estimated the fractions of mRNA and protein that are cell specific or expressed at similar/different levels in the cell lines. A highly ubiquitous RNA expression was found with > 60% of the gene products detected in all cells. The changes of mRNA and protein levels in the cell lines using SILAC and RNA ratios show high correlations, even though the genome-wide dynamic range is substantially higher for the proteins as compared with the transcripts. Large general differences in abundance for proteins from various functional classes are observed and, in general, the cell-type specific proteins are low abundant and highly enriched for cell-surface proteins. Thus, this study shows a path to characterize the transcriptome and proteome in human cells from different origins.
  •  
35.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • Integration of clinical data with a genome-scale metabolic model of the human adipocyte
  • 2013
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 9, s. 649-
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold for integration of omics data to understand the genotype-phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling.
  •  
36.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • Personal model-assisted identification of NAD(+) and glutathione metabolism as intervention target in NAFLD
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD(+) and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD(+) repletion on the development of NAFLD, we added precursors for GSH and NAD(+) biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.
  •  
37.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • The gut microbiota modulates host amino acid and glutathione metabolism in mice
  • 2015
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice.
  •  
38.
  • Mateus, A, et al. (författare)
  • The rise of proteome-wide biophysics
  • 2021
  • Ingår i: Molecular systems biology. - : EMBO. - 1744-4292. ; 17:7, s. e10442-
  • Tidskriftsartikel (refereegranskat)
  •  
39.
  • Mehdi, Saher, et al. (författare)
  • Modelling and experimental analysis of hormonal crosstalk in Arabidopsis
  • 2010
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • An important question in plant biology is how genes influence the crosstalk between hormones to regulate growth. In this study, we model POLARIS (PLS) gene function and crosstalk between auxin, ethylene and cytokinin in Arabidopsis. Experimental evidence suggests that PLS acts on or close to the ethylene receptor ETR1, and a mathematical model describing possible PLS-ethylene pathway interactions is developed, and used to make quantitative predictions about PLS-hormone interactions. Modelling correctly predicts experimental results for the effect of the pls gene mutation on endogenous cytokinin concentration. Modelling also reveals a role for PLS in auxin biosynthesis in addition to a role in auxin transport. The model reproduces available mutants, and with new experimental data provides new insights into how PLS regulates auxin concentration, by controlling the relative contribution of auxin transport and biosynthesis and by integrating auxin, ethylene and cytokinin signalling. Modelling further reveals that a bell-shaped dose-response relationship between endogenous auxin and root length is established via PLS. This combined modelling and experimental analysis provides new insights into the integration of hormonal signals in plants. Molecular Systems Biology 6: 373; published online 8 June 2010; doi:10.1038/msb.2010.26
  •  
40.
  • Muccioli, Giulio G, et al. (författare)
  • The endocannabinoid system links gut microbiota to adipogenesis.
  • 2010
  • Ingår i: Molecular systems biology. - : EMBO. - 1744-4292. ; 6:392
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is characterised by altered gut microbiota, low-grade inflammation and increased endocannabinoid (eCB) system tone; however, a clear connection between gut microbiota and eCB signalling has yet to be confirmed. Here, we report that gut microbiota modulate the intestinal eCB system tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The impact of the increased plasma LPS levels and eCB system tone found in obesity on adipose tissue metabolism (e.g. differentiation and lipogenesis) remains unknown. By interfering with the eCB system using CB(1) agonist and antagonist in lean and obese mouse models, we found that the eCB system controls gut permeability and adipogenesis. We also show that LPS acts as a master switch to control adipose tissue metabolism both in vivo and ex vivo by blocking cannabinoid-driven adipogenesis. These data indicate that gut microbiota determine adipose tissue physiology through LPS-eCB system regulatory loops and may have critical functions in adipose tissue plasticity during obesity.
  •  
41.
  •  
42.
  •  
43.
  • Nikkilä, Janne, et al. (författare)
  • Gender-dependent progression of systemic metabolic states in early childhood
  • 2008
  • Ingår i: Molecular Systems Biology. - : Nature Publishing Group. - 1744-4292 .- 1744-4292. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the human intra-individual metabolic profile changes over an extended period of time. Here, we introduce a novel concept suggesting that children even at a very young age can be categorized in terms of metabolic state as they advance in development. The hidden Markov models were used as a method for discovering the underlying progression in the metabolic state. We applied the methodology to study metabolic trajectories in children between birth and 4 years of age, based on a series of samples selected from a large birth cohort study. We found multiple previously unknown age- and gender-related metabolome changes of potential medical significance. Specifically, we found that the major developmental state differences between girls and boys are attributed to sphingolipids. In addition, we demonstrated the feasibility of state-based alignment of personal metabolic trajectories. We show that children have different development rates at the level of metabolome and thus the state-based approach may be advantageous when applying metabolome profiling in search of markers for subtle (patho)physiological changes.
  •  
44.
  • Noraddin, Feria Hikmet, et al. (författare)
  • The protein expression profile of ACE2 in human tissues
  • 2020
  • Ingår i: Molecular Systems Biology. - : WILEY. - 1744-4292 .- 1744-4292. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The novel SARS-coronavirus 2 (SARS-CoV-2) poses a global challenge on healthcare and society. For understanding the susceptibility for SARS-CoV-2 infection, the cell type-specific expression of the host cell surface receptor is necessary. The key protein suggested to be involved in host cell entry is angiotensin I converting enzyme 2 (ACE2). Here, we report the expression pattern of ACE2 across > 150 different cell types corresponding to all major human tissues and organs based on stringent immunohistochemical analysis. The results were compared with several datasets both on the mRNA and protein level. ACE2 expression was mainly observed in enterocytes, renal tubules, gallbladder, cardiomyocytes, male reproductive cells, placental trophoblasts, ductal cells, eye, and vasculature. In the respiratory system, the expression was limited, with no or only low expression in a subset of cells in a few individuals, observed by one antibody only. Our data constitute an important resource for further studies on SARS-CoV-2 host cell entry, in order to understand the biology of the disease and to aid in the development of effective treatments to the viral infection.
  •  
45.
  • Ostaszewski, Marek, et al. (författare)
  • COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
  • 2021
  • Ingår i: Molecular Systems Biology. - : John Wiley & Sons. - 1744-4292 .- 1744-4292. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
  •  
46.
  • Peret, Benjamin, et al. (författare)
  • Sequential induction of auxin efflux and influx carriers regulates lateral root emergence
  • 2013
  • Ingår i: Molecular Systems Biology. - : Nature Publishing Group. - 1744-4292 .- 1744-4292. ; 9, s. Article number 699-
  • Tidskriftsartikel (refereegranskat)abstract
    • In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia ( LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required-later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.
  •  
47.
  • Pontén, Fredrik, et al. (författare)
  • A global view of protein expression in human cells, tissues, and organs
  • 2009
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Defining the protein profiles of tissues and organs is critical to understanding the unique characteristics of the various cell types in the human body. In this study, we report on an anatomically comprehensive analysis of 4842 protein profiles in 48 human tissues and 45 human cell lines. A detailed analysis of over 2 million manually annotated, high-resolution, immunohistochemistry- based images showed a high fraction (>65%) of expressed proteins in most cells and tissues, with very few proteins (<2%) detected in any single cell type. Similarly, confocal microscopy in three human cell lines detected expression of more than 70% of the analyzed proteins. Despite this ubiquitous expression, hierarchical clustering analysis, based on global protein expression patterns, shows that the analyzed cells can be still subdivided into groups according to the current concepts of histology and cellular differentiation. This study suggests that tissue specificity is achieved by precise regulation of protein levels in space and time, and that different tissues in the body acquire their unique characteristics by controlling not which proteins are expressed but how much of each is produced. Molecular Systems Biology 5: 337; published online 22 December 2009; doi:10.1038/msb.2009.93
  •  
48.
  • Rantalainen, Mattias, et al. (författare)
  • Piecewise multivariate modelling of sequential metabolic profiling data
  • 2008
  • Ingår i: BMC Bioinformatics. - : EMBO. - 1471-2105. ; 9, s. 105-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. Results: A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. Conclusion: The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
  •  
49.
  • Robert, Stephanie (författare)
  • Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane
  • 2011
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell polarity reflected by asymmetric distribution of proteins at the plasma membrane is a fundamental feature of unicellular and multicellular organisms. It remains conceptually unclear how cell polarity is kept in cell wall-encapsulated plant cells. We have used super-resolution and semi-quantitative live-cell imaging in combination with pharmacological, genetic, and computational approaches to reveal insights into the mechanism of cell polarity maintenance in Arabidopsis thaliana. We show that polar-competent PIN transporters for the phytohormone auxin are delivered to the center of polar domains by super-polar recycling. Within the plasma membrane, PINs are recruited into non-mobile membrane clusters and their lateral diffusion is dramatically reduced, which ensures longer polar retention. At the circumventing edges of the polar domain, spatially defined internalization of escaped cargos occurs by clathrin-dependent endocytosis. Computer simulations confirm that the combination of these processes provides a robust mechanism for polarity maintenance in plant cells. Moreover, our study suggests that the regulation of lateral diffusion and spatially defined endocytosis, but not super-polar exocytosis have primary importance for PIN polarity maintenance. Molecular Systems Biology 7: 540; published online 25 October 2011; doi:10.1038/msb.2011.72
  •  
50.
  • Sanchez Barja, Benjamin José, 1988, et al. (författare)
  • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:8, s. Article no 935 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We applied GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model-based design in metabolic engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 73
Typ av publikation
tidskriftsartikel (71)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (70)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Nielsen, Jens B, 196 ... (15)
Uhlén, Mathias (15)
Zhang, C. (6)
Mardinoglu, Adil, 19 ... (6)
Pontén, Fredrik (5)
Sander, Chris (5)
visa fler...
Asplund, Anna (5)
Taipale, J (4)
Lundberg, Emma (4)
Borén, Jan, 1963 (4)
Ivarsson, Ylva (4)
Hallström, Björn M. (4)
Bäckhed, Fredrik, 19 ... (3)
Warringer, Jonas, 19 ... (3)
Larsson, Erik, 1975 (3)
Ståhlman, Marcus, 19 ... (3)
Kampf, Caroline (3)
Mardinoglu, Adil (2)
Marschall, Hanns-Ulr ... (2)
Arif, Muhammad (2)
Edfors, Fredrik (2)
Fagerberg, Linn (2)
Bottai, M (2)
Ali, Muhammad (2)
Jörnsten, Rebecka, 1 ... (2)
Nelander, Sven, 1974 (2)
Kerkhoven, Eduard, 1 ... (2)
Adiels, Martin, 1976 (2)
Björnson, Elias, 198 ... (2)
Nilsson, Björn (2)
Krantz, Marcus, 1975 (2)
Hohmann, Stefan, 195 ... (2)
Ågren, Rasmus, 1982 (2)
Gennemark, Peter, 19 ... (2)
Kim, Woonghee (2)
Smith, Ulf, 1943 (2)
Geiger, B. (2)
Klevstig, Martina (2)
Marks, Debora (2)
Patil, K. R. (2)
Wieland, Thomas (2)
Peeper, Daniel S. (2)
Maddalo, Gianluca (2)
Shoaie, Saeed, 1985 (2)
Lidschreiber, M (2)
Cramer, P (2)
Simonetti, Leandro (2)
Davey, Norman E. (2)
Bergentall, Mattias (2)
Chen, Yu, 1990 (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (22)
Uppsala universitet (21)
Kungliga Tekniska Högskolan (19)
Karolinska Institutet (18)
Göteborgs universitet (16)
Lunds universitet (5)
visa fler...
Sveriges Lantbruksuniversitet (4)
Linköpings universitet (3)
Stockholms universitet (2)
Umeå universitet (1)
Örebro universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (73)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (47)
Medicin och hälsovetenskap (21)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy