SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1752 0894 "

Sökning: L773:1752 0894

  • Resultat 1-50 av 126
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acosta Navarro, Juan Camilo, et al. (författare)
  • Amplification of Arctic warming by past air pollution reductions in Europe
  • 2016
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 9:4, s. 277-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic region is warming considerably faster than the rest of the globe(1), with important consequences for the ecosystems(2) and human exploration of the region(3). However, the reasons behind this Arctic amplification are not entirely clear(4). As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursors have drastically decreased in parts of the Northern Hemisphere over the past three decades(5). Here we present simulations with an Earth system model with comprehensive aerosol physics and chemistry that show that the sulfate aerosol reductions in Europe since 1980 can potentially explain a significant fraction of Arctic warming over that period. Specifically, the Arctic region receives an additional 0.3Wm(-2) of energy, and warms by 0.5 degrees C on annual average in simulations with declining European sulfur emissions in line with historical observations, compared with a model simulation with fixed European emissions at 1980 levels. Arctic warming is amplified mainly in fall and winter, but the warming is initiated in summer by an increase in incoming solar radiation as well as an enhanced poleward oceanic and atmospheric heat transport. The simulated summertime energy surplus reduces sea-ice cover, which leads to a transfer of heat from the Arctic Ocean to the atmosphere. We conclude that air quality regulations in the Northern Hemisphere, the ocean and atmospheric circulation, and Arctic climate are inherently linked.
  •  
2.
  • Adolphi, Florian, et al. (författare)
  • Persistent link between solar activity and Greenland climate during the Last Glacial Maximum
  • 2014
  • Ingår i: Nature Geoscience. - 1752-0908 .- 1752-0894. ; 7:9, s. 662-666
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in solar activity have previously been proposed to cause decadal- to millennial-scale fluctuations in both the modern and Holocene climates(1). Direct observational records of solar activity, such as sunspot numbers, exist for only the past few hundred years, so solar variability for earlier periods is typically reconstructed from measurements of cosmogenic radionuclides such as Be-10 and C-14 from ice cores and tree rings(2,3). Here we present a high-resolution Be-10 record from the ice core collected from central Greenland by the Greenland Ice Core Project (GRIP). The record spans from 22,500 to 10,000 years ago, and is based on new and compiled data(4-6). Using C-14 records(7,8) to control for climate-related influences on Be-10 deposition, we reconstruct centennial changes in solar activity. We find that during the Last Glacial Maximum, solar minima correlate with more negative delta O-18 values of ice and are accompanied by increased snow accumulation and sea-salt input over central Greenland. We suggest that solar minima could have induced changes in the stratosphere that favour the development of high-pressure blocking systems located to the south of Greenland, as has been found in observations and model simulations for recent climate(9,10). We conclude that the mechanism behind solar forcing of regional climate change may have been similar under both modern and Last Glacial Maximum climate conditions.
  •  
3.
  • Ahmed, Moinuddin, et al. (författare)
  • Continental-scale temperature variability during the past two millennia
  • 2013
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 6:5, s. 339-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.
  •  
4.
  • Alcolombri, Uria, et al. (författare)
  • Sinking enhances the degradation of organic particles by marine bacteria
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Nature. - 1752-0894 .- 1752-0908. ; 14:10, s. 775-780
  • Tidskriftsartikel (refereegranskat)abstract
    • The sinking of organic particles in the ocean and their degradation by marine microorganisms is one of the main drivers of the biological pump. Yet, the mechanisms determining the magnitude of the pump remain poorly understood, limiting our ability to predict this carbon flux in future ocean scenarios. Current ocean models assume that the biological pump is governed by the competition between sinking speed and degradation rate, with the two processes independent from one another. Contrary to this paradigm, we show that sinking itself is a primary determinant of the rate at which bacteria degrade particles. Heterotrophic bacterial degradation rates were obtained from a laboratory study on model surface-colonized particles at atmospheric pressure under a range of flow speeds to mimic different sinking velocities. We find that even modest sinking speeds of 8 m day−1 enhance degradation rates more than 10-fold compared with degradation rates of non-sinking particles. We discovered that the molecular mechanism underlying this sinking-enhanced degradation is the flow-induced removal from the particles of the oligomeric breakdown products, which otherwise compete for enzymatic activity. This mechanism applies across several substrates and bacterial strains, suggesting its potentially broad occurrence under natural marine conditions. Integrating our findings into a mathematical model of particulate carbon flux, we propose that the coupling of sinking and degradation may contribute, in conjunction with other processes, to determining the magnitude of the vertical carbon flux in the ocean.
  •  
5.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Geological and climatic influences on mountain biodiversity
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mountains are key features of the Earth's surface and host a substantial proportion of the world's species. However, the links between the evolution and distribution of biodiversity and the formation of mountains remain poorly understood. Here, we integrate multiple datasets to assess the relationships between species richness in mountains, geology and climate at global and regional scales. Specifically, we analyse how erosion, relief, soil and climate relate to the geographical distribution of terrestrial tetrapods, which include amphibians, birds and mammals. We find that centres of species richness correlate with areas of high temperatures, annual rainfall and topographic relief, supporting previous studies. We unveil additional links between mountain-building processes and biodiversity: species richness correlates with erosion rates and heterogeneity of soil types, with a varying response across continents. These additional links are prominent but under-explored, and probably relate to the interplay between surface uplift, climate change and atmospheric circulation through time. They are also influenced by the location and orientation of mountain ranges in relation to air circulation patterns, and how species diversification, dispersal and refugia respond to climate change. A better understanding of biosphere-lithosphere interactions is needed to understand the patterns and evolution of mountain biodiversity across space and time.
  •  
6.
  • Arneborg, Lars, 1969, et al. (författare)
  • Persistent inflow of warm water onto the central Amundsen Shelf
  • 2012
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 5:12, s. 876-880
  • Tidskriftsartikel (refereegranskat)abstract
    • The West Antarctic Ice Sheet contains enough ice to raise global sea level by several metres and, because it is grounded mainly below sea level, it is sensitive to ocean warming 1 . Accelerated thinning of glaciers that discharge into the Amundsen Sea over the past decades 2–4 has been proposed to be related to the presence of warmer waters beneath the ice shelves 4–6 . Three deep troughs crosscut the continental shelf of the Amundsen Sea, forming passages through which warm ocean waters can access the ice shelves, but oceanographic data has been limited. Here we present direct measurements from an ocean mooring and ship transect of the temperatures, salinities and velocities from one of these troughs in the central Amundsen Sea during the year 2010. The data show persistent inflow towards the ice shelf of relatively warm and salty water at the bottom of the trough throughout the year, and outflow of colder water above. Superposed on this background flow are barotropic current fluctuations that do not contribute significantly to the overall transport. In contrast to numerical models 7,8 , which show seasonal inflow changes in response to regional winds, we find that warm water is supplied to the Central Amundsen Shelf without strong seasonal variability.
  •  
7.
  • Arneth, A., et al. (författare)
  • Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed
  • 2017
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 10:2, s. 79-84
  • Forskningsöversikt (refereegranskat)abstract
    • The terrestrial biosphere absorbs about 20% of fossil-fuel CO 2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO 2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change and CO 2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO 2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO 2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.
  •  
8.
  • Arneth, Almut, et al. (författare)
  • Terrestrial biogeochemical feedbacks in the climate system
  • 2010
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 3:8, s. 525-532
  • Forskningsöversikt (refereegranskat)abstract
    • The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m(-2) K-1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.
  •  
9.
  • Barlow, Natasha L. M., et al. (författare)
  • Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:9, s. 627-634
  • Forskningsöversikt (refereegranskat)abstract
    • During the Last Interglacial, global mean sea level reached approximately 6 to 9 m above the present level. This period of high sea level may have been punctuated by a fall of more than 4 m, but a cause for such a widespread sea-level fall has been elusive. Reconstructions of global mean sea level account for solid Earth processes and so the rapid growth and decay of ice sheets is the most obvious explanation for the sea-level fluctuation. Here, we synthesize published geomorphological and stratigraphic indicators from the Last Interglacial, and find no evidence for ice-sheet regrowth within the warm interglacial climate. We also identify uncertainties in the interpretation of local relative sea-level data that underpin the reconstructions of global mean sea level. Given this uncertainty, and taking into account our inability to identify any plausible processes that would cause global sea level to fall by 4 m during warm climate conditions, we question the occurrence of a rapid sea-level fluctuation within the Last Interglacial. We therefore recommend caution in interpreting the high rates of global mean sea-level rise in excess of 3 to 7 m per 1,000 years that have been proposed for the period following the Last Interglacial sea-level lowstand.
  •  
10.
  • Barros, Nathan, et al. (författare)
  • Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude
  • 2011
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 4:9, s. 593-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydroelectric reservoirs cover an area of 3.4 x 10(5) km(2) and comprise about 20% of all reservoirs. In addition, they contain large stores of formerly terrestrial organic carbon. Significant amounts of greenhouse gases are emitted(2), especially in the early years following reservoir creation, but the global extent of these emissions is poorly known. Previous estimates of emissions from all types of reservoir indicate that these human-made systems emit 321 Tg of carbon per year (ref. 4). Here we assess the emissions of carbon dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed hydroelectric reservoirs that account for 20% of the global area of these systems. We relate the emissions to reservoir age, location biome, morphometric features and chemical status. We estimate that hydroelectric reservoirs emit about 48 Tg C as CO(2) and 3 Tg C as CH(4), corresponding to 4% of global carbon emissions from inland waters. Our estimates are smaller than previous estimates on the basis of more limited data. Carbon emissions are correlated to reservoir age and latitude, with the highest emission rates from the tropical Amazon region. We conclude that future emissions will be highly dependent on the geographic location of new hydroelectric reservoirs.
  •  
11.
  • Basu, Nandita B., et al. (författare)
  • Managing nitrogen legacies to accelerate water quality improvement
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15:2, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing incidences of eutrophication and groundwater quality impairment from agricultural nitrogen pollution are threatening humans and ecosystem health. Minimal improvements in water quality have been achieved despite billions of dollars invested in conservation measures worldwide. Such apparent failures can be attributed in part to legacy nitrogen that has accumulated over decades of agricultural intensification and that can lead to time lags in water quality improvement. Here, we identify the key knowledge gaps related to landscape nitrogen legacies and propose approaches to manage and improve water quality, given the presence of these legacies.
  •  
12.
  • Battin, Tom J., et al. (författare)
  • The boundless carbon cycle
  • 2009
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 2:9, s. 598-600
  • Tidskriftsartikel (refereegranskat)
  •  
13.
  • Belonoshko, Anatoly B., et al. (författare)
  • Stabilization of body-centred cubic iron under inner-core conditions
  • 2017
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 10:4, s. 312-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's solid core is mostly composed of iron. However, despite being central to our understanding of core properties, the stable phase of iron under inner-core conditions remains uncertain. The two leading candidates are hexagonal close-packed and body-centred cubic (bcc) crystal structures, but the dynamic and thermodynamic stability of bcc iron under inner-core conditions has been challenged. Here we demonstrate the stability of the bcc phase of iron under conditions consistent with the centre of the core using ab initio molecular dynamics simulations. We find that the bcc phase is stabilized at high temperatures by a diffusion mechanism that arises due to the dynamical instability of the phase at lower temperatures. On the basis of our simulations, we reinterpret experimental data as support for the stability of bcc iron under inner-core conditions. We suggest that the diffusion of iron atoms in solid state may explain both the anisotropy and the low shear modulus of the inner core.
  •  
14.
  • Benavent, N., et al. (författare)
  • Substantial contribution of iodine to Arctic ozone destruction
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15, s. 770-773
  • Tidskriftsartikel (refereegranskat)abstract
    • Unlike bromine, the effect of iodine chemistry on the Arctic surface ozone budget is poorly constrained. We present ship-based measurements of halogen oxides in the high Arctic boundary layer from the sunlit period of March to October 2020 and show that iodine enhances springtime tropospheric ozone depletion. We find that chemical reactions between iodine and ozone are the second highest contributor to ozone loss over the study period, after ozone photolysis-initiated loss and ahead of bromine.
  •  
15.
  • Bishop, Kevin, et al. (författare)
  • Human domination of the global water cycle absent from depictions and perceptions
  • 2019
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 12, s. 533-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Human water use, climate change and land conversion have created a water crisis for billions of individuals and many ecosystems worldwide. Global water stocks and fluxes are estimated empirically and with computer models, but this information is conveyed to policymakers and researchers through water cycle diagrams. Here we compiled a synthesis of the global water cycle, which we compared with 464 water cycle diagrams from around the world. Although human freshwater appropriation now equals half of global river discharge, only 15% of the water cycle diagrams depicted human interaction with water. Only 2% of the diagrams showed climate change or water pollution-two of the central causes of the global water crisis-which effectively conveys a false sense of water security. A single catchment was depicted in 95% of the diagrams, which precludes the representation of teleconnections such as ocean-land interactions and continental moisture recycling. These inaccuracies correspond with specific dimensions of water mismanagement, which suggest that flaws in water diagrams reflect and reinforce the misunderstanding of global hydrology by policymakers, researchers and the public. Correct depictions of the water cycle will not solve the global water crisis, but reconceiving this symbol is an important step towards equitable water governance, sustainable development and planetary thinking in the Anthropocene.
  •  
16.
  • Bradshaw, Catherine D., et al. (författare)
  • Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14, s. 429-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen isotopes from ocean sediments (δ18O) used to reconstruct past continental ice volumes additionally record deep water temperatures (DWTs). Traditionally, these are assumed to be coupled (ice-volume changes cause DWT changes). However, δ18O records during peak Middle Miocene warmth (~16–15 million years ago) document large rapid fluctuations (~1–1.5‰) difficult to explain as huge Antarctic ice sheet (AIS) volume changes. Here, using climate modelling and data comparisons, we show DWTs are coupled to AIS spatial extent, not volume, because Antarctic albedo changes modify the hydrological cycle, affecting Antarctic deep water production regions. We suggest the Middle Miocene AIS had retreated substantially from previous Oligocene maxima. The residual ice sheet varied spatially more rapidly on orbital timescales than previously thought, enabling large DWT swings (up to 4 °C). When Middle Miocene warmth terminated (~13 million years ago) and a continent-scale AIS had stabilized, further ice-volume changes were predominantly in height rather than extent, with little impact on DWT. Our findings imply a shift in ocean sensitivity to ice-sheet changes occurs when AIS retreat exposes previously ice-covered land; associated feedbacks could reduce the Earth system’s ability to maintain a large AIS. This demonstrates ice-sheet changes should be characterized not only by ice volume but also by spatial extent.
  •  
17.
  • Brehm, Nicolas, et al. (författare)
  • Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14:1, s. 10-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sun provides the principal energy input into the Earth system and solar variability represents a significant external climate forcing. Although observations of solar activity (sunspots) cover only the last about 400 years, radionuclides produced by cosmic rays and stored in tree rings or ice cores serve as proxies for solar activity extending back thousands of years. However, the presence of weather-induced noise or low temporal resolution of long, precisely dated records hampers cosmogenic nuclide-based studies of short-term solar variability such as the 11-yr Schwabe cycle. Here we present a continuous, annually resolved atmospheric 14C concentration (fractionation-corrected ratio of 14CO2 to CO2) record reconstructed from absolutely dated tree rings covering nearly all of the last millennium (ad 969–1933). The high-resolution and precision 14C record reveals the presence of the Schwabe cycle over the entire time range. The record confirms the ad 993 solar energetic particle event and reveals two new candidates (ad 1052 and ad 1279), indicating that strong solar events that might be harmful to modern electronic systems probably occur more frequently than previously thought. In addition to showing decadal-scale solar variability over the last millennium, the high-temporal-resolution record of atmospheric radiocarbon also provides a useful benchmark for making radiocarbon dating more accurate over this interval.
  •  
18.
  • Brovkin, Victor, et al. (författare)
  • Past abrupt changes, tipping points and cascading impacts in the Earth system
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14:8, s. 550-558
  • Forskningsöversikt (refereegranskat)abstract
    • A synthesis of intervals of rapid climatic change evident in the geological record reveals some of the Earth system processes and tipping points that could lead to similar events in the future. The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate-ecological-social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
  •  
19.
  • Büntgen, Ulf, et al. (författare)
  • Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD
  • 2016
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 9:3, s. 231-236
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD, which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.
  •  
20.
  • Büntgen, Ulf, et al. (författare)
  • Recent European drought extremes beyond Common Era background variability
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14:4, s. 190-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Europe's recent summer droughts have had devastating ecological and economic consequences, but the severity and cause of these extremes remain unclear. Here we present 27,080 annually resolved and absolutely dated measurements of tree-ring stable carbon and oxygen (delta C-13 and delta O-18) isotopes from 21 living and 126 relict oaks (Quercus spp.) used to reconstruct central European summer hydroclimate from 75 bce to 2018 ce. We find that the combined inverse delta C-13 and delta O-18 values correlate with the June-August Palmer Drought Severity Index from 1901-2018 at 0.73 (P < 0.001). Pluvials around 200, 720 and 1100 ce, and droughts around 40, 590, 950 and 1510 ce and in the twenty-first century, are superimposed on a multi-millennial drying trend. Our reconstruction demonstrates that the sequence of recent European summer droughts since 2015 ce is unprecedented in the past 2,110 years. This hydroclimatic anomaly is probably caused by anthropogenic warming and associated changes in the position of the summer jet stream. European summer droughts in recent years are anomalously severe compared with those of the previous 2,000 years, according to a synthesis of annually resolved tree-ring carbon and oxygen isotope records.
  •  
21.
  • Büntgen, Ulf, et al. (författare)
  • Reply to 'Limited Late Antique cooling'
  • 2017
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 10:4, s. 243-243
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
22.
  • Catalan, Nuria, et al. (författare)
  • Organic carbon decomposition rates controlled by water retention time across inland waters
  • 2016
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 9:7, s. 501-504
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical component of the global carbon cycle(1-3). Yet, the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question(2,4-6), hampered by the absence of a common predictor of organic carbon decay rates(1,7). Here we analyse a compilation of existing field and laboratory measurements of organic carbon decay rates and water residence times across a wide range of aquatic ecosystems and climates. We find a negative relationship between the rate of organic carbon decay and water retention time across systems, entailing a decrease in organic carbon reactivity along the continuum of inland waters. We find that the half-life of organic carbon is short in inland waters (2.5 +/- 4.7 yr) compared to terrestrial soils and marine ecosystems, highlighting that freshwaters are hotspots of organic carbon degradation. Finally, we evaluate the response of organic carbon decay rates to projected changes in runoff(8). We calculate that regions projected to become drier or wetter as the global climate warms will experience changes in organic carbon decay rates of up to about 10%, which illustrates the influence of hydrological variability on the inland waters carbon cycle.
  •  
23.
  • Christensen, Torben (författare)
  • Climate Science Patchy Peat
  • 2009
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 2:3, s. 163-164
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
24.
  • Christensen, Torben R. (författare)
  • Permafrost : It's a gas
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9:9, s. 647-648
  • Tidskriftsartikel (refereegranskat)
  •  
25.
  • Conley, Daniel, et al. (författare)
  • Silica cycling over geologic time
  • 2015
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 8:6, s. 431-432
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
26.
  • Coxall, Helen K., et al. (författare)
  • Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:3, s. 190-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.
  •  
27.
  • Cronin, T. M., et al. (författare)
  • Deep Arctic Ocean warming during the last glacial cycle
  • 2012
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 5:9, s. 631-634
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean(1-7) have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations(8-10) is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1-2 degrees C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.
  •  
28.
  • Datry, T., et al. (författare)
  • A global analysis of terrestrial plant litter dynamics in non-perennial waterways
  • 2018
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 11:7, s. 497-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
  •  
29.
  • de Lavergne, Casimir, et al. (författare)
  • Getting to the bottom of the ocean
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9:12, s. 857-858
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
30.
  • Ding, Jinzhi, et al. (författare)
  • Decadal soil carbon accumulation across Tibetan permafrost regions
  • 2017
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 10:6, s. 420-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost soils store large amounts of carbon. Warming can result in carbon release from thawing permafrost, but it can also lead to enhanced primary production, which can increase soil carbon stocks. The balance of these fluxes determines the nature of the permafrost feedback to warming. Here we assessed decadal changes in soil organic carbon stocks in the active layer-the uppermost 30 cm-of permafrost soils across Tibetan alpine regions, based on repeated soil carbon measurements in the early 2000s and 2010s at the same sites. We observed an overall accumulation of soil organic carbon irrespective of vegetation type, with a mean rate of 28.0 g Cm-2 yr(-1) across Tibetan permafrost regions. This soil organic carbon accrual occurred only in the subsurface soil, between depths of 10 and 30 cm, mainly induced by an increase of soil organic carbon concentrations. We conclude that the upper active layer of Tibetan alpine permafrost currently represents a substantial regional soil carbon sink in a warming climate, implying that carbon losses of deeper and older permafrost carbon might be offset by increases in upper-active-layer soil organic carbon stocks, which probably results from enhanced vegetation growth.
  •  
31.
  • Doyle, Samuel H., et al. (författare)
  • Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall
  • 2015
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 8:8, s. 647-
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change.
  •  
32.
  • Du, Enzai, et al. (författare)
  • Global patterns of terrestrial nitrogen and phosphorus limitation
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13:3, s. 221-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen (N) and phosphorus (P) limitation constrains the magnitude of terrestrial carbon uptake in response to elevated carbon dioxide and climate change. However, global maps of nutrient limitation are still lacking. Here we examined global N and P limitation using the ratio of site-averaged leaf N and P resorption efficiencies of the dominant species across 171 sites. We evaluated our predictions using a global database of N- and P-limitation experiments based on nutrient additions at 106 and 53 sites, respectively. Globally, we found a shift from relative P to N limitation for both higher latitudes and precipitation seasonality and lower mean annual temperature, temperature seasonality, mean annual precipitation and soil clay fraction. Excluding cropland, urban and glacial areas, we estimate that 18% of the natural terrestrial land area is significantly limited by N, whereas 43% is relatively P limited. The remaining 39% of the natural terrestrial land area could be co-limited by N and P or weakly limited by either nutrient alone. This work provides both a new framework for testing nutrient limitation and a benchmark of N and P limitation for models to constrain predictions of the terrestrial carbon sink.
  •  
33.
  •  
34.
  • Ekblad, Alf, 1957-, et al. (författare)
  • Deforestation releases old carbon
  • 2019
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 12:7, s. 499-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract not available.
  •  
35.
  • Eldevik, Tor, et al. (författare)
  • Observed sources and variability of Nordic seas overflow
  • 2009
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 2, s. 406-410
  • Tidskriftsartikel (refereegranskat)abstract
    • The overflows from the Nordic seas maintain the deep branch of the North Atlantic Ocean's thermohaline circulation1, 2, an important part of the global climate system3, 4. However, the source of these overflows, and of overflow variability, is debated: proposals include open-ocean convection, dense-water production on the Arctic shelves and the gradual transformation of Atlantic water as it circulates the periphery of the Nordic seas and the Arctic Ocean2, 5, 6. Here we analyse time series of observed ocean temperature and salinity between 1950 and 2005. We find that the progression of thermohaline anomalies on interannual to decadal timescales does not support a systematic response of the overflow properties to convective mixing in the Greenland Sea as has been suggested7, 8. Instead, anomalies in temperature and salinity that leave the northern seas at the Denmark Strait have travelled along the rim of the Nordic seas from inflow to overflow. Furthermore, the Faroe–Shetland Channel reflects the variability of an overturning loop within the Norwegian Sea that has not been observed previously. We thus conclude that the Atlantic water circulating in the Nordic seas is the main source for change in the overflow waters.
  •  
36.
  • Ellerton, Daniel T., et al. (författare)
  • Fraser Island (K'gari) and initiation of the Great Barrier Reef linked by Middle Pleistocene sea-level change
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15:12, s. 1017-1026
  • Tidskriftsartikel (refereegranskat)abstract
    • The eastern Australia coastline is characterized by impressive coastal landforms and an extensive northward-moving longshore drift system that have been influenced by a stable, long-term tectonic history over the Quaternary period. However, the timing and drivers of the formation of two conspicuous landscape features—Fraser Island (K’gari) and the Great Barrier Reef—remain poorly understood. Here we use optically stimulated luminescence and palaeomagnetic dating to constrain the formation of the extensive dunes that make up Fraser Island, the world’s largest sand island, and adjacent Cooloola Sand Mass in southeastern Queensland. We find that both formed between 1.2 Ma and 0.7 Ma, during a global climate reconfiguration across the Middle Pleistocene transition. They formed as a direct result of increased amplitude of sea-level fluctuations associated with increasing global ice volume that redistributed previously stored sediment across the continental shelf. The development of Fraser Island dramatically reduced sediment supply to the continental shelf north of the island. This facilitated widespread coral reef formation in the southern and central Great Barrier Reef and was a necessary precondition for its development. This major reorganization of the coastal sedimentary system is probably not unique to eastern Australia and should be investigated in other passive-margin coastlines.
  •  
37.
  • Ernst, R. E., et al. (författare)
  • Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9:6, s. 464-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Precambrian supercontinents Nuna-Columbia (1.7 to 1.3 billion years ago) and Rodinia (1.1 to 0.7 billion years ago) have been proposed. However, the arrangements of crustal blocks within these supercontinents are poorly known. Huge, dominantly basaltic magmatic outpourings and intrusions, covering up to millions of square kilometres, termed Large Igneous Provinces, typically accompany (super) continent breakup, or attempted breakup and offer an important tool for reconstructing supercontinents. Here we focus on the Large Igneous Province record for Siberia and Laurentia, whose relative position in Nuna-Columbia and Rodinia reconstructions is highly controversial. We present precise geochronology - nine U-Pb and six Ar-Ar ages - on dolerite dykes and sills, along with existing dates from the literature, that constrain the timing of emplacement of Large Igneous Province magmatism in southern Siberia and northern Laurentia between 1,900 and 720 million years ago. We identify four robust age matches between the continents 1,870, 1,750, 1,350 and 720 million years ago, as well as several additional approximate age correlations that indicate southern Siberia and northern Laurentia were probably near neighbours for this 1.2-billion-year interval. Our reconstructions provide a framework for evaluating the shared geological, tectonic and metallogenic histories of these continental blocks.
  •  
38.
  • Evans, Chris D., et al. (författare)
  • Variability in organic carbon reactivity across lake residence time and trophic gradients
  • 2017
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 10:11, s. 832-835
  • Tidskriftsartikel (refereegranskat)abstract
    • The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for.
  •  
39.
  • Filipsson, Helena (författare)
  • Not just family matters
  • 2011
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0908 .- 1752-0894. ; 4:6, s. 346-346
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
40.
  • Fischer, Hubertus, et al. (författare)
  • Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:7, s. 474-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.
  •  
41.
  • Glasser, N. F., et al. (författare)
  • Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum
  • 2011
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 4:5, s. 303-307
  • Tidskriftsartikel (refereegranskat)abstract
    • The melting of mountain glaciers and ice caps is expected to contribute significantly to sea-level rise in the twenty-first century(1-)3, although the magnitude of this contribution is not fully constrained. Glaciers in the Patagonian Icefields of South America are thought to have contributed about 10% of the total sea-level rise attributable to mountain glaciers in the past 50 years(3). However, it is unclear whether recent rates of glacier recession in Patagonia are unusual relative to the past few centuries. Here we reconstruct the recession of these glaciers using remote sensing and field determinations of trimline and terminal moraine location. We estimate that the North Patagonian Icefield has lost 103 +/- 20.7 km(3) of ice since its late Holocene peak extent in AD 1870 and that the South Patagonian Icefield has lost 503 +/- 101.1 km(3) since its peak in AD 1650. This equates to a sea-level contribution of 0.0018 +/- 0.0004 mm yr(-1) since 1870 from the north and 0.0034 +/- 0.0007 mm yr(-1) since 1650 from the south. The centennial rates of sea-level contribution we derive are one order of magnitude lower than estimates of melting over the past 50 years(3), even when we account for possible thinning above the trimline. We conclude that the melt rate and sea-level contribution of the Patagonian Icefields increased markedly in the twentieth century.
  •  
42.
  • Goldhammer, Tobias, et al. (författare)
  • Microbial sequestration of phosphorus in anoxic upwelling sediments
  • 2010
  • Ingår i: Nature geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 3:8, s. 557-561
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production(1,2). Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits(3,4). Bacteria are thought to mediate these processes(5), but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a P-33-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate P-33 in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change(6), potentially increasing sequestration of marine phosphate, and restricting marine productivity.
  •  
43.
  • Gomez-Gener, L., et al. (författare)
  • Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14, s. 289-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial spatial and temporal variability in dissolved CO2 concentrations. Using a global compilation of high-frequency CO2 measurements, we demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gC m(-2) d(-1)) greater than those estimated from diurnal concentrations alone. Constraints on light availability due to canopy shading or water colour are the principal controls on observed diel (24 hour) variation, suggesting this nocturnal increase arises from daytime fixation of CO2 by photosynthesis. Because current global estimates of CO2 emissions to the atmosphere from running waters (0.65-1.8 PgC yr(-1)) rely primarily on discrete measurements of dissolved CO2 obtained during the day, they substantially underestimate the magnitude of this flux. Accounting for night-time CO2 emissions may elevate global estimates from running waters to the atmosphere by 0.20-0.55 PgC yr(-1). Failing to account for emission differences between day and night will lead to an underestimate of global CO2 emissions from rivers by up to 0.55 PgC yr(-1), according to analyses of high-frequency CO2 measurements.
  •  
44.
  • Gonzalez-Gaya, Belen, et al. (författare)
  • Biodegradation as an important sink of aromatic hydrocarbons in the oceans
  • 2019
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 12:2, s. 119-125+2
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric deposition of semivolatile aromatic hydrocarbons accounts for an important input of organic matter to the surface ocean. Nevertheless, the biogeochemical cycling and sinks of semivolatile aromatic hydrocarbons in the ocean remain largely uncharacterized. Here we present measurements of 64 polycyclic aromatic hydrocarbons in plankton and seawater from the Atlantic, Pacific, Indian and Southern Oceans, as well an assessment of their microbial degradation genes. Concentrations of the more hydrophobic compounds decreased when the plankton biomass was higher, consistent with the relevance of the biological pump. The mass balance for the global oceans showed that the settling fluxes of aromatic hydrocarbons in the water column were two orders of magnitude lower than the atmospheric deposition fluxes. This imbalance was high for low molecular weight hydrocarbons, such as phenanthrene and methylphenanthrenes, highly abundant in the dissolved phase. Parent polycyclic aromatic hydrocarbons were depleted to a higher degree than alkylated polycyclic aromatic hydrocarbons, and the degradation genes for polycyclic aromatic hydrocarbons were found to be ubiquitous in oceanic metagenomes. These observations point to a key role of biodegradation in depleting the bioavailable dissolved hydrocarbons and to the microbial degradation of atmospheric inputs of organic matter as a relevant process for the marine carbon cycle.
  •  
45.
  • Graham, Alastair G.C., et al. (författare)
  • Rapid retreat of Thwaites Glacier in the pre-satellite era
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15, s. 706-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.
  •  
46.
  • Grant, Luke, et al. (författare)
  • Attribution of global lake systems change to anthropogenic forcing
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Nature. - 1752-0894 .- 1752-0908. ; 14:11, s. 849-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide.
  •  
47.
  • Gu, Guansheng, et al. (författare)
  • Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures
  • 2011
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 4, s. 848-851
  • Tidskriftsartikel (refereegranskat)abstract
    • Abrupt periods of global warming between 57 and 50 million years ago—known as the Early Palaeogene hyperthermal events—were associated with the repeated injection of mas- sive amounts of carbon into the atmosphere1–4. The release of methane from the sea floor following the dissociation of gas hydrates is often invoked as a source5. However, seafloor temperatures before the events were at least 4–7 ◦ C higher than today1, which would have limited the area of sea floor suitable for hosting gas hydrates6,7. Palaeogene gas hydrate reservoirs may therefore not have been sufficient to provide a significant fraction of the carbon released. Here we use numer- ical simulations of gas hydrate accumulation8 at Palaeogene seafloor temperatures to show that near-present-day values of gas hydrates could have been hosted in the Palaeogene. Our simulations show that warmer temperatures during the Palaeogene would have enhanced the amount of organic carbon reaching the sea floor as well as the rate of methanogenesis. We find that under plausible temperature and pressure condi- tions, the abundance of gas hydrates would be similar or higher in the Palaeogene than at present. We conclude that methane hydrates could have been an important source of carbon during the Palaeogene hyperthermal events. 
  •  
48.
  •  
49.
  • Guerrieri, Rossella, et al. (författare)
  • Substantial contribution of tree canopy nitrifiers to nitrogen fluxes in European forests
  • 2024
  • Ingår i: Nature Geoscience. - Göteborg : IVL Svenska Miljöinstitutet. - 1752-0894 .- 1752-0908. ; 17:2, s. 130-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities have greatly increased the reactive nitrogen in the biosphere, thus profoundly altering global nitrogen cycling. The large increase in nitrogen deposition over the past few decades has led to eutrophication in natural ecosystems, with negative effects on forest health and biodiversity. Recent studies, however, have reported oligotrophication in forest ecosystems, constraining their capacity as carbon sinks. Here we demonstrate the widespread biological transformation of atmospheric reactive nitrogen in the canopies of European forests by combining nitrogen deposition quantification with measurements of the stable isotopes in nitrate and molecular analyses across ten forests through August–October 2016. We estimate that up to 80% of the nitrate reaching the soil via throughfall was derived from canopy nitrification, equivalent to a flux of up to 5.76 kg N ha−1 yr−1. We also document the presence of autotrophic nitrifiers on foliar surfaces throughout European forests. Canopy nitrification thus consumes deposited ammonium and increases nitrate inputs to the soil. The results of this study highlight widespread canopy nitrification in European forests and its important contribution to forest nitrogen cycling.
  •  
50.
  • Hawkes, Jeffrey A., et al. (författare)
  • Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation
  • 2015
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 8:11, s. 856-
  • Tidskriftsartikel (refereegranskat)abstract
    • Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood(1,2). Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 degrees C. In laboratory experiments, where we heated samples to 380 degrees C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years(3).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 126
Typ av publikation
tidskriftsartikel (117)
forskningsöversikt (8)
annan publikation (1)
Typ av innehåll
refereegranskat (113)
övrigt vetenskapligt/konstnärligt (12)
populärvet., debatt m.m. (1)
Författare/redaktör
Muscheler, Raimund (6)
Laudon, Hjalmar (4)
Tranvik, Lars J. (4)
Krusic, Paul J. (4)
Esper, Jan (4)
Hugelius, Gustaf (3)
visa fler...
Ciais, P. (3)
Wacker, Lukas (3)
Bastviken, David (3)
Tranvik, Lars (3)
Kulmala, Markku (3)
Roland, Fábio (3)
Büntgen, Ulf (3)
Caballero, Rodrigo (3)
Antonelli, Alexandre ... (2)
Dorrepaal, Ellen (2)
Keuper, Frida (2)
Kuhry, Peter (2)
Aldahan, Ala (2)
Possnert, Göran (2)
Barros, Nathan (2)
Kosten, Sarian (2)
Kaufman, Darrell S. (2)
Kothawala, Dolly (2)
Ciais, Philippe (2)
Chen, Deliang, 1961 (2)
Ekman, Annica M. L. (2)
de Boer, Agatha M. (2)
Richter, A. (2)
Wu, J (2)
Adolphi, Florian (2)
Beer, Jurg (2)
Sjolte, Jesper (2)
Björck, Svante (2)
Matthes, Katja (2)
Gustafsson, Örjan (2)
Wang, Ying (2)
Ahlström, Anders (2)
Jackson, Robert B. (2)
Arneth, Almut (2)
Poulter, Benjamin (2)
Zorita, Eduardo (2)
Zhao, Xia (2)
Semiletov, Igor (2)
Donahue, Neil M. (2)
Worsnop, Douglas R. (2)
Sturkell, Erik, 1962 (2)
Jakobsson, Martin (2)
Anderson, John B (2)
Coxall, Helen K. (2)
visa färre...
Lärosäte
Stockholms universitet (47)
Lunds universitet (23)
Uppsala universitet (22)
Göteborgs universitet (15)
Sveriges Lantbruksuniversitet (12)
Umeå universitet (6)
visa fler...
Linköpings universitet (6)
Kungliga Tekniska Högskolan (3)
Linnéuniversitetet (2)
Karolinska Institutet (2)
Naturhistoriska riksmuseet (2)
IVL Svenska Miljöinstitutet (2)
Luleå tekniska universitet (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (125)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (117)
Lantbruksvetenskap (7)
Teknik (3)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy