SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1757 6512 "

Sökning: L773:1757 6512

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Bartaula-Brevik, Sushma, et al. (författare)
  • Leukocyte transmigration into tissue-engineered constructs is influenced by endothelial cells through Toll-like receptor signaling
  • 2014
  • Ingår i: Stem Cell Research & Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 5, s. 143-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Inflammation plays a crucial role in tissue regeneration, wound healing, and the success of tissue-engineered constructs. The aim of this study was to investigate the influence of human umbilical vein endothelial cells (ECs) on leukocyte transmigration when co-cultured with primary human bone marrow-derived multipotent stromal cells (MSCs). Methods: MSCs with and without ECs were cultured in poly (L-lactide-co-1, 5-dioxepan-2-one) (poly (LLA-co-DXO)) scaffolds for 1 week in vitro in a bioreactor system, after which they were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. After 1 and 3 weeks, scaffolds were retrieved, and the mRNA expression of interleukin 1-beta (IL-1 beta), IL-6, IL-10, hypoxia-inducible factor 1-alpha (HIF-1 alpha), HIF-1 beta, and mammalian target of rapamycin was examined by real-time reverse transcription-polymerase chain reaction. Furthermore, immunofluorescent staining was performed for IL-1 beta, IL-6, neutrophils, and CD11b. In addition, Western blotting was done for IL-1 beta and IL-6. Leukocyte transmigration genes and genes in Toll-like receptor pathways, expressed by MSCs cultured in vitro with or without ECs, were further investigated with a microarray dataset. Results: In vitro, genes involved in leukocyte transmigration and Toll-like receptor pathways were clearly influenced by the addition of ECs. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) and cadherin-5 (CDH5), both genes involved in leukocyte transmigration, were expressed significantly higher in the MSC/EC group. In vivo, the MSC/EC group showed higher mRNA expression of hypoxia-inducible factors HIF-1 alpha and HIF-1 beta. The mRNA expression of anti-inflammatory cytokine IL-10 showed no significant difference, whereas the mRNA and protein expression of pro-inflammatory cytokines IL-1 beta and IL-6 were lower in the MSC/EC group. The quantitative analysis of immunofluorescent staining revealed a significant difference in the number of neutrophils migrating into constructs, with the highest density found in the MSC/EC group. The number of macrophages positive for IL-6 and CD11b was significantly reduced in the MSC/EC group. Conclusions: The recruitment of leukocytes into tissue-engineered constructs with MSCs is strongly influenced by the addition of ECs via activation of leukocyte transmigration and Toll-like receptor pathways.
  •  
7.
  •  
8.
  • Burdzinska, Anna, et al. (författare)
  • Intraurethral co-transplantation of bone marrow mesenchymal stem cells and muscle-derived cells improves the urethral closure
  • 2018
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cell therapy constitutes an attractive alternative to treat stress urinary incontinence. Although promising results have been demonstrated in this field, the procedure requires further optimization. The most commonly proposed cell types for intraurethral injections are muscle derived cells (MDCs) and mesenchymal stem/stromal cell (MSCs). The aim of this study was to evaluate the effects of MDC-MSC co-transplantation into the urethra. Methods: Autologous transplantation of labeled MDCs, bone marrow MSCs or co-transplantation of MDC-MSC were performed in aged multiparous female goats (n = 6 in each group). The mean number of cells injected per animal was 29.6 × 106(± 4.3 × 106). PBS-injected animals constituted the control group (n = 5). Each animal underwent urethral pressure profile (UPP) measurements before and after the injection procedure. The maximal urethral closure pressure (MUCP) and functional area (FA) of UPPs were calculated. The urethras were collected at the 28th or the 84th day after transplantation. The marker fluorochrome (DID) was visualized and quantified using in vivo imaging system in whole explants. Myogenic differentiation of the graft was immunohistochemically evaluated. Results: The grafted cells were identified in all urethras collected at day 28 regardless of injected cell type. At this time point the strongest DID-derived signal (normalized to the number of injected cells) was noted in the co-transplanted group. There was a distinct decline in signal intensity between day 28 and day 84 in all types of transplantation. Both MSCs and MDCs contributed to striated muscle formation if transplanted directly to the external urethral sphincter. In the MSC group those events were rare. If cells were injected into the submucosal region they remained undifferentiated usually packed in clearly distinguishable depots. The mean increase in MUCP after transplantation in comparison to the pre-transplantation state in the MDC, MSC and MDC-MSC groups was 12.3% (± 11.2%, not significant (ns)), 8.2% (± 9.6%, ns) and 24.1% (± 3.1%, p = 0.02), respectively. The mean increase in FA after transplantation in the MDC, MSC and MDC-MSC groups amounted to 17.8% (± 15.4%, ns), 15.2% (± 12.9%, ns) and 17.8% (± 2.5%, p = 0.04), respectively. Conclusions: The results suggest that MDC-MSC co-transplantation provides a greater chance of improvement in urethral closure than transplantation of each population alone.
  •  
9.
  •  
10.
  • Casiraghi, F, et al. (författare)
  • Amnion epithelial cells are an effective source of factor H and prevent kidney complement deposition in factor H-deficient mice
  • 2021
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 12:1, s. 332-
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement factor H (FH) is the main plasma regulator of the alternative pathway of complement. Genetic and acquired abnormalities in FH cause uncontrolled complement activation amplifying, with the consequent accumulation of complement components on the renal glomeruli. This leads to conditions such as C3 glomerulopathy (C3G) and atypical hemolytic uremic syndrome (aHUS). There is no effective therapy for these diseases. Half of the patients progress to end-stage renal disease and the condition recurs frequently in transplanted kidneys. Combined liver/kidney transplantation is a valid option for these patients, but the risks of the procedure and donor organ shortages hamper its clinical application. Therefore, there is an urgent need for alternative strategies for providing a normal FH supply. Human amnion epithelial cells (hAEC) have stem cell characteristics, including the capability to differentiate into hepatocyte-like cells in vivo.Here, we administered hAEC into the livers of newborn Cfh−/− mice, which spontaneously developed glomerular complement deposition and renal lesions resembling human C3G. hAEC engrafted at low levels in the livers of Cfh−/− mice and produced sufficient human FH to prevent complement activation and glomerular C3 and C9 deposition. However, long-term engraftment was not achieved, and eventually hAEC elicited a humoral immune response in immunocompetent Cfh−/− mice.hAEC cell therapy could be a valuable therapeutic option for patients undergoing kidney transplantation in whom post-transplant immunosuppression may protect allogeneic hAEC from rejection, while allogeneic cells provide normal FH to prevent disease recurrence.
  •  
11.
  • Ceder, Jens Adam, et al. (författare)
  • Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations
  • 2017
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prostate cancer is the second most frequent cancer among males worldwide, and most patients with metastatic disease eventually develop therapy-resistant disease. Recent research has suggested the existence of cancer stem-like cells, and that such cells are behind the therapy resistance and progression. Methods: Here, we have taken advantage of the relatively quiescent nature of stem cells to identify the slow-cycling label-retaining stem cell (LRC) populations of the prostate gland. Mice were pulsed with bromodeoxyuridine (BrdU) during prostate organogenesis, and the LRC populations were then identified and characterized in 5-day-old and in 6-month-old adult animals using immunohistochemistry and immunofluorescence. Results: Quantification of LRCs in the adult mouse prostate showed that epithelial LRCs were significantly more numerous in prostatic ducts (3.7 ± 0.47% SD) when compared to the proximal (1.4 ± 0.83%) and distal epithelium (0.48 ± 0.08%) of the secretory lobes. LRCs were identified in both the basal and epithelial cell layers of the prostate, and LRCs co-expressed several candidate stem cell markers in a developmental and duct/acini-specific manner, including Sca-1, TROP-2, CD133, CD44, c-kit, and the novel prostate progenitor marker cytokeratin-7. Importantly, a significant proportion of LRCs were localized in the luminal cell layer, the majority in ducts and the proximal prostate, that co-expressed high levels of androgen receptor in the adult prostate. Conclusions: Our results suggest that there are separate basal and luminal stem cell populations in the prostate, and they open up the possibility that androgen receptor-expressing luminal stem-like cells could function as cancer-initiating and relapse-responsible cells in prostate cancer.
  •  
12.
  • Chen, Jialin, et al. (författare)
  • Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model
  • 2017
  • Ingår i: Stem Cell Research & Therapy. - : BIOMED CENTRAL LTD. - 1757-6512. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane.Methods: Human PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte differentiation of PDLSCs. PDLSCs were then seeded on patterned silk membrane and cultured with KDM and SP. Cell alignment was evaluated and the expression of extracellular matrix (ECM) components of corneal stroma was detected. Finally, multi-lamellar tissue was constructed in vitro by PDLSCs seeded on patterned silk membranes, which were stacked orthogonally and stimulated by KDM supplemented with SP for 18 days. Sections were prepared and subsequently stained with hematoxylin and eosin or antibodies for immunofluorescence observation of human corneal stroma-related proteins.Results: SP promoted the expression of corneal stroma-related collagens (collagen types I, III, V, and VI) during the differentiation induced by KDM. Patterned silk membrane guided cell alignment of PDLSCs, and important ECM components of the corneal stroma were shown to be deposited by the cells. The constructed multi-lamellar tissue was found to support cells growing between every two layers and expressing the main type of collagens (collagen types I and V) and proteoglycans (lumican and keratocan) of normal human corneal stroma.Conclusions: Multi-lamellar human corneal stroma-like tissue can be constructed successfully in vitro by PDLSCs seeded on orthogonally aligned, multi-layered silk membranes with SP supplementation, which shows potential for future corneal tissue engineering.
  •  
13.
  • Ching, Rosanna C., et al. (författare)
  • Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer
  • 2018
  • Ingår i: Stem Cell Research & Therapy. - : BioMed Central. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adipose derived stem cells can be stimulated to produce a growth factor rich secretome which enhances axon regeneration. In this study we investigated the importance of exosomes, extracellular vesicles released by many different cell types, including stem cells and endogenous nervous system Schwann cells (SCs), on neurite outgrowth.Methods: Adipose derived stem cells were differentiated towards a Schwann cell-like phenotype (dADSCs) by in vitro stimulation with a mix of factors (basic fibroblast growth factor, platelet derived growth factor-AA, neuregulin-1 and forskolin). Using a precipitation and low-speed centrifugation protocol the extracellular vesicles were isolated from the medium of the stem cells cultures and also from primary SCs. The conditioned media or concentrated vesicles were applied to neurons in vitro and computerised image analysis was used to assess neurite outgrowth. Total RNA was purified from the extracellular vesicles and investigated using qRT-PCR.Results: Application of exosomes derived from SCs significantly enhanced in vitro neurite outgrowth and this was replicated by the exosomes from dADSCs. qRT-PCR demonstrated that the exosomes contained mRNAs and miRNAs known to play a role in nerve regeneration and these molecules were up-regulated by the Schwann cell differentiation protocol. Transfer of fluorescently tagged exosomal RNA to neurons was detected and destruction of the RNA by UV-irradiation significantly reduced the dADSCs exosome effects on neurite outgrowth. In contrast, this process had no significant effect on the SCs-derived exosomes.Conclusions: In summary, this work suggests that stem cell-derived exosomes might be a useful adjunct to other novel therapeutic interventions in nerve repair.
  •  
14.
  • Davegårdh, Cajsa, et al. (författare)
  • Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes
  • 2019
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes. Method: We used an array-based approach to analyse genome-wide DNA methylation and gene expression in myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay. Results: Genome-wide DNA methylation and gene expression differences between the sexes were detected in both myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1 in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes. Interestingly, differences in DNA methylation and expression between women and men were also found during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly, more DNA methylation changes occur in women compared to men on autosomes. Conclusion: All together, we show that epigenetic and transcriptional differences exist in human myoblasts and myotubes as well as during differentiation between women and men. We believe that these intrinsic differences might contribute to sex dependent differences in muscular phenotypes.
  •  
15.
  • De La Rosa-Prieto, Carlos, et al. (författare)
  • Stroke alters behavior of human skin-derived neural progenitors after transplantation adjacent to neurogenic area in rat brain
  • 2017
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Intracerebral transplantation of human induced pluripotent stem cells (iPSCs) can ameliorate behavioral deficits in animal models of stroke. How the ischemic lesion affects the survival of the transplanted cells, their proliferation, migration, differentiation, and function is only partly understood. Methods: Here we have assessed the influence of the stroke-induced injury on grafts of human skin iPSCs-derived long-term neuroepithelial-like stem cells using transplantation into the rostral migratory stream (RMS), adjacent to the neurogenic subventricular zone, in adult rats as a model system. Results: We show that the occurrence of an ischemic lesion, induced by middle cerebral artery occlusion, in the striatum close to the transplant does not alter the survival, proliferation, or generation of neuroblasts or mature neurons or astrocytes from the grafted progenitors. In contrast, the migration and axonal projection patterns of the transplanted cells are markedly influenced. In the intact brain, the grafted cells send many fibers to the main olfactory bulb through the RMS and a few of them migrate in the same direction, reaching the first one third of this pathway. In the stroke-injured brain, on the other hand, the grafted cells only migrate toward the ischemic lesion and virtually no axonal outgrowth is observed in the RMS. Conclusions: Our findings indicate that signals released from the stroke-injured area regulate the migration of and fiber outgrowth from grafted human skin-derived neural progenitors and overcome the influence on these cellular properties exerted by the neurogenic area/RMS in the intact brain.
  •  
16.
  • El-Habta, Roine, et al. (författare)
  • Anti-apoptotic effect of adipose tissue-derived stromal vascular fraction in denervated rat muscle
  • 2021
  • Ingår i: Stem Cell Research & Therapy. - : BioMed Central (BMC). - 1757-6512. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recovery of muscle function after peripheral nerve injury is often poor, and this can be attributed to muscle fiber atrophy and cell death. In the current study, we have investigated the effects of stromal vascular fraction (SVF) on muscle cell apoptosis and its potential to preserve muscle tissue following denervation.Methods: Rat gastrocnemius muscle was denervated by sciatic nerve transection. At 2 and 4 weeks after injury, muscles were examined histologically and apoptosis was measured using TUNEL assay and PCR array for a range of apoptotic genes. Additionally, an in vitro TNF-α apoptosis model was established using SVF cells co-cultured indirectly with primary rat myoblasts. Annexin V and TUNEL were used together with Western blotting to investigate the signaling pathways.Results: Denervated muscles showed significantly higher TUNEL reactivity at 2 and 4 weeks following nerve injury, and an increased expression of caspase family genes, mitochondria-related apoptotic genes, and tumor necrosis factor family genes. In cultured rat primary myoblasts, Annexin V labeling was significantly increased at 12 h after TNF-α treatment, and this was followed by a significant increase in TUNEL reactivity at 48 h. Western blotting showed that caspase-7 was activated/cleaved as well as the downstream substrate, poly (ADP-ribose) polymerase (PARP). Co-culture of myoblasts with SVF significantly reduced all these measures of apoptosis. Bax and Bcl-2 levels were not changed suggesting that the TNF-α-induced apoptosis occurred via mitochondria-independent pathways. The protective effect of SVF was also shown in vivo; injections of SVF cells into denervated muscle significantly improved the mean fiber area and diameter, as well as reduced the levels of TUNEL reactivity.Conclusions: This study provides new insights into how adipose tissue-derived cells might provide therapeutic benefits by preserving muscle tissue.
  •  
17.
  • El-Habta, Roine, et al. (författare)
  • The adipose tissue stromal vascular fraction secretome enhances the proliferation but inhibits the differentiation of myoblasts
  • 2018
  • Ingår i: Stem Cell Research & Therapy. - : BioMed Central. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adipose tissue is an excellent source for isolation of stem cells for treating various clinical conditions including injuries to the neuromuscular system. Many previous studies have focused on differentiating these adipose stem cells (ASCs) towards a Schwann cell-like phenotype (dASCs), which can enhance axon regeneration and reduce muscle atrophy. However, the stromal vascular fraction (SVF), from which the ASCs are derived, also exerts broad regenerative potential and might provide a faster route to clinical translation of the cell therapies for treatment of neuromuscular disorders.Methods: The aim of this study was to establish the effects of SVF cells on the proliferation and differentiation of myoblasts using indirect co-culture experiments. A Growth Factor PCR Array was used to compare the secretomes of SVF and dASCs, and the downstream signaling pathways were investigated.Results: SVF cells, unlike culture-expanded dASCs, expressed and secreted hepatocyte growth factor (HGF) at concentrations sufficient to enhance the proliferation of myoblasts. Pharmacological inhibitor studies revealed that the signal is mediated via ERK1/2 phosphorylation and that the effect is significantly reduced by the addition of 100 pM Norleual, a specific HGF inhibitor. When myoblasts were differentiated into multinucleated myotubes, the SVF cells reduced the expression levels of fast-type myosin heavy chain (MyHC2) suggesting an inhibition of the differentiation process.Conclusions: In summary, this study shows the importance of HGF as a mediator of the SVF effects on myoblasts and provides further evidence for the importance of the secretome in cell therapy and regenerative medicine applications.
  •  
18.
  • Gavin, C, et al. (författare)
  • Tissue immune profiles supporting response to mesenchymal stromal cell therapy in acute graft-versus-host disease-a gut feeling
  • 2019
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1, s. 334-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Acute graft-versus-host disease (aGvHD), post-allogeneic hematopoietic stem cell transplantation, is associated with high mortality rates in patients not responding to standard line care with steroids. Adoptive mesenchymal stromal cell (MSC) therapy has been established in some countries as a second-line treatment.Limitations in our understanding as to MSC mode of action and what segregates patient responders from non-responders to MSC therapy remain. The principal aim of this study was to evaluate the immune cell profile in gut biopsies of patients diagnosed with aGvHD and establish differences in baseline cellular composition between responders and non-responders to subsequent MSC therapy.Our findings indicate that a pro-inflammatory immune profile within the gut at the point of MSC treatment may impede their therapeutic potential. These findings support the need for further validation in a larger cohort of patients and the development of improved biomarkers in predicting responsiveness to MSC therapy.
  •  
19.
  •  
20.
  • Gjerde, Cecilie, et al. (författare)
  • Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial
  • 2018
  • Ingår i: Stem Cell Research & Therapy. - : BMC. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Autologous grafting, despite some disadvantages, is still considered the gold standard for reconstruction of maxillofacial bone defects. The aim of this study was to evaluate bone regeneration using bone marrow-derived mesenchymal stromal cells (MSCs) in a clinical trial, a less invasive approach than autologous bone grafting. This comprehensive clinical trial included subjects with severe mandibular ridge resorption. Methods: The study included 11 subjects aged 52-79 years with severe mandibular ridge resorption. Bone marrow cells were aspirated from the posterior iliac crest and plastic adherent cells were expanded in culture medium containing human platelet lysate. The MSCs and biphasic calcium phosphate granules as scaffolds were inserted subperiosteally onto the resorbed alveolar ridge. After 4-6 months of healing, new bone formation was assessed clinically and radiographically, as were safety and feasibility. Bone at the implant site was biopsied for micro computed topography and histological analyses and dental implants were placed in the newly regenerated bone. Functional outcomes and patient satisfaction were assessed after 12 months. Results: The bone marrow cells, expanded in vitro and inserted into the defect together with biphasic calcium phosphate granules, induced significant new bone formation. The regenerated bone volume was adequate for dental implant installation. Healing was uneventful, without adverse events. The patients were satisfied with the esthetic and functional outcomes. No side effects were observed. Conclusions: The results of this comprehensive clinical trial in human subjects confirm that MSCs can successfully induce significant formation of new bone, with no untoward sequelae. Hence, this novel augmentation procedure warrants further investigation and may form the basis of a valid treatment protocol, challenging the current gold standard.
  •  
21.
  • Grinnemo, Karl-Henrik, et al. (författare)
  • Immunomodulatory effects of interferon-gamma on human fetal cardiac mesenchymal stromal cells
  • 2019
  • Ingår i: Stem Cell Research & Therapy. - : BMC. - 1757-6512. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mesenchymal stromal cells (MSCs), due to their regenerative and immunomodulatory properties, are therapeutically used for diseases, including heart failure. As early gestational-phase embryonic tissues exhibit extraordinary regenerative potential, fetal MSCs exposed to inflammation offer a unique opportunity to evaluate molecular mechanisms underlying preferential healing, and investigate their inherent abilities to communicate with the immune system during development. The principal aim of this study was to evaluate the effects of interferon-gamma (IFN gamma) on the immunomodulatory effects of first-trimester human fetal cardiac (hfc)-MSCs.Methods: hfcMSCs (gestational week 8) were exposed to IFN gamma, with subsequent analysis of the whole transcriptome, based on RNA sequencing. Exploration of surface-expressed immunoregulatory mediators and modulation of T cell responses were performed by flow cytometry. Presence and activity of soluble mediators were assessed by ELISA or high-performance liquid chromatography.Results: Stimulation of hfcMSCs with IFN gamma revealed significant transcriptional changes, particularly in respect to the expression of genes belonging to antigen presentation pathways, cell cycle control, and interferon signaling. Expression of immunomodulatory genes and associated functional changes, including indoleamine 2,3-dioxygenase activity, and regulation of T cell activation and proliferation via programmed cell death protein (PD)-1 and its ligands PD-L1 and PD-L2, were significantly upregulated. These immunoregulatory molecules diminished rapidly upon withdrawal of inflammatory stimulus, indicating a high degree of plasticity by hfcMSCs.Conclusions: To our knowledge, this is the first study performing a systematic evaluation of inflammatory responses and immunoregulatory properties of first-trimester cardiac tissue. In summary, our study demonstrates the dynamic responsiveness of hfcMSCs to inflammatory stimuli. Further understanding as to the immunoregulatory properties of hfcMSCs may be of benefit in the development of novel stromal cell therapeutics for cardiovascular disease.
  •  
22.
  •  
23.
  •  
24.
  • Hingert, Daphne, et al. (författare)
  • Extracellular vesicles from human mesenchymal stem cells expedite chondrogenesis in 3D human degenerative disc cell cultures
  • 2020
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundExtracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and have been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences, there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSC-derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model.MethodshMSCs were isolated from bone marrow aspirate, and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the sEVs at 5x10(10) vesicles/ml concentration for 28days and compared to control. The pellets were harvested at days 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis, and cytokine secretions.ResultsThe findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEV-treated DC pellets compared to control cultures. Further, sEV treatment suppressed secretion of MMP-1 in the DCs.ConclusionhMSC-derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.
  •  
25.
  •  
26.
  •  
27.
  • Lin, CH, et al. (författare)
  • Human ex vivo spinal cord slice culture as a useful model of neural development, lesion, and allogeneic neural cell therapy
  • 2020
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 11:1, s. 320-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThere are multiple promising treatment strategies for central nervous system trauma and disease. However, to develop clinically potent and safe treatments, models of human-specific conditions are needed to complement in vitro and in vivo animal model-based studies.MethodsWe established human brain stem and spinal cord (cross- and longitudinal sections) organotypic cultures (hOCs) from first trimester tissues after informed consent by donor and ethical approval by the Regional Human Ethics Committee, Stockholm (lately referred to as Swedish Ethical Review Authority), and The National Board of Health and Welfare, Sweden. We evaluated the stability of hOCs with a semi-quantitative hOC score, immunohistochemistry, flow cytometry, Ca2+signaling, and electrophysiological analysis. We also applied experimental allogeneic human neural cell therapy after injury in the ex vivo spinal cord slices.ResultsThe spinal cord hOCs presented relatively stable features during 7–21 days in vitro (DIV) (except a slightly increased cell proliferation and activated glial response). After contusion injury performed at 7 DIV, a significant reduction of the hOC score, increase of the activated caspase-3+cell population, and activated microglial populations at 14 days postinjury compared to sham controls were observed. Such elevation in the activated caspase-3+population and activated microglial population was not observed after allogeneic human neural cell therapy.ConclusionsWe conclude that human spinal cord slice cultures have potential for future structural and functional studies of human spinal cord development, injury, and treatment strategies.
  •  
28.
  •  
29.
  • Liu, Yang, et al. (författare)
  • MiR-378a suppresses tenogenic differentiation and tendon repair by targeting at TGF-β2
  • 2019
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tendons are a crucial component of the musculoskeletal system and responsible for transmission forces derived from muscle to bone. Patients with tendon injuries are often observed with decreased collagen production and matrix degeneration, and healing of tendon injuries remains a challenge as a result of limited understanding of tendon biology. Recent studies highlight the contribution of miR-378a on the regulation gene expression during tendon differentiation. Methods: We examined the tendon microstructure and tendon repair with using miR-378a knock-in transgenic mice, and the tendon-derived stem cells were also isolated from transgenic mice to study their tenogenic differentiation ability. Meanwhile, the expression levels of tenogenic markers were also examined in mouse tendon-derived stem cells transfected with miR-378a mimics during tenogenic differentiation. With using online prediction software and luciferase reporter assay, the binding target of miR-378a was also studied. Results: Our results indicated miR-378a impairs tenogenic differentiation and tendon repair by inhibition collagen and extracellular matrix production both in vitro and in vivo. We also demonstrated that miR-378a exert its inhibitory role during tenogenic differentiation through binding at TGFβ2 by luciferase reporter assay and western blot. Conclusions: Our investigation suggests that miR-378a could be considered as a new potential biomarker for tendon injury diagnosis or drug target for a possible therapeutic approach in future clinical practice.
  •  
30.
  •  
31.
  • Miskinyte, Giedre, et al. (författare)
  • Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks
  • 2017
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Human fibroblasts can be directly converted to several subtypes of neurons, but cortical projection neurons have not been generated. Methods: Here we screened for transcription factor combinations that could potentially convert human fibroblasts to functional excitatory cortical neurons. The induced cortical (iCtx) cells were analyzed for cortical neuronal identity using immunocytochemistry, single-cell quantitative polymerase chain reaction (qPCR), electrophysiology, and their ability to integrate into human neural networks in vitro and ex vivo using electrophysiology and rabies virus tracing. Results: We show that a combination of three transcription factors, BRN2, MYT1L, and FEZF2, have the ability to directly convert human fibroblasts to functional excitatory cortical neurons. The conversion efficiency was increased to about 16% by treatment with small molecules and microRNAs. The iCtx cells exhibited electrophysiological properties of functional neurons, had pyramidal-like cell morphology, and expressed key cortical projection neuronal markers. Single-cell analysis of iCtx cells revealed a complex gene expression profile, a subpopulation of them displaying a molecular signature closely resembling that of human fetal primary cortical neurons. The iCtx cells received synaptic inputs from co-cultured human fetal primary cortical neurons, contained spines, and expressed the postsynaptic excitatory scaffold protein PSD95. When transplanted ex vivo to organotypic cultures of adult human cerebral cortex, the iCtx cells exhibited morphological and electrophysiological properties of mature neurons, integrated structurally into the cortical tissue, and received synaptic inputs from adult human neurons. Conclusions: Our findings indicate that functional excitatory cortical neurons, generated here for the first time by direct conversion of human somatic cells, have the capacity for synaptic integration into adult human cortex.
  •  
32.
  • Moraghebi, Roksana, et al. (författare)
  • Term amniotic fluid : An unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications
  • 2017
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. Methods: Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. Results: The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. Conclusions: The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.
  •  
33.
  • Olm, Franziska, et al. (författare)
  • Label-free separation of neuroblastoma patient-derived xenograft (PDX) cells from hematopoietic progenitor cell products by acoustophoresis
  • 2021
  • Ingår i: Stem Cell Research & Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundGraft-contaminating tumor cells correlate with inferior outcome in high-risk neuroblastoma patients undergoing hematopoietic stem cell transplantation and can contribute to relapse. Motivated by the potential therapeutic benefit of tumor cell removal as well as the high prognostic and diagnostic value of isolated circulating tumor cells from stem cell grafts, we established a label-free acoustophoresis-based microfluidic technology for neuroblastoma enrichment and removal from peripheral blood progenitor cell (PBPC) products.MethodsNeuroblastoma patient-derived xenograft (PDX) cells were spiked into PBPC apheresis samples as a clinically relevant model system. Cells were separated by ultrasound in an acoustophoresis microchip and analyzed for recovery, purity and function using flow cytometry, quantitative real-time PCR and cell culture.ResultsPDX cells and PBPCs showed distinct size distributions, which is an important parameter for efficient acoustic separation. Acoustic cell separation did not affect neuroblastoma cell growth. Acoustophoresis allowed to effectively separate PDX cells from spiked PBPC products. When PBPCs were spiked with 10% neuroblastoma cells, recoveries of up to 98% were achieved for PDX cells while more than 90% of CD34+ stem and progenitor cells were retained in the graft. At clinically relevant tumor cell contamination rates (0.1 and 0.01% PDX cells in PBPCs), neuroblastoma cells were depleted by more than 2-log as indicated by RT-PCR analysis of PHOX2B, TH and DDC genes, while > 85% of CD34+ cells could be retained in the graft.ConclusionThese results demonstrate the potential use of label-free acoustophoresis for PBPC processing and its potential to develop label-free, non-contact tumor cell enrichment and purging procedures for future clinical use.
  •  
34.
  • Park, Kyong-Su, et al. (författare)
  • Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
  • 2019
  • Ingår i: Stem Cell Research & Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
  •  
35.
  • Park, Kyong-Su, et al. (författare)
  • Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10.
  • 2019
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved.NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2×109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging.Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6h.Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients.
  •  
36.
  • Pedersen, Torbjorn O., et al. (författare)
  • Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs
  • 2013
  • Ingår i: STEM CELL RES THER. - : Springer Science and Business Media LLC. - 1757-6512. ; 4, s. 52-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: A major determinant of the potential size of cell/scaffold constructs in tissue engineering is vascularization. The aims of this study were twofold: first to determine the in vitro angiogenic and osteogenic geneexpression profiles of endothelial cells (ECs) and mesenchymal stem cells (MSCs) cocultured in a dynamic 3D environment; and second, to assess differentiation and the potential for osteogenesis after in vivo implantation. Methods: MSCs and ECs were grown in dynamic culture in poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) copolymer scaffolds for 1 week, to generate three-dimensional endothelial microvascular networks. The constructs were then implanted in vivo, in a murine model for ectopic bone formation. Expression of selected genes for angiogenesis and osteogenesis was studied after a 1-week culture in vitro. Human cell proliferation was assessed as expression of ki67, whereas a-smooth muscle actin was used to determine the perivascular differentiation of MSCs. Osteogenesis was evaluated in vivo through detection of selected markers, by using real-time RT-PCR, alkaline phosphatase (ALP), Alizarin Red, hematoxylin/eosin (HE), and Masson trichrome staining. Results: The results show that endothelial microvascular networks could be generated in a poly(LLA-co-DXO) scaffold in vitro and sustained after in vivo implantation. The addition of ECs to MSCs influenced both angiogenic and osteogenic gene-expression profiles. Furthermore, human ki67 was upregulated before and after implantation. MSCs could support functional blood vessels as perivascular cells independent of implanted ECs. In addition, the expression of ALP was upregulated in the presence of endothelial microvascular networks. Conclusions: This study demonstrates that copolymer poly(LLA-co-DXO) scaffolds can be prevascularized with ECs and MSCs. Although a local osteoinductive environment is required to achieve ectopic bone formation, seeding of MSCs with or without ECs increases the osteogenic potential of tissue-engineered constructs.
  •  
37.
  • Pedersen, Torbjorn O., et al. (författare)
  • Mesenchymal stem cells induce endothelial cell quiescence and promote capillary formation
  • 2014
  • Ingår i: Stem Cell Research & Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 5, s. 23-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Rapid establishment of functional blood vessels is a prerequisite for successful tissue engineering. During vascular development, endothelial cells (ECs) and perivascular cells assemble into a complex regulating proliferation of ECs, vessel diameter and production of extracellular matrix proteins. The aim of this study was to evaluate the ability of mesenchymal stem cells (MSCs) to establish an endothelial-perivascular complex in tissue-engineered constructs comprising ECs and MSCs. Methods: Primary human ECs and MSCs were seeded onto poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) scaffolds and grown in dynamic culture before subcutaneous implantation in immunocompromised mice for 1 and 3 weeks. Cellular activity, angiogenic stimulation and vascular assembly in cell/scaffold constructs seeded with ECs or ECs/MSCs in a 5:1 ratio was monitored with real-time RT-PCR, ELISA and immunohistochemical microscopy analysis. Results: A quiescent phenotype of ECs was generated, by adding MSCs to the culture system. Decreased proliferation of ECs, in addition to up-regulation of selected markers for vascular maturation was demonstrated. Baseline expression of VEGFa was higher for MSCs compared with EC (P < 0.001), with subsequent up-regulated VEGFa-expression for EC/MSC constructs before (P < 0.05) and after implantation (P < 0.01). Furthermore, an inflammatory response with CD11b + cells was generated from implantation of human cells. At the end of the 3 week experimental period, a higher vascular density was shown for both cellular constructs compared with empty control scaffolds (P < 0.01), with the highest density of capillaries being generated in constructs comprising both ECs and MSCs. Conclusions: Induction of a quiescent phenotype of ECs associated with vascular maturation can be achieved by co-seeding with MSCs. Hence, MSCs can be appropriate perivascular cells for tissue-engineered constructs.
  •  
38.
  • Rifes, Pedro, et al. (författare)
  • Identifying secreted biomarkers of dopaminergic ventral midbrain progenitor cells
  • 2023
  • Ingår i: Stem Cell Research & Therapy. - 1757-6512. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundVentral midbrain (VM) dopaminergic progenitor cells derived from human pluripotent stem cells have the potential to replace endogenously lost dopamine neurons and are currently in preclinical and clinical development for treatment of Parkinson’s Disease (PD). However, one main challenge in the quality control of the cells is that rostral and caudal VM progenitors are extremely similar transcriptionally though only the caudal VM cells give rise to dopaminergic (DA) neurons with functionality relevant for cell replacement in PD. Therefore, it is critical to develop assays which can rapidly and reliably discriminate rostral from caudal VM cells during clinical manufacturing.MethodsWe performed shotgun proteomics on cell culture supernatants from rostral and caudal VM progenitor cells to search for novel secreted biomarkers specific to DA progenitors from the caudal VM. Key hits were validated by qRT-PCR and ELISA.ResultsWe identified and validated novel secreted markers enriched in caudal VM progenitor cultures (CPE, LGI1 and PDGFC), and found these markers to correlate strongly with the expression of EN1, which is a predictive marker for successful graft outcome in DA cell transplantation products. Other markers (CNTN2 and CORIN) were found to conversely be enriched in the non-dopaminergic rostral VM cultures. Key novel ELISA markers were further validated on supernatant samples from GMP-manufactured caudal VM batches.ConclusionAs a non-invasive in-process quality control test for predicting correctly patterned batches of caudal VM DA cells during clinical manufacturing, we propose a dual ELISA panel measuring LGI1/CORIN ratios around day 16 of differentiation.
  •  
39.
  • Rossi, Fiorella, et al. (författare)
  • Differences and similarities between cancer and somatic stem cells : therapeutic implications
  • 2020
  • Ingår i: Stem Cell Research & Therapy. - : BMC. - 1757-6512. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-beta. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
  •  
40.
  • Schellino, Roberta, et al. (författare)
  • hESC-derived striatal progenitors grafted into a Huntington’s disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum
  • 2023
  • Ingår i: Stem Cell Research and Therapy. - 1757-6512. ; 14, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Huntington’s disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. Methods: With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. Results: Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. Conclusions: The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.
  •  
41.
  • Sharma, Sunita, et al. (författare)
  • Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model
  • 2018
  • Ingår i: Stem Cell Research &amp; Therapy. - : BioMed Central. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In bone tissue engineering (BTE), extensive research into vascular endothelial growth factor A (VEGFA)-mediated angiogenesis has yielded inconsistent results. The aim of this study was to investigate the influence on angio-and osteogenesis of adenoviral-mediated delivery of VEGFA alone or in combination with bone morphogenetic protein 2 (BMP2) in bone marrow stromal cells (BMSC) seeded onto a recently developed poly(LLA-co-CL) scaffold. Methods: Human BMSC were engineered to express VEGFA alone or in combination with BMP2 and seeded onto poly(LLA-co-CL) scaffolds. Changes in angiogenic and osteogenic gene and protein levels were examined by quantitative reverse-transcription polymerase chain reaction (RT-PCR), PCR array, and alkaline phosphatase assay. An in vivo subcutaneous mouse model was used to investigate the effect on angio-and osteogenesis of VEGFA alone or in combination with BMP2, using microcomputed tomography (mu CT), histology, immunohistochemistry, and immunofluorescence. Results: Combined delivery of a lower ratio (1: 3) of VEGFA and BMP2 (ad-BMP2 + VEGFA) led to upregulation of osteogenic and angiogenic genes in vitro at 3 and 14 days, compared with mono-delivery of VEGFA (ad-VEGFA) and other controls. In vivo, in a subcutaneous mouse model, both ad-VEGFA and ad-BMP2 + VEGFA scaffold explants exhibited increased angiogenesis at 2 weeks. Enhanced angiogenesis was largely related to the recruitment and differentiation of mouse progenitor cells to the endothelial lineage and, to a lesser extent, to endothelial differentiation of the implanted BMSC. mu CT and histological analyses revealed enhanced de novo bone formation only in the ad-BMP2 + VEGFA group, corresponding at the molecular level to the upregulation of genes related to osteogenesis, such as ALPL, RUNX2, and SPP1. Conclusions: Although BMSC expressing VEGFA alone or in combination with BMP2 significantly induced angiogenesis, VEGFA alone failed to demonstrate osteogenic activity both in vitro and in vivo. These results not only call into question the use of VEGFA alone in bone regeneration, but also highlight the importance in BTE of appropriately formulated combined delivery of VEGFA and BMP2.
  •  
42.
  •  
43.
  •  
44.
  • Xian, Xiaojie, et al. (författare)
  • Generation of gene-corrected functional osteoclasts from osteopetrotic induced pluripotent stem cells
  • 2020
  • Ingår i: Stem Cell Research & Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Infantile malignant osteopetrosis (IMO) is an autosomal recessive disorder characterized by non-functional osteoclasts and a fatal outcome early in childhood. About 50% of patients have mutations in the TCIRG1 gene. Methods IMO iPSCs were generated from a patient carrying a homozygous c.11279G>A (IVS18+1) mutation in TCIRG1 and transduced with a lentiviral vector expressing human TCIRG1. Embryoid bodies were generated and differentiated into monocytes. Non-adherent cells were harvested and further differentiated into osteoclasts on bovine bone slices. Results Release of the bone resorption biomarker CTX-I into the media of gene-corrected osteoclasts was 5-fold higher than that of the uncorrected osteoclasts and 35% of that of control osteoclasts. Bone resorption potential was confirmed by the presence of pits on the bones cultured with gene-corrected osteoclasts, absent in the uncorrected IMO osteoclasts. Conclusions The disease phenotype was partially corrected in vitro, providing a valuable resource for therapy development for this form of severe osteopetrosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy