SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1758 2555 "

Sökning: L773:1758 2555

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Fu, SC, et al. (författare)
  • Deciphering the pathogenesis of tendinopathy: a three-stages process
  • 2010
  • Ingår i: Sports medicine, arthroscopy, rehabilitation, therapy & technology : SMARTT. - : Springer Science and Business Media LLC. - 1758-2555. ; 2, s. 30-
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments.
  •  
5.
  • Sperlich, Billy, et al. (författare)
  • Is leg compression beneficial for alpine skiers?
  • 2013
  • Ingår i: BMC Sports Science, Medicine and Rehabilitation. - : Springer Science and Business Media LLC. - 2052-1847. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:This study examined the effects of different levels of compression (0, 20 and 40 mmHg) produced byleg garments on selected psycho-physiological measures of performance while exposed to passive vibration (60 Hz,amplitude 4-6 mm) and performing 3-min of alpine skiing tuck position.Methods:Prior to, during and following the experiment the electromygraphic (EMG) activity of different muscles,cardio-respiratory data, changes in total hemoglobin, tissue oxygenation and oscillatory movement ofm. vastuslateralis, blood lactate and perceptual data of 12 highly trained alpine skiers were recorded. Maximal isometric kneeextension and flexion strength, balance, and jumping performance were assessed before and after the experiment.Results:Thekneeangle(−10°) and oscillatory movement (−20-25.5%) were lower with compression (P<0.05inall cases). The EMG activities of thetibialis anterior(20.2-28.9%),gastrocnemius medialis(4.9-15.1%),rectus femoris(9.6-23.5%), andvastus medialis(13.1-13.7%) muscles were all elevated by compression (P< 0.05 in all cases).Total hemoglobin was maintained during the 3-min period of simulated skiing with 20 or 40 mmHg compression,but the tissue saturation index was lower (P< 0.05) than with no compression. No differences in respiratory parameters,heart rate or blood lactate concentration were observed with or maximal isometric knee extension and flexionstrength, balance, and jumping performance following simulated skiing for 3 min in the downhill tuck positionwere the same as in the absence of compression.Conclusions:These findings demonstrate thatwith leg compression, alpine skiers could maintain a deeper tuckposition with less perceived exertion and greater deoxygenation of thevastus lateralismuscle, with nodifferences in whole-body oxygen consumption or blood lactate concentration. These changes occurred withoutcompromising maximal leg strength, jumping performance or balance. Accordingly, our results indicate that theuse of lower leg compression in the range of 20-40 mmHg may improve alpine skiing performance by allowing adeeper tuck position and lowering perceived exertion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy