SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1873 3913 OR L773:0898 6568 "

Sökning: L773:1873 3913 OR L773:0898 6568

  • Resultat 1-50 av 111
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Göransson, Olga, et al. (författare)
  • Ser-474 is the major target of insulin-mediated phosphorylation of protein kinase B beta in primary rat adipocytes.
  • 2002
  • Ingår i: Cellular Signalling. - 1873-3913. ; 14:2, s. 175-82
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of activation for protein kinase B (PKB), an important target for insulin signaling, has been scarcely investigated in primary cells. In this study, we have characterized the insulin-induced phosphorylation and activation of PKB beta in primary rat adipocytes. Insulin stimulation resulted in a translocation of PKB beta from cytosol to membranes, and phosphorylation and activation of PKB beta. Phosphoamino acid analysis and phosphopeptide mapping demonstrated that the phosphorylation occurred mainly on serines, also when using calyculin A, and that these were localized within one major phosphopeptide. Radiosequencing showed that the radioactivity was released in Cycle No. 7. In addition, the peptide was specifically immunoprecipitated from a tryptic digest of PKB beta using the anti-phospho-PKB (Ser-473) antibody. Taken together, these results show that rat adipocyte PKB beta mainly is phosphorylated on Ser-474 in response to insulin stimulation, in contrast to previous studies in human embryonic kidney (HEK) 293 cells demonstrating, in addition, phosphorylation of Thr-309.
  •  
2.
  • Simonsson, Per, et al. (författare)
  • Bradykinin effects on phospholipid metabolism and its relation to arachidonic acid turnover in neuroblastoma x glioma hybrid cells (NG 108-15)
  • 1989
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 1:6, s. 587-598
  • Tidskriftsartikel (refereegranskat)abstract
    • In neuroblastoma x glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP2 was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10-30 s of stimulation with 10(-6) M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not follow the time-course for PIP2 hydrolysis. A reduced labelling of [32P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.
  •  
3.
  • Aifa, Sami, et al. (författare)
  • Interactions between the juxtamembrane domain of the EGFR and calmodulin measured by surface plasmon resonance
  • 2002
  • Ingår i: Cellular Signalling. - 0898-6568 .- 1873-3913. ; 14:12, s. 1005-1013
  • Tidskriftsartikel (refereegranskat)abstract
    • One early response to epidermal growth factor receptor (EGFR) activation is an increase in intracellular calcium. We have used surface plasmon resonance (SPR) to study real-time interactions between the intracellular juxtamembrane (JM) region of EGFR and calmodulin. The EGFR-JM (Met644-Phe688) was expressed as a GST fusion protein and immobilised on a sensor chip surface. Calmodulin specifically interacts with EGFR-JM in a calcium-dependent manner with a high on and high off rate. Chemical modification of EGFR-JM by using arginine-selective phenylglyoxal or deletion of the basic segment Arg645-Arg657 inhibits the interaction. Phosphorylation of EGFR-JM by protein kinase C (PKC) or glutamate substitution of Thr654 inhibits the interaction, suggesting that PKC phosphorylation electrostatically interferes with calmodulin binding to basic arginine residues. Calmodulin binding was also inhibited by suramin. Our results suggest that EGFR-JM is essential for epidermal growth factor (EGF)-mediated calcium-calmodulin signalling and for signal integration between other signalling pathways.
  •  
4.
  • Andersson, Tony, 1973-, et al. (författare)
  • Phosphoinositide 3-kinase is involved in Xenopus and Labrus melanophore aggregation
  • 2003
  • Ingår i: Cellular Signalling. - 0898-6568 .- 1873-3913. ; 15:12, s. 1119-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanophores are pigmented cells capable of quick colour changes through coordinated transport of their intracellular pigment granules. We demonstrate the involvement of phosphoinositide 3-kinase (PI3-K) in Xenopus and Labrus aggregation by the use of the PI3-K inhibitor, LY-294002. In Xenopus, wortmannin-insensitive PI3-K was found to be essential for the aggregation, mitogen-activated protein kinase (MAPK) activation and tyrosine phosphorylation of a 280-kDa protein, and for the maintenance of low cyclic adenosine 3':5'-monophosphate (cAMP) during the aggregated state. Pre-aggregated cells disperse completely to LY-294002 at 50-100 muM, involving a transient elevation in cAMP due to adenylate cyclase (AC) stimulation or to inhibition of cyclic nucleotide phosphodiesterase (PDE). The inactive analogue LY-303511 did not induce dispersion at the same concentrations. PDE4 and/or PDE2 was found to be involved in melanosome aggregation. The similar kinetics of LY-294002 and various PDE inhibitors indicates that the elevation of cAMP might be due to inhibition of PDE. In Labrus melanophores, LY-294002 had a less dramatic effect, probably due to less dependence on PDE in regulation of cAMP levels. In Xenopus aggregation, we suggest that melatonin stimulation of the Mel1c receptor via G(betagamma) activates PI3-K that, directly or indirectly via MAPK, activates PDE. (C) 2003 Elsevier Inc. All rights reserved.
  •  
5.
  • Lavergne, Corinne, et al. (författare)
  • Control of SHB gene expression by protein phosphorylation
  • 1996
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 8:1, s. 55-58
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of the role of the Src homology 2 (SH2) domain-containing protein Shb in the mitogenic signal transduction, Shb mRNA contents were determined in the fibroblast-like NIH3T3 cells and the insulin producing βTC-1 cells under various conditions. In NIH3T3 cells, the serine/ threonine phosphatase inhibitor okadaic acid and the tyrosine kinase inhibitor genistein increased Shb mRNA contents, the protein kinase C activating phorbol ester 12-O-tetradecanoyl 13-acetate (TPA) decreased the Shb mRNA content, whereas the tyrosine kinase inhibitor tyrphostin 25 and the mitogen platelet-derived growth factor (PDGF-BB) had no effect. In βTC-1 cells, okadaic acid and genistein increased the Shb mRNA content, whereas tyrphostin 25 and serum were without effect. Okadaic acid and genistein decreased the rates of βTC-1 cell DNA synthesis. It is concluded that expression of the SHB gene is under a complex mode of regulation involving at least three different protein kinases. As a consequence of this, it is likely that SHB gene expression is significantly modulated by conditions of specific activation of certain pathways, whereas its expression appears little influenced by serum and a mitogen.
  •  
6.
  • Söderholm, Helena, 1969-, et al. (författare)
  • Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF
  • 2001
  • Ingår i: Cellular Signalling. - : Elsevier. - 0898-6568 .- 1873-3913. ; 13:2, s. 95-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The human neuroblastoma cell line SH-SY5Y/TrkA differentiates in vitro and acquires a sympathetic phenotype in response to phorbolester (activator of protein kinase C, PKC) in the presence of serum or growth factors, or nerve growth factor (NGF). We have now investigated to what extent phorbolester and NGF cause activation of Ras and Raf-1 and the involvement of PKC in this response in differentiating SH-SY5Y/TrkA cells. NGF stimulated increased accumulation of Ras-GTP and a threefold activation of Raf-1. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect on the amount of Ras-GTP but led to a smaller activation of Raf-1. NGF caused a limited increase in phosphorylation of Raf-1 compared with TPA, and NGF-induced Raf activity was independent of PKC. Analysis of phosphorylation of the endogenous PKC substrate myristoylated alanine-rich C-kinase substrate (MARCKS), and of subcellular distribution of PKC-alpha, -delta, and -epsilon revealed that NGF only caused a very small activation of PKC in SH-SY5Y/TrkA cells. The results identify Raf-1 as a target for both TPA- and NGF-induced signals in differentiating SH-SY5Y/TrkA cells and demonstrate that signalling to Raf-1 was mediated via distinct mechanisms.
  •  
7.
  •  
8.
  • Attarha, Sanaz, et al. (författare)
  • Mast cells modulate proliferation, migration and sternness of glioma cells through downregulation of GSK3 beta expression and inhibition of STAT3 activation
  • 2017
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 37, s. 81-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) heterogeneity is the main obstacle to efficient treatment due to the existence of sub population of cells with increased tumorigenicity and network of tumor associated parenchymal cells in the tumor microenvironment. We previously demonstrated that mast cells (MCs) infiltrate mouse and human gliomas in response to variety of signals in a glioma grade-dependent manner. However, the role of MCs in glioma development and the mechanisms behind MCs-glioma cells interaction remain unidentified. In the present study, we show that MCs upon activation by glioma cells produce soluble factors including IL-6, which are documented to be involved in cancer-related activities. We observe 'tumor educated' MCs decrease glioma cell proliferation and migration, reduce self-renewal capacity and expression of stemness markers but in turn promote glioma cell differentiation. 'Tumor educated' MC derived mediators exert these effects via inactivation of STAT3 signaling pathway through GSK3 beta down-regulation. We identified 'tumor educated' MC derived IL-6 as one of the contributors among the complex mixture of MCs mediators, to be partially involved in the observed MC induced biological effect on glioma cells. Thus, MC mediated abolition of STAT3 signaling hampers glioma cell proliferation and migration by suppressing their stemness and inducing differentiation via down-regulation of GSK3 beta expression. Targeting newly identified inflammatory MC-STAT3 axis could contribute to patient tailored therapy and unveil potential future therapeutic opportunities for patients.
  •  
9.
  • Batool, Tahira, et al. (författare)
  • Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells
  • 2019
  • Ingår i: Cellular Signalling. - : Elsevier. - 0898-6568 .- 1873-3913. ; 54, s. 122-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucuronyl C5-epimerase (Hsepi) catalyzes the conversion of glucuronic acid to iduronic acid in the process of heparan sulfate biosynthesis. Targeted interruption of the gene, Glce,in mice resulted in neonatal lethality with varied defects in organ development. To understand the molecular mechanisms of the phenotypes, we used mouse embryonic fibroblasts (MEF) as a model to examine selected signaling pathways. Our earlier studies found reduced activities of FGF-2, GDNF, but increased activity of sonic hedgehog in the mutant cells. In this study, we focused on the bone morphogenetic protein (BMP) signaling pathway. Western blotting detected substantially elevated endogenous Smad1/5/8 phosphorylation in the Hsepi mutant (KO) MEF cells, which is reverted by re-expression of the enzyme in the KO cells. The mutant cells displayed an enhanced proliferation and elevated alkaline phosphatase activity, marking higher differentiation, when cultured in osteogenic medium. The high level of Smad1/5/8 phosphorylation was also found in primary calvarial cells isolated from the KO mice. Analysis of the genes involved in the BMP signaling pathway revealed upregulation of a number of BMP ligands, but reduced expression of several Smads and BMP antagonist (Grem1) in the KO MEF cells. The results suggest that Hsepi expression modulates BMP signaling activity, which, at least partially, is associated with defected molecular structure of heparan sulfate expressed in the cells.   
  •  
10.
  •  
11.
  • Berggreen, Christine, et al. (författare)
  • cAMP-elevation mediated by β-adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes.
  • 2012
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 24:9, s. 1863-1871
  • Tidskriftsartikel (refereegranskat)abstract
    • Salt-inducible kinase (SIK) 3 is a virtually unstudied, ubiquitously expressed serine/threonine kinase, belonging to the AMP-activated protein kinase (AMPK)-related family of kinases, all of which are regulated by LKB1 phosphorylation of a threonine residue in their activation (T)-loops. Findings in adrenal cells have revealed a role for cAMP in the regulation of SIK1, and recent findings suggest that insulin can regulate an SIK isoform in Drosophila. As cAMP has important functions in adipocytes, mainly in the regulation of lipolysis, we have evaluated a potential role for cAMP, as well as for insulin, in the regulation of SIK3 in these cells. We establish that raised cAMP levels in response to forskolin and the β-adrenergic receptor agonist CL 316,243 induce a phosphorylation of SIK3 in HEK293 cells and primary adipocytes. This phosphorylation coincides with increased 14-3-3 binding to SIK3 in these cell types. Our findings also show that cAMP-elevation results in reduced SIK3 activity in adipocytes. Phosphopeptide mapping and site-directed mutagenesis reveal that the cAMP-mediated regulation of SIK3 appears to depend on three residues, T469, S551 and S674, that all contribute to some extent to the cAMP-induced phosphorylation and 14-3-3-binding. As the cAMP-induced regulation can be reversed with the protein kinase A (PKA) inhibitor H89, and a role for other candidate kinases, including PKB and RSK, could be excluded, we believe that PKA is the kinase responsible for SIK3 regulation in response to elevated cAMP levels. Our findings of cAMP-mediated regulation of SIK3 suggest that SIK3 may mediate some of the effects of this important second messenger in adipocytes.
  •  
12.
  • Bergström Lind, Sara, et al. (författare)
  • Toward a comprehensive characterization of the phosphotyrosine proteome
  • 2011
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 23:8, s. 1387-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Tyrosine phosphorylation (pTyr) regulates important cell functions and plays a key role in carcinogenesis. The purpose of this study was to perform a comprehensive study of the phosphotyrosine proteome. Immunoaffinity enriched pTyr proteins and peptides from K562 leukemia cells were analyzed with high-resolving liquid chromatography mass spectrometry. Two different antibodies selective for the pTyr modification were used in repeated enrichments to identify as many pTyr peptides as possible. Stringent verification of putative pTyr sites was performed to assure high reliability in the subsequent biological interpretation of the data. Identified pTyr proteins were subjected to pathway analysis by using different analytical tools. In total, 294 pTyr peptides belonging to 217 pTyr proteins were identified, 15 of which had not previously been reported to be modified by pTyr. The pTyr proteins were clustered in six major groups based on the biological functions "cellular signaling", "cell motility and shape", "cell cycle process", "transport", "RNA processing" and "protein processing". The pTyr proteins were mainly positioned in the following cellular compartments: cytoplasm, cytoskeleton, nucleus and ribonucleoprotein complexes. An interesting finding was that many proteins were related to RNA processing and were found to be heterogeneous nuclear ribonucleoproteins. Also, more than half of the novel pTyr proteins were localized to the nucleus, of which three (PBX2, TEAD1 and DIDO1) were classified as transcription factors and two (CENPC1 and MAD2L1) are associated with cell division control.
  •  
13.
  • Bertran, Esther, et al. (författare)
  • Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-beta.
  • 2009
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 21:11, s. 1595-1606
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of FaO rat hepatoma cells with TGF-beta selects cells that survive to its apoptotic effect and undergo epithelial-mesenchymal transitions (EMT). We have established a cell line (T beta T-FaO, from TGF-beta-treated FaO) that shows a mesenchymal, de-differentiated, phenotype in the presence of TGF-beta and is refractory to its suppressor effects. In the absence of this cytokine, cells revert to an epithelial phenotype in 3-4 weeks and recover the response to TGF-beta. T beta T-FaO show higher capacity to migrate than that observed in the parental FaO cells. We found that FaO cells express low levels of CXCR4 and do not respond to SDF-1 alpha. However, TGF-beta up-regulates CXCR4, through a NF kappaB-dependent mechanism, and T beta T-FaO cells show elevated levels of CXCR4, which is located in the presumptive migration front. A specific CXCR4 antagonist (AMD3100) attenuates the migratory capacity of T beta T-FaO cells on collagen gels. Extracellular SDF-1 alpha activates the ERKs pathway in T beta T-FaO, but not in FaO cells, increasing cell scattering and protecting cells from apoptosis induced by serum deprivation. Targeted knock-down of CXCR4 with specific siRNA blocks the T beta T-FaO response to SDF-1 alpha. Thus, the SDF-1/CXCR4 axis might play an important role in mediating cell migration and survival after a TGF-beta-induced EMT in hepatoma cells.
  •  
14.
  • Caja, Laia, et al. (författare)
  • Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells : implications in liver carcinogenesis.
  • 2007
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 19:4, s. 683-94
  • Tidskriftsartikel (refereegranskat)abstract
    • The transforming growth factor-beta (TGF-beta) regulates hepatocyte growth, inhibiting proliferation and inducing apoptosis. Indeed, escaping from the TGF-beta suppressor actions might be a prerequisite for liver tumour progression. In this work we show that TGF-beta plays a dual role in regulating apoptosis in FaO rat hepatoma cells, since, in addition to its pro-apoptotic effect, TGF-beta also activates survival signals, such as AKT, the epidermal growth factor receptor (EGFR) being required for its activation. TGF-beta induces the expression of the EGFR ligands transforming growth factor-alpha (TGF-alpha) and heparin-binding EGF-like growth factor (HB-EGF) and induces intracellular re-localization of the EGFR. Cells that overcome the apoptotic effects of TGF-beta undergo morphological changes reminiscent of an epithelial-mesenchymal transition (EMT) process. In contrast, TGF-beta does not activate AKT in adult hepatocytes, which correlates with lack of EGFR transactivation and no response to EGFR inhibitors. Although TGF-beta induces TGF-alpha and HB-EGF in adult hepatocytes, these cells show very low expression of TACE/ADAM 17 (TNF-alpha converting enzyme), which is required for EGFR ligand proteolysis and activation. Furthermore, adult hepatocytes do not undergo EMT processes in response to TGF-beta, which might be due, at least in part, to the fact that F-actin re-organization induced by TGF-beta in FaO cells require the EGFR pathway. Finally, results indicate that EGFR transactivation does not block TGF-beta-induced cell cycle arrest in FaO cells, but must be interfering with the pro-apoptotic signalling. In conclusion, TGF-beta is a suppressor factor for adult quiescent hepatocytes, but not for hepatoma cells, where it plays a dual role, both suppressing and promoting carcinogenesis.
  •  
15.
  • Chisari, Andrea N, et al. (författare)
  • Lack of amino acids in mouse hepatocytes in culture induces the selection of preneoplastic cells.
  • 2012
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 24:1, s. 325-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein malnutrition occurs when there is insufficient protein to meet metabolic demands. Previous works have indicated that cycles of protein fasting/refeeding enhance the incidence of early lesions during chemical carcinogenesis in rat liver. The general objective of this work was to study the effect of aminoacids (Aa) deprivation on the proliferation and survival of hepatocytes, to understand its possible involvement in the generation of pre-neoplastic stages in the liver. Lack of Aa in the culture medium of an immortalized mice hepatocyte cell line induced loss in cell viability, correlating with apoptosis. However, a subpopulation of cells was able to survive, which showed a more proliferative phenotype and resistance to apoptotic stimuli. Escaping to Aa deprivation-induced death is coincident with an activated mTOR signaling and higher levels of phospho-AKT and phospho-ERKs, which correlated with increased activation of EGFR/SRC pathway and overexpression of EGFR ligands, such as TGF-α and HB-EGF. Lack of Aa induced a rapid increase in reactive oxygen species (ROS) production. However, cells that survived showed an enhancement in the levels of reduced glutathione and a higher expression of γ-GCS, the regulatory enzyme of glutathione synthesis, which can be interpreted as an adaptation of the cells to counteract the oxidative stress. In conclusion, results presented in this paper indicate that it is possible to isolate a subpopulation of hepatocytes that are able to grow in the absence of Aa, showing higher capacity to proliferate and survive, reminiscent of a preneoplastic phenotype.
  •  
16.
  • Dedinszki, Dora, et al. (författare)
  • Inhibition of protein phosphatase-1 and -2A decreases the chemosensitivity of leukemic cells to chemotherapeutic drugs
  • 2015
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 27:2, s. 363-372
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphorylation of key proteins balanced by protein kinases and phosphatases are implicated in the regulation of cell cycle and apoptosis of malignant cells and influences anticancer drug actions. The efficacy of daunorubicin (DNR) in suppression of leukemic cell survival was investigated in the presence of tautomycin (TM) and calyculin A (CIA), specific membrane permeable inhibitors of protein phosphatase-1 (PP1) and -2A (PP2A), respectively. CIA (50 nM) or TM (1 mu M) suppressed viability of THP-1 and KG-1 myeloid leukemia cell lines to moderate extents; however, they significantly increased survival upon DNR-induced cell death. CLA increased the phosphorylation level of Erk1/2 and PKB/Akt kinases, the retinoblastoma protein (pRb), decreased caspase3 activation by DNR and increased the phosphorylation level of the inhibitory sites (Thr696 and Thr853) in the myosin phosphatase (MP) target subunit (MYPT1) as well as in a 25 kDa kinase-enhanced phosphatase inhibitor (KEPI)-like protein. TM induced enhanced phosphorylation of pRb only, suggesting that this event may be a common factor upon CIA-induced PP2A and TM-induced PP1 inhibitory influences on cell survival. Silencing PP1 by siRNA in HeLa cells, or overexpression of Flag-KEPI in MCF-7 cells coupled with inducing its phosphorylation by PMA or CIA, resulted in increased phosphorylation of pRb. Our results indicate that PP1 directly dephosphorylates pRb, while PP2A might have an indirect influence via mediating the phosphorylation level of PP1 inhibitory proteins:These data imply the importance of PP1 inhibitory proteins in controlling the phosphorylation state of key proteins and regulating drug sensitivity and apoptosis in leukemic cells.
  •  
17.
  •  
18.
  • Ducommun, Serge, et al. (författare)
  • Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates
  • 2019
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 57, s. 45-57
  • Tidskriftsartikel (refereegranskat)abstract
    • AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis, acting as a sensor of energy and nutrient status. As such, AMPK is considered a promising drug target for treatment of medical conditions particularly associated with metabolic dysfunctions. To better understand the downstream effectors and physiological consequences of AMPK activation, we have employed a chemical genetic screen in mouse primary hepatocytes in an attempt to identify novel AMPK targets. Treatment of hepatocytes with a potent and specific AMPK activator 991 resulted in identification of 65 proteins phosphorylated upon AMPK activation, which are involved in a variety of cellular processes such as lipid/glycogen metabolism, vesicle trafficking, and cytoskeleton organisation. Further characterisation and validation using mass spectrometry followed by immunoblotting analysis with phosphorylation site-specific antibodies identified AMPK-dependent phosphorylation of Gapex-5 (also known as GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1)) on Ser902 in hepatocytes and starch-binding domain 1 (STBD1) on Ser175 in multiple cells/tissues. As new promising roles of AMPK as a key metabolic regulator continue to emerge, the substrates we identified could provide new mechanistic and therapeutic insights into AMPK-activating drugs in the liver.
  •  
19.
  • Elvers, Margitta, et al. (författare)
  • A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity
  • 2012
  • Ingår i: Cellular Signalling. - New York, USA : Elsevier. - 0898-6568 .- 1873-3913. ; 24:9, s. 1743-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet aggregation, secretion and thrombus formation play a critical role in primary hemostasis to prevent excessive blood loss. On the other hand, uncontrolled platelet activation leads to pathological thrombus formation resulting in myocardial infarction or stroke. Stimulation of heterotrimeric G-proteins by soluble agonists or immunoreceptor tyrosine based activation motif-coupled receptors that interact with immobilized ligands such as the collagen receptor glycoprotein (GP) VI lead to the activation of phospholipases that cleave membrane phospholipids to generate soluble second messengers. Platelets contain the phospholipases (PL) D1 and D2 which catalyze the hydrolysis of phosphatidylcholine to generate the second messenger phosphatidic acid (PA). The production of PA is abrogated by primary alcohols that have been widely used for the analysis of PLD-mediated processes. However, it is not clear if primary alcohols effectively reduce PA generation or if they induce PLD-independent cellular effects. In the present study we made use of the specific PLD inhibitor 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) and show for the first time, that FIPI enhances platelet dense granule secretion and aggregation of human platelets. Further, FIPI has no effect on cytosolic Ca(2+) activity but needs proper Rho kinase signaling to mediate FIPI-induced effects on platelet activation. Upon FIPI treatment the phosphorylation of the PKC substrate pleckstrin was prominently enhanced suggesting that FIPI affects PKC-mediated secretion and aggregation in platelets. Similar effects of FIPI were observed in platelets from mouse wild-type and Pld1(-/-) mice pointing to a new role for PLD2 as a negative regulator of platelet sensitivity.
  •  
20.
  • Fukuda, Tomohiko, et al. (författare)
  • BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells
  • 2021
  • Ingår i: Cellular Signalling. - : Elsevier. - 0898-6568 .- 1873-3913. ; 87
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously reported that bone morphogenetic protein (BMP) signaling promotes tumorigenesis in gynecologic cancer cells. BMP2 enhances proliferation of ovarian and endometrial cancer cells via c-KIT induction, and triggers epithelial-mesenchymal transition (EMT) by SNAIL and/or SLUG induction, leading to increased cell migration. However, the downstream effectors of BMP signaling in gynecological cancer cells have not been clearly elucidated. In this study, we performed RNA-sequencing of Ishikawa endometrial and SKOV3 ovarian cancer cells after BMP2 stimulation, and identified TNFRSF12A, encoding fibroblast growth factor-inducible 14 (FN14) as a common BMP2-induced gene. FN14 knockdown suppressed BMP2-induced cell proliferation and migration, confirmed by MTS and scratch assays, respectively. In addition, FN14 silencing augmented chemosensitivity of SKOV3 cells. As a downstream effector of BMP signaling, FN14 modulated both c-KIT and SNAIL expression, which are important for growth and migration of ovarian and endometrial cancer cells. These results support the notion that the tumor promoting effects of BMP signaling in gynecological cancers are partially attributed to FN14 induction.
  •  
21.
  • Fälker, Knut, 1971-, et al. (författare)
  • Adrenoceptor α2A signalling countervails the taming effects of synchronous cyclic nucleotide-elevation on thrombin-induced human platelet activation and aggregation
  • 2019
  • Ingår i: Cellular Signalling. - : Elsevier. - 0898-6568 .- 1873-3913. ; 59, s. 96-109
  • Tidskriftsartikel (refereegranskat)abstract
    • The healthy vascular endothelium constantly releases autacoids which cause an increase of intracellular cyclic nucleotides to tame platelets from inappropriate activation. Elevating cGMP and cAMP, in line with previous reports, cooperated in the inhibition of isolated human platelet intracellular calcium-mobilization, dense granules secretion, and aggregation provoked by thrombin. Further, platelet alpha granules secretion and, most relevant, integrin αIIaβ3 activation in response to thrombin are shown to be prominently affected by the combined elevation of cGMP and cAMP. Since stress-related sympathetic nervous activity is associated with an increase in thrombotic events, we investigated the impact of epinephrine in this setting. We found that the assessed signalling events and functional consequences were to various extents restored by epinephrine, resulting in full and sustained aggregation of isolated platelets. The restoring effects of epinephrine were abolished by either interfering with intracellular calcium-elevation or with PI3-K signalling. Finally, we show that in our experimental setting epinephrine likewise reconstitutes platelet aggregation in heparinized whole blood, which may indicate that this mechanism could also apply in vivo.
  •  
22.
  • Fälker, Knut, 1971-, et al. (författare)
  • The Toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLC gamma 2 signalling cascade
  • 2014
  • Ingår i: Cellular Signalling. - New York, USA : Elsevier. - 0898-6568 .- 1873-3913. ; 26:2, s. 279-286
  • Tidskriftsartikel (refereegranskat)abstract
    • The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARS, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLC gamma 2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI. Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking beta(3), in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin beta(3) signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLC gamma 2. (C) 2013 Elsevier Inc. All rights reserved.
  •  
23.
  •  
24.
  • Grethe, Simone, et al. (författare)
  • p38 MAPK regulates phosphorylation of Bad via PP2A-dependent suppression of the MEK1/2-ERK1/2 survival pathway in TNF-alpha induced endothelial apoptosis.
  • 2006
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 18:4, s. 531-540
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently reported that p38 MAPK regulates TNF-induced endothelial apoptosis via phosphorylation and downregulation of Bcl-xL. Here, we describe that such apoptosis includes p38 NIAPK-mediated, protein phosphatase 2A (PP2A)-dependent, downregulation of the MEK-ERK pathway. Inhibition of PP2A with fostriecin or calyculin A significantly increased MEK phosphorylation, as did exposure to the p38 MAPK inhibitor SB203580. Inhibition of MEK potentiated TNF-induced caspase-3 activity and cell death, and both those events were suppressed by treatment with fostriecin or calyculin A. Immunoprecipitation experiments revealed an association between p38 MAPK, PP2A and MEK, and the results of a phosphatase assay suggested that PP2A is a downstream target of p38 MAPK. Importantly, phosphorylation of Bad at Ser-112 was found to be regulated by p38 MAPK and PP2A. In summary, the present findings indicate a novel p38 MAPK-mediated apoptosis pathway, involving activation of Bad via PP2A-dependent inhibition of the MEK-ERK pathway. (c) 2005 Elsevier Inc. All rights reserved.
  •  
25.
  •  
26.
  •  
27.
  • Heldin, Johan, et al. (författare)
  • FGD5 sustains vascular endothelial growth factor A (VEGFA) signaling through inhibition of proteasome-mediated VEGF receptor 2 degradation
  • 2017
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 40, s. 125-132
  • Tidskriftsartikel (refereegranskat)abstract
    • The complete repertoire of endothelial functions elicited by FGD5, a guanine nucleotide exchange factor activating the Rho GTPase Cdc42, has yet to be elucidated. Here we explore FGD5's importance during vascular endothelial growth factor A (VEGFA) signaling via VEGF receptor 2 (VEGFR2) in human endothelial cells. In microvascular endothelial cells, FGD5 is located at the inner surface of the cell membrane as well as at the outer surface of EEAl-positive endosomes carrying VEGFR2. The latter finding prompted us to explore if FGD5 regulates VEGFR2 dynamics. We found that depletion of FGD5 in microvascular cells inhibited their migration towards a stable VEGFA gradient. Furthermore, depletion of FGD5 resulted in accelerated VEGFR2 degradation, which was reverted by lactacystin-mediated proteasomal inhibition. Our results thus suggest a mechanism whereby FGD5 sustains VEGFA signaling and endothelial cell chemotaxis via inhibition of proteasome-dependent VEGFR2 degradation.
  •  
28.
  • Heldin, Paraskevi, et al. (författare)
  • Involvement of hyaluronan and CD44 in cancer and viral infections
  • 2020
  • Ingår i: Cellular Signalling. - : ELSEVIER SCIENCE INC. - 0898-6568 .- 1873-3913. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
  •  
29.
  • Holmqvist, Kristina, et al. (författare)
  • A role of the protein Cbl in FGF-2-induced angiogenesis in murine brain endothelial cells
  • 2005
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 17:11, s. 1433-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cbl protein functions both as a multivalent adaptor and a negative regulator of receptor tyrosine kinases (RTKs), the latter by directing polyubiquitination of RTKs. To study the function of Cbl in endothelial cell signalling and angiogenesis, wild-type Cbl and tyrosine kinase binding (TKB) domain mutated Cbl (G306E) were overexpressed in murine immortalised brain endothelial (IBE) cells. Wild-type Cbl cells exhibited enhanced proliferation in low serum compared with the control and G306E Cbl cells. Furthermore, up-regulated phosphorylation of fibroblast growth factor receptor 1 (FGFR-1) and Akt were observed in wild-type Cbl cells upon FGF-2 stimulation. A Cbl TKB domain mutant, G306E, disrupted the phosphorylation of the FGFR-1 but not that of FRS2. In the tubular morphogenesis assay, cells expressing wild-type Cbl initially formed tubular structures. These showed decreased stability and converted into cell aggregates, possibly due to a failure to cease proliferating. Our data support the idea that the wild-type Cbl cells exhibit enhanced proliferation, and thus lose their ability to differentiate appropriately. The present study reveals a role of the Cbl protein in FGF-2 dependent signalling in endothelial cells by its destabilisation of tubular structures.
  •  
30.
  • Hot, B., et al. (författare)
  • FZD10-Gα13 signalling axis points to a role of FZD10 in CNS angiogenesis
  • 2017
  • Ingår i: Cellular Signalling. - : Elsevier. - 0898-6568 .- 1873-3913. ; 32, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the 10 Frizzled (FZD) isoforms belonging to the Class F of G protein-coupled receptors (GPCRs), FZD10 remains the most enigmatic. FZD10 shows homology to FZD4 and FZD9 and was previously implicated in both β-catenin-dependent and –independent signalling. In normal tissue, FZD10 levels are generally very low; however, its upregulation in synovial carcinoma has attracted some attention for therapy. Our findings identify FZD10 as a receptor interacting with and signalling through the heterotrimeric G protein Gα13 but not Gα12 Gαi1 GαoA Gαs, or Gαq. Stimulation with the FZD agonist WNT induced the dissociation of the Gα13 protein from FZD10, and led to global Gα12/13–dependent cell changes assessed by dynamic mass redistribution measurements. Furthermore, we show that FZD10 mediates Gα12/13 activation-dependent induction of YAP/TAZ transcriptional activity. In addition, we show a distinct expression of FZD10 in embryonic CNS endothelial cells at E11.5–E14.5. Given the well-known importance of Gα13 signalling for the development of the vascular system, the selective expression of FZD10 in brain vascular endothelial cells points at a potential role of FZD10-Gα13 signalling in CNS angiogenesis.
  •  
31.
  • Hutchinson, Dana S., et al. (författare)
  • Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase
  • 2007
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 19:7, s. 1610-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • NADPH oxidase inhibitors such as diphenylene iodonium (DPI) and apocynin lower whole body and blood glucose levels and improve diabetes when administered to rodents. Skeletal muscle has an important role in managing glucose homeostasis and we have used L6 cells, C2C12 cells and primary muscle cells as model systems to investigate whether these drugs regulate glucose uptake in skeletal muscle cells. The data presented in this study show that apocynin does not affect glucose uptake in skeletal muscle cells in culture. Tat gp91ds, a chimeric peptide that inhibits NADPH oxidase activity, also failed to affect glucose uptake and we found no significant evidence of NADPH oxidase (subunits tested were Nox4, p22phox, gp91phox and p47phox mRNA) in skeletal muscle cells in culture. However, DPI increases basal and insulin-stimulated glucose uptake in L6 cells, C2C12 cells and primary muscle cells. Detailed studies on L6 cells demonstrate that the increase of glucose uptake is via a mechanism independent of phosphoinositide-3 kinase (PI3K)/Akt but dependent on AMP-activated protein kinase (AMPK). We postulate that DPI through inhibition of mitochondrial complex 1 and decreases in oxygen consumption, leading to decreases of ATP and activation of AMPK, stimulates glucose uptake in skeletal muscle cells.
  •  
32.
  • Jones, Helena, et al. (författare)
  • beta-cell PDE3B regulates Ca(2+)-stimulated exocytosis of insulin.
  • 2007
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 19:Feb 12, s. 1505-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-I (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K+ for 5 min, was significantly reduced (similar to 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K+ was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca2+-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca2+, plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells. (c) 2007 Elsevier Inc. All rights reserved.
  •  
33.
  • Jurek, Aleksandra, et al. (författare)
  • Platelet-derived growth factor-induced signaling pathways interconnect to regulate the temporal pattern of Erk1/2 phosphorylation
  • 2011
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 23:1, s. 280-287
  • Tidskriftsartikel (refereegranskat)abstract
    • The biological outcome of Erk1/2 activation is specified by the duration and magnitude of its phosphorylation, as well as its subcellular localization. In the present study, we investigated how the cross-talk between signaling pathways induced by platelet-derived growth factor receptor beta (PDGFR beta) regulates the temporal pattern of Erk1/2 activation. We demonstrated that Src kinase activity was necessary for rapid Erk1/2 phosphorylation in PDGF-BB-stimulated cells. A delay in the onset of Erk1/2 activation was also observed upon phospholipase C (PLC) inhibition; this effect was found to be mediated by protein kinase C (PKC). In addition, we observed that both the PI3K pathway and RasGAP negatively regulated the strength of Erk1/2 phosphorylation. In contrast, interfering with SHP2 binding to PDGFR beta did not affect the pattern of Erk1/2 activation. Interestingly, changes in the kinetics and amplitude of Erk1/2 activation were transmitted to the transcriptional level and affected c-fos expression. In conclusion, cross-talk with other PDGFR beta-induced signaling pathways is important for fine-tuning of the pattern of Erk1/2 activation.
  •  
34.
  • Kazi, Julhash U., et al. (författare)
  • The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling.
  • 2013
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 25:9, s. 1852-1860
  • Tidskriftsartikel (refereegranskat)abstract
    • Type III receptor tyrosine kinases (RTKs), FLT3 and c-Kit play important roles in a variety of cellular processes. A number of SH2-domain containing proteins interact with FLT3 and c-Kit and regulate downstream signaling. The SH2-domain containing non-receptor protein tyrosine kinase CSK is mainly studied in context of regulating Src family kinases. Here we present an addition role of this kinase in RTK signaling. We show that CSK interacts with FLT3 and c-Kit in a phosphorylation dependent manner. This interaction is facilitated through the SH2-domain of CSK. Under basal conditions CSK is mainly localized throughout the cytosolic compartment but upon ligand stimulation it is recruited to the inner side of cell membrane. CSK association did not alter receptor ubiquitination or phosphorylation but disrupted downstream signaling. Selective depletion of CSK using siRNA, or inhibition with CSK inhibitor, led to increased phosphorylation of Akt and Erk, but not p38, upon FLT3 ligand (FL) stimulation. Stem cell factor (SCF)-mediated Akt and Erk activation was also elevated by CSK inhibition. However, siRNA mediated CSK knockdown increased SCF stimulated Akt phosphorylation but decreased Erk phosphorylation. CSK depletion also significantly increased both FL- and SCF-induced SHC, Gab2 and SHP2 phosphorylation. Furthermore, CSK depletion contributed to oncogenic FLT3- and c-Kit-mediated cell proliferation, but not to cell survival. Thus, the results indicate that CSK association with type III RTKs, FLT3 and c-Kit can have differential impact on receptor downstream signaling.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Kourti, Maria, et al. (författare)
  • CK1 delta restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1 alpha/ARNT complex formation
  • 2015
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 27:6, s. 1129-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • Proliferation of cells under hypoxia is facilitated by metabolic adaptation, mediated by the transcriptional activator Hypoxia Inducible Factor-1 (HIF-1). HIF-1 alpha, the inducible subunit of HIF-1 is regulated by oxygen as well as by oxygen-independent mechanisms involving phosphorylation. We have previously shown that CK1 delta phosphorylates HIP-la in its N-terminus and reduces its affinity for its heterodimerization partner ARNT. To investigate the importance of this mechanism for cell proliferation under hypoxia, we visually monitored HIP-1 alpha interactions within the cell nucleus using the in situ proximity ligation assay (PIA) and fluorescence recovery after photobleaching (FRAP). Both methods show that CK1 delta-dependent modification of HIF-1 alpha impairs the formation of a chromatin binding HIF-1 complex. This is confirmed by analyzing expression of lipin-1, a direct target of HIF-1 that mediates hypoxic neutral lipid accumulation. Inhibition of CK1 delta increases lipid droplet formation and proliferation of both cancer and normal cells specifically under hypoxia and in an HIF-1 alpha- and lipin-1-dependent manner. These data reveal a novel role for CK1 delta in regulating lipid metabolism and, through it, cell adaptation to low oxygen conditions.
  •  
39.
  • Kozlova, Inna, et al. (författare)
  • IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation
  • 2012
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 24:9, s. 1856-1862
  • Tidskriftsartikel (refereegranskat)abstract
    • IQGAP1, an essential scaffolding protein, forms a complex with the hyaluronan receptor CD44. In this study, we have examined the importance of IQGAP1 for hyaluronan-mediated fibroblast migration and proliferation. Hyaluronan induced formation of F-actin fibers and focal adhesions, which was dependent on IQGAP1. IQGAP1 was required for hyaluronan- but not for platelet-derived growth factor (PDGF)-BB-induced cell migration, and was required for both hyaluronan- and PDGF-BB-mediated fibroblast proliferation, but not for proliferation induced by 10% fetal bovine serum. Depletion of IQGAP1 suppressed hyaluronan-induced activation of Rac1 and enhanced the activation of RhoA. Taken together, these findings indicate important roles for IQGAP1 in hyaluronan-stimulated migration and proliferation of fibroblasts.
  •  
40.
  • Kretova, Miroslava, et al. (författare)
  • TGF-beta/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence
  • 2014
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 26:12, s. 2903-2911
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress and persistent activation of DNA damage response (DDR) are causally involved in the development of cellular senescence, a phenomenon implicated in fundamental (patho)physiological processes such as aging, fetal development and tumorigenesis. Here, we report that adenine nucleotide translocase-2 (ANT2) is consistently down-regulated in all three major forms of cellular senescence: replicative, oncogene-induced and drug-induced, in both normal and cancerous human cells. We previously reported formation of novel NF1/Smad transcription repressor complexes in growth-arrested fibroblasts. Here we show that such complexes form in senescent cells. Mechanistically, binding of the NF1/Smad complexes to the NF1-dependent repressor elements in the ANT2 gene promoter repressed ANT2 expression. Etoposide-induced formation of these complexes and repression of ANT2 were relatively late events co-incident with production and secretion of, and dependent on, TGF-beta. siRNA-mediated knock-down of ANT2 in proliferating cells resulted in increased levels of reactive oxygen species (ROS) and activation of the DDR. Knock-down of ANT2, together with etoposide treatment, further intensified ROS production and DNA damage signaling, leading to enhanced apoptosis. Together, our data show that TGF-beta-mediated suppression of ANT2 through NF1/Smad4 complexes contributes to oxidative stress and DNA damage during induction of cellular senescence.
  •  
41.
  •  
42.
  • Larsson, Christer (författare)
  • Protein kinase C and the regulation of the actin cytoskeleton.
  • 2006
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 18:3, s. 276-284
  • Forskningsöversikt (refereegranskat)abstract
    • Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
  •  
43.
  • Larsson, Sara, et al. (författare)
  • Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.
  • 2016
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 28:3, s. 204-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our understanding of how metabolic derangements develop in states of hyperparathyroidism, including vitamin D deficiency.
  •  
44.
  • Lennartsson, Johan, et al. (författare)
  • Erk 5 is necessary for sustained PDGF-induced Akt phosphorylation and inhibition of apoptosis
  • 2010
  • Ingår i: Cellular Signalling. - : Elsevier Inc.. - 0898-6568 .- 1873-3913. ; 22:6, s. 955-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular regulated kinase (Erk) 5 is a member of the mitogen activated protein (MAP) kinase family that has been implicated in both cell proliferation and survival. In the present study, we found that stimulation with platelet-derived growth factor (PDGF)-BB leads to a transient activation of Erk5, which was shown to be dependent on recruitment of both Src kinases and the tyrosine phosphatase Shp2 to the activated PDGF receptor beta (PDGFRbeta). We could also demonstrate that Shp2 docking to the receptor is critical for Src kinase activation, suggesting that Shp2 may contribute to Erk5 activation through its involvement in Src kinase activation. Under control conditions, PDGF-BB promoted a sustained Akt phosphorylation. However, reduction of the expression of Erk5 by siRNA resulted in only a transient Akt phosphorylation, and an inability of PDGF-BB to suppress caspase 3 activation and inhibit apoptotic nuclear morphological changes such as condensed or fragmented chromatin under serum-free conditions.
  •  
45.
  • Lind, Simon, 1993, et al. (författare)
  • Allosteric receptor modulation uncovers an FFA2R antagonist as a positive orthosteric modulator/agonist in disguise.
  • 2021
  • Ingår i: Cellular signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 90:February 2022
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel receptor crosstalk activation mechanism, through which signals generated by the agonist-occupied P2Y2R (the neutrophil receptor for ATP) activate allosterically modulated free fatty acid 2 receptor (FFA2R) without the involvement of any FFA2R agonist, was used to determine the inhibitor profiles of two earlier-described, FFA2R-specific antagonists, CATPB and GLPG0974. These antagonists have been shown to have somewhat different receptor-interaction characteristics at the molecular/functional level, although both are recognized by the orthosteric site in FFA2R. The antagonists inhibited neutrophil activation induced by ATP, an activation occurred only in the presence of either of the two positive allosteric FFA2R modulators (PAMs) AZ1729 and Cmp58. No neutrophil activation was induced by either AZ1729 or Cmp58 alone, whereas together they acted as co-agonistic PAMs and activated the superoxide-generating NADPH-oxidase in neutrophils. This response was inhibited by CATPB but not by GLPG0974. In contrast, GLPG0974 acted as a positive modulator, increasing the potency, albeit not the efficacy, of the co-agonistic PAMs. GLPG0974 also altered signaling downstream of FFA2R when activated by the co-agonistic PAMs. In the presence of GLPG0974, the response of neutrophils induced by the co-agonistic PAMs included an increase in the cytosolic concentration of free calcium ions (Ca2+), and this effect was reciprocal in that GLPG0974 triggered an increase in intracellular Ca2+, demonstrating that GLPG0974 acted as an FFA2R agonist. In summary, by studying the effects of the FFA2R ligand GLPG0974 on neutrophil activation induced by the co-agonists AZ1729+Cmp58, we show that GLPG0974 is not only an FFA2R antagonist, but also displays agonistic and positive FFA2R-modulating functions that affect NADPH-oxidase activity and alter the receptor-downstream signaling induced by the co-agonistic PAMs.
  •  
46.
  • Livitsanou, Melina, et al. (författare)
  • Modulation of TGF beta/Smad signaling by the small GTPase RhoB
  • 2018
  • Ingår i: Cellular Signalling. - : ELSEVIER SCIENCE INC. - 0898-6568 .- 1873-3913. ; 48, s. 54-63
  • Tidskriftsartikel (refereegranskat)abstract
    • We have shown previously that the small GTPases RhoA and RhoB play important roles in early TGF beta-induced actin cytoskeleton reorganization and that RhoB is transcriptionally activated by TGF beta and its signaling effectors, the Smad proteins. However, this long-term impact of RhoB gene upregulation by TGF beta on cellular functions is not known. We now show that increased levels of RhoB, but not of RhoA, inhibit the TGFP/Smadmediated transcriptional induction of the cell cycle inhibitor p21(WAF1/Cip1) gene as well as of a generic Smadresponsive promoter suggesting that RhoB could be part of an auto-inhibitory loop in TGF beta signaling by inhibiting the genomic responses to Tall We show that RhoB blocks the interaction of Smad3 with the type I TGF beta receptor which prohibits its phosphorylation by this receptor and its translocation to the nucleus. Using in vivo GST pull-down and co-immunoprecipitation assays we show that Smad3 physically interacts with RhoB but not with RhoA. We show that RhoB, but not RhoA, potently regulates actin cytoskeleton reorganization by inducing stress fiber formation in a Smad-dependent manner. Finally we show that Smad3 downregulates the expression of the epithelial adherens junctions protein E-Cadherin and upregulates the fibronectin gene in Smad3(-/-) JEG3 cells only in the presence of RhoB suggesting that RhoB/Smad3 complexes in the cytoplasm may be involved in epithelial to mesenchymal transitions. In summary, our data propose a novel mechanism of TGF beta/Smad signaling modulation by the small GTPase RhoB and show that this TGF beta/RhoB signaling cross talk affects the nuclear and cytoplasmic responses to TGF beta in opposite ways.
  •  
47.
  • Ma, Haisha, et al. (författare)
  • Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation
  • 2015
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 27:11, s. 2209-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • Histidine domain-containing protein tyrosine phosphatase (HD-PTP) is a putative phosphatase that has been shown to affect the signaling and downregulation of certain receptor tyrosine kinases. To investigate if HD-PTP affects platelet-derived growth factor receptor beta (PDGFR beta) signaling, we employed the overexpression of HA-tagged HD-PTP, as well as siRNA-mediated and lentivirus shRNA-mediated silencing of HD-PTP in NIH3T3 cells. We found that HD-PTP was recruited to the PDGFR beta in a ligand-dependent manner. Depletion of HD-PTP resulted in an inability of PDGF-BB to promote tyrosine phosphorylation of the ubiquitin ligases c-Cbl and Cbl-b, with a concomitant missorting and reduction of the degradation of activated PDGFRS. In contrast, ligand-induced internalization of PDGFR beta was unaffected by HD-FTP silencing. Furthermore, the levels of STAM and Hrs of the ESCRT0 machinery were decreased, and immunofluorescence staining showed that in HD-PTP-depleted cells, PDGFR beta accumulated in large aberrant intracellular structures. After the reduction of HD-PTP expression, an NIH3T3-derived cell line that has autocrine PDGF-BB signaling (sis-3 T3) showed increased ability of anchorage-independent growth. However, exogenously added PDGF-BB promoted efficient additional colony formation in control cells, but was not able to do so in HD-PTP-depleted cells. Furthermore, cells depleted of HD-PTP migrated faster than control cells. In summary, HD-PTP affects the intracellular sorting of activated PDGFRS and the migration, proliferation and tumorigenicity of cells stimulated by PDGF.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 111
Typ av publikation
tidskriftsartikel (106)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (109)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Degerman, Eva (10)
Göransson, Olga (8)
Berggren, PO (7)
Lennartsson, Johan (7)
Schulte, G (7)
Heldin, Carl-Henrik (6)
visa fler...
Rönnstrand, Lars (6)
Manganiello, Vincent (6)
Barker, CJ (4)
Kim, J. (3)
Bengtsson, Tore (3)
Larsson, Christer (3)
Illies, C (3)
Welsh, Michael (3)
Heldin, Carl-Henrik, ... (3)
Jurek, Aleksandra (3)
Martins, JO (3)
Grenegård, Magnus, 1 ... (3)
Li, J. (2)
Dobra, K (2)
Hjerpe, A (2)
Tengholm, Anders (2)
Szatmári, T. (2)
Mulder, J (2)
Li, Jin-Ping (2)
Resjö, Svante (2)
Laurencikiene, Jurga (2)
Lundström, Ingemar (2)
Svensson, Samuel, 19 ... (2)
Hokfelt, T (2)
Harkany, T (2)
Skandalis, Spyros S. (2)
Fuxe, K (2)
Kohler, M (2)
Kreuger, Johan, 1972 ... (2)
Manganiello, Vincent ... (2)
Gromada, J (2)
Valladolid-Acebes, I (2)
Lindahl, Tomas (2)
Dahlgren, Claes, 194 ... (2)
Alling, Christer (2)
Simonsson, Per (2)
Csikasz, Robert I. (2)
Aspenstrom, P (2)
Bryja, V (2)
Forsman, Huamei (2)
Juntti-Berggren, L (2)
Moustakas, Aristidis (2)
Ferreira, SD (2)
Heldin, Johan (2)
visa färre...
Lärosäte
Karolinska Institutet (40)
Uppsala universitet (34)
Lunds universitet (26)
Göteborgs universitet (6)
Linköpings universitet (6)
Stockholms universitet (5)
visa fler...
Örebro universitet (4)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Högskolan i Skövde (1)
Karlstads universitet (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (111)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Medicin och hälsovetenskap (34)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy