SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1879 2642 "

Sökning: L773:1879 2642

  • Resultat 1-50 av 103
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agmo Hernández, Víctor, et al. (författare)
  • Ubiquinone-10 alters mechanical properties and increases stability of phospholipid membranes
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1848:10, s. 2233-2243
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Ubiquinone-10 is mostly known for its role as an electron and proton carrier in aerobic cellular respiration and its function as a powerful antioxidant. Accumulating evidence suggest, however, that this well studied membrane component could have several other important functions in living cells. The current study reports on a previously undocumented ability of ubiquinone-10 to modulate the mechanical strength and permeability of lipid membranes. Investigations of DPH fluorescence anisotropy, spontaneous and surfactant induced leakage of carboxyfluorescein, and interactions with hydrophobic and hydrophilic surfaces were used to probe the effects caused by inclusion of ubiquinone-10 in the membrane of phospholipid liposomes. The results show that ubiquinone in concentrations as low as 2 mol.% increases the lipid packing order and condenses the membrane. The altered physicochemical properties result in a slower rate of release of hydrophilic components, and render the membrane more resistant towards rupture. As judged from comparative experiments using the polyisoprenoid alcohol solanesol, the quinone moiety is essential for the membrane stabilizing effects to occur. Our findings imply that the influence of ubiquinone-10 on the permeability and mechanical properties of phospholipid membranes is similar to that of cholesterol. The reported data indicate, however, that the molecular mechanisms are different in the two cases.
  •  
2.
  • Albèr, Cathrine, et al. (författare)
  • Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy
  • 2013
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642 .- 0006-3002. ; 1828:11, s. 2470-2478
  • Tidskriftsartikel (refereegranskat)abstract
    • The rather thin outermost layer of the mammalian skin, stratum corneum (SC), is a complex biomembrane which separates the water rich inside of the body from the dry outside. The skin surface can be exposed to rather extreme variations in ambient conditions (e.g. water activity, temperature and pH), with potential effects on the barrier function. Increased understanding of how the barrier is affected by such changes is highly relevant for regulation of transdermal uptake of exogenous chemicals. In the present study we investigate the effect of hydration and the use of a well-known humectant, urea, on skin barrier ultrastructure by means of confocal Raman microspectroscopy. We also perform dynamic vapor sorption (DVS) microbalance measurements to examine the water uptake capacity of SC pretreated with urea. Based on novel Raman images, constructed from 2D spectral maps, we can distinguish large water inclusions within the skin membrane exceeding the size of fully hydrated corneocytes. We show that these inclusions contain water with spectral properties similar to that of bulk water. The results furthermore show that the ambient water activity has an important impact on the formation of these water inclusions as well as on the hydration profile across the membrane. Urea significantly increases the water uptake when present in skin, as compared to skin without urea, and it promotes formation of larger water inclusions in the tissue. The results confirm that urea can be used as a humectant to increase skin hydration.
  •  
3.
  • Anko, Maja, et al. (författare)
  • Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1818:3, s. 915-924
  • Tidskriftsartikel (refereegranskat)abstract
    • The PepFect family of cell-penetrating peptides (CPPs) was designed to improve the delivery of nucleic acids across plasma membranes. We present here a comparative study of two members of the family, PepFect3 (PF3) and PepFect6 (PF6), together with their parental CPP transportan-10 (TP10), and their interactions with lipid membranes. We show that the addition of a stearyl moiety to TP10 increases the amphipathicity of these molecules and their ability to insert into a lipid monolayer composed of zwitterionic phospholipids. The addition of negatively charged phospholipids into the monolayer results in decreased binding and insertion of the stearylated peptides, indicating modification in the balance of hydrophobic versus electrostatic interactions of peptides with lipid bilayer, thus revealing some clues for the selective interaction of these CPPs with different lipids. The trifluoromethylquinoline moieties, in PF6 make no significant contribution to membrane binding and insertion. TP10 actively introduces pores into the bilayers of large and giant unilamellar vesicles, while PF3 and PF6 do so only at higher concentrations. This is consistent with the lower toxicity of PR and PF6 observed in previous studies.
  •  
4.
  • Argatov, Ivan, et al. (författare)
  • Modeling of composite sorption isotherm for stratum corneum
  • 2022
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642. ; 1864:7, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Equilibrium water sorption in stratum corneum (SC) is considered by treating it as a biocomposite with two main phases, namely, corneocytes and lipids. To validate the rule of mixtures for the individual phase sorption isotherms, a new flexible fitting model is introduced by accounting for characteristic features observed in the variations of the thermodynamic correction factors corresponding to the individual sorption isotherms. The comparison of the model fitting performance with that of the five-parameter Park's model shows a remarkably good ability to fit experimental data for different types of sorption isotherms. The effect of the lipids content on the variance of the composite sorption isotherm of stratum corneum is highlighted. The sensitivity analysis reveals that for the typical water content 20-30 wt%, which corresponds to the SC in a stable condition, the sensitivity of the composite sorption isotherm to the variation of the lipids content on dry basis is predominantly positive and sufficiently small. The good agreement observed between the experimental sorption isotherm for SC and the composite isotherm, which is based on the rule of mixtures for the individual phase sorption isotherms, yields a plausible conclusion (hypothesis) that the corneocytes-lipids mechanical interaction during unconstrained swelling of the SC membrane in the in vitro laboratory experiment is negligible.
  •  
5.
  • Ariöz, Candan, 1983-, et al. (författare)
  • Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes :
  • 2014
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1838:7, s. 1862-1870
  • Tidskriftsartikel (refereegranskat)abstract
    • The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellular membranes when overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22 h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~ 62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE) was detected to be the most affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition.
  •  
6.
  • Arukuusk, Piret, et al. (författare)
  • New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids
  • 2013
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1828:5, s. 1365-1373
  • Tidskriftsartikel (refereegranskat)abstract
    • Harnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160 nm. Such nanoparticles have a negative surface charge (-11 to -18 mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing. One of the novel peptides, NickFect51 is capable of transfecting plasmid DNA into a large variety of cell lines, including refractory suspension and primary cells and in several cases exceeds the transfection level of commercially available reagent Lipofectamine (TM) 2000 without any cytotoxic side effects. Additionally we demonstrate the advantages of NickFect51 in a protein production system, QMCF technology, for expression and production of recombinant proteins in hardly transfectable suspension cells.
  •  
7.
  • Bárcena-Uribarri, Iván, et al. (författare)
  • P66 porins are present in both Lyme disease and relapsing fever spirochetes : a comparison of the biophysical properties of P66 porins from six Borrelia species
  • 2010
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642. ; 1798:6, s. 1197-1203
  • Tidskriftsartikel (refereegranskat)abstract
    • The genus Borrelia is the cause of the two human diseases: Lyme disease (LD) and relapsing fever (RF). BothLD and RF Borrelia species are obligate parasites and are dependent on nutrients provided by their hosts. Thefirst step of nutrient uptake across the outer membrane of these Gram-negative bacteria is accomplished bywater-filled channels, so-called porins. The knowledge of the porin composition in the outer membranes ofthe different pathogenic Borrelia species is limited. Only one porin has been described in relapsing feverspirochetes to date, whereas four porins are known to be present in Lyme disease agents. From these, theBorrelia burgdorferi outer membrane channel P66 is known to act as an adhesin and was well studied as aporin. To investigate if P66 porins are expressed and similarly capable of pore formation in other Borreliacausing Lyme disease or relapsing fever three LD species (B. burgdorferi, B. afzelii, B. garinii) and three RFspecies (B. duttonii, B. recurrentis and B. hermsii) were investigated for outer membrane proteins homologousto P66. A search in current published RF genomes, comprising the ones of B. duttonii, B. recurrentis and B.hermsii, indicated that they all contained P66 homologues. The P66 homologues of the six Borrelia specieswere purified to homogeneity and their pore-forming abilities as well as the biophysical properties of thepores were analyzed using the black lipid bilayer assay.
  •  
8.
  • Björkholm, Patrik, et al. (författare)
  • Identification of novel sphingolipid-binding motifs in mammalian membrane proteins
  • 2014
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1838:8, s. 2066-2070
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific interactions between transmembrane proteins and sphingolipids is a poorly understood phenomenon, and only a couple of instances have been identified. The best characterized example is the sphingolipid-binding motif VXXTLXXIY found in the transmembrane helix of the vesicular transport protein p24. Here, we have used a simple motif-probability algorithm (MOPRO) to identify proteins that contain putative sphingolipid-binding motifs in a dataset comprising proteomes from mammalian organisms. From these motif-containing candidate proteins, four with different numbers of transmembrane helices were selected for experimental study: i) major histocompatibility complex II Q alpha chain subtype (DQA1), ii) GPI-attachment protein 1 (GAA1), iii) tetraspanin-7 TSN7, and iv), metabotropic glutamate receptor 2 (GRM2). These candidates were subjected to photo-affinity labeling using radiolabeled sphingolipids, confirming all four candidate proteins as sphingolipid-binding proteins. The sphingolipid-binding motifs are enriched in the 7TM family of G-protein coupled receptors, predominantly in transmembrane helix 6. The ability of the motif-containing candidate proteins to bind sphingolipids with high specificity opens new perspectives on their respective regulation and function.
  •  
9.
  • Björnerås, Johannes, et al. (författare)
  • Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1848:11, s. 2910-2917
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixtures of lipids and detergents are known to form bicelles at certain parameter ranges, but many uncertainties remain concerning the details of the phase behaviour of these mixtures and the morphology of the formed lipid assemblies. Here we used nuclear magnetic resonance (NMR) diffusion data in combination with the multivariate processing method speedy component resolution (SCORE) to analyse mixtures of 1,2-dihexanoyl-snglycero-3-phosphocholine (DHPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the relative concentration q = [DMPC]/[DHPC] = 0.5 at total lipid concentrations ranging from 15 to 300 mM. With this approach we were able to resolve the heavily overlapping mixture spectra into component spectra and obtained reliable diffusion coefficients for lipid concentrations in the range 15 to 300 mM, although at high concentrations (250-300 mM), non-negativity constraints or overfactoring was required to successfully decompose the data. At 50-300 mM total lipid concentration, the radii estimated from the diffusion coefficient of DMPC indicate assemblies of the appropriate bicelle size, although small size variations exist, while at lower concentrations the morphology appears to change to larger assemblies. Taken together, the results suggest that for q = 0.5 DMPC/DHPC mixtures there is a relatively broad concentration range above 50 mM where bicelles may reliably be assumed to adopt the 'classical' bicelle morphology. The study clearly demonstrates the usefulness of our approach for accurately determining physical properties of complex mixtures such as bicelles. Both reliable diffusion coefficients and chemical shifts can be derived from overlapping data. This should prove useful for analysing the behaviour of other, more complex, lipid mixtures.
  •  
10.
  • Bodor, Andrea, et al. (författare)
  • Membrane interactions in small fast-tumbling bicelles as studied by P-31 NMR
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1848:3, s. 760-766
  • Tidskriftsartikel (refereegranskat)abstract
    • Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used P-31 NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and P-31 T-2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T-2 relaxation are observed at higher temperatures. A comparison of P-31 T-1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T-1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules - in particular for the negatively charged DMPG - while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide-membrane interactions.
  •  
11.
  • Boija, Elisabet, et al. (författare)
  • Interactions between model membranes and lignin-related compounds studied by immobilized liposome chromatography
  • 2006
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1758:5, s. 620-626
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to elucidate the modes of interaction between lignin precursors and membranes, we have studied the influence of temperature, lipid composition and buffer composition on the partitioning of monolignol and dilignol model substances into phospholipid bilayers. The partitioning was determined by immobilized liposome chromatography, which is an established method for studies of pharmaceutical drugs but a new approach in studies of lignin synthesis. The temperature dependence of the retention and the effect of a high ammonium sulfate concentration in the mobile phase demonstrated that the interaction involved both hydrophobic effects and polar interactions. There was also a good correlation between the partitioning and the estimated hydrophobicity, in terms of octanol/water partitioning. The partitioning behavior of the model substances suggests that passive diffusion over the cell membrane is a possible transport route for lignin precursors. This conclusion is strengthened by comparison of the present results with the partitioning of pharmaceutical drugs that are known to pass cell membranes by diffusion.
  •  
12.
  • Botelho, Salome C., et al. (författare)
  • Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1848:2, s. 615-621
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic tuning, i.e. repositioning aromatic residues found at the cytoplasmic end of transmembrane (TM) domains within bacterial receptors, has been previously shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor EnvZ of Escherichia coli. In the case of Tar, changes in signal output consistent with the vertical position of the native Trp-Tyr aromatic tandem within TM2 were observed. In contrast, within EnvZ, where a Trp-Leu-Phe aromatic triplet was repositioned, the surface that the triplet resided upon was the major determinant governing signal output. However, these studies failed to determine whether moving the aromatic residues was sufficient to physically reposition the TM helix within a membrane. Recent coarse-grained molecular dynamics (CG-MD) simulations predicted displacement of Tar TM2 upon moving the aromatic residues at the cytoplasmic end of the helix. Here, we demonstrate that repositioning the Trp-Tyr tandem within Tar TM2 displaces the C-terminal boundary of the helix relative to the membrane. In a similar analysis of EnvZ, an abrupt initial displacement of TM2 was observed but no subsequent movement was seen, suggesting that the vertical position of TM2 is not governed by the location of the Trp-Leu-Phe triplet. Our results also provide another set of experimental data, i.e. the resistance of EnvZ TM2 to being displaced upon aromatic tuning, which could be useful for subsequent refinement of the initial CG-MD simulations. Finally, we discuss the limitations of these methodologies, how moving flanking aromatic residues might impact steady-state signal output and the potential to employ aromatic tuning in other bacterial membrane-spanning receptors.
  •  
13.
  • Brandejsky, Vaclav, et al. (författare)
  • Phosphorus-31: A table-top method for 3D B1-field amplitude and phase measurements
  • 2024
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : ELSEVIER. - 0005-2736 .- 1879-2642. ; 1866:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel method of high -spatial -resolution, 3D B1 -field distribution measurements is presented. The method is independent of the MR -scanner, and it allows for automated acquisitions of complete maps of all magnetic field vector components for both proton and heteronuclear MR coils of arbitrary geometrical shapes. The advantage of the method proposed here, compared with methods based on measurements with an MR -scanner, is that a complete image of both receive and transmit B1 -fields, including the phase of the B1 -field, can be acquired. The B1 field maps obtained in this manner can be used for absolute quantification of metabolites in MRS experiments, as well as for intensity compensations in imaging experiments, both of which are important concepts in biological and medical MR applications. Another use might be in coil development and testing. A comparison with B1 field magnitude maps obtained with an MR -scanner was included to validate the accuracy of the proposed method.
  •  
14.
  • Burman, Robert, et al. (författare)
  • Cyclotide-membrane interactions: defining factors of membrane binding, depletion and disruption
  • 2011
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1808:11, s. 2665-2673
  • Tidskriftsartikel (refereegranskat)abstract
    • The cyclotide family of plant-derived peptides is defined by a cyclic backbone and three disulfide bonds locked into a cyclic cystine knot. They display a diverse range of biological activities, many of which have been linked to an ability to target biological membranes. In the current work, we show that membrane binding and disrupting properties of prototypic cyclotides are dependent on lipid composition, using neutral (zwitterionic) membranes with or without cholesterol and/or anionic lipids. Cycloviolacin O2 (cyO2) caused potent membrane disruption, and showed selectivity towards anionic membranes, whereas kalata B1 and kalata B2 cyclotides were significantly less lytic towards all tested model membranes. To investigate the role of the charged amino acids of cyO2 in the membrane selectivity, these were neutralized using chemical modifications. In contrast to previous studies on the cytotoxic and antimicrobial effects of these derivatives, the Glu6 methyl ester of cyO2 was more potent than the native peptide. However, using membranes of Escherichia coil lipids gave the opposite result: the activity of the native peptide increased 50-fold. By using a combination of ellipsometry and LC-MS, we demonstrated that this unusual membrane specificity is due to native cyO2 extracting preferentially phosphatidylethanolamine-lipids from the membrane, i.e., PE-C16:0/cyC17:0 and PE-C16:0/C18:1.
  •  
15.
  • Castro, Vasco, et al. (författare)
  • NMR investigations of interactions between anesthetics and lipid bilayers
  • 2008
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : ELSEVIER SCIENCE BV. - 0005-2736 .- 1879-2642. ; 1178:11, s. 2604-2611
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between anesthetics (lidocaine and short chain alcohols) and lipid membranes formed by dimyristoylphosphatidylcholine (DMPC) were studied using NMR spectroscopy. The orientational order of lidocaine was investigated using deuterium NMR on a selectively labelled compound whereas segmental ordering in the lipids was probed by two-dimensional 1H–13C separated local field experiments under magic-angle spinning conditions. In addition, trajectories generated in molecular dynamics (MD) computer simulations were used for interpretation of the experimental results. Separate simulations were carried out with charged and uncharged lidocaine molecules. Reasonable agreement between experimental dipolar interactions and the calculated counterparts was observed. Our results clearly show that charged lidocaine affects significantly the lipid headgroup. In particular the ordering of the lipids is increased accompanied by drastic changes in the orientation of the P–N vector in the choline group.
  •  
16.
  • Castro, Vasco, et al. (författare)
  • NMR studies of membranes composed of glycolipids and phospholipids
  • 2007
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768, s. 2432-2437:1768, s. 2432-2437
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid membranes composed of monogalactosyldiacylglycerol (MGDG) and dimyristoylphosphatidylcholine (DMPC) were studied by means of NMR spectroscopy. The macroscopic phase behaviour was investigated by P-31 NMR under stationary conditions, whereas microscopic properties such as segmental ordering were probed by two-dimensional H-1-C-13 separated local field experiments under magic-angle spinning conditions. Our results clearly show that ordering/disordering effects occur for the headgroups as well as for the acyl chains when the sample composition is varied. In particular, the H-1-C-13 dipolar couplings within the galactose headgroup of MGDG exhibited significant concentration dependence.
  •  
17.
  • Dingeldein, Artur P. G., et al. (författare)
  • Oxidatively stressed mitochondria-mimicking membranes : a molecular insight into their organization during apoptosis
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642. ; 1860:12, s. 2644-2654
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria are crucially involved in the removal of eukaryotic cells by the intrinsic pathway of programmed cell death (apoptosis). The mitochondrion's outer membrane (MOM) is the platform where this pathway takes place. Upon oxidative stress triggering apoptotic action, the MOM undergoes permeabilization and release of cytochrome c, ultimately causing cell death. This membrane perforation is regulated not only by opposing members of the Bcl-2 protein family meeting at the MOM but also actively the membrane itself. Upon oxidative damage, the membrane undergoes severe reorganization causing an increase in cell death-causing apoptotic Bcl-2 proteins. To understand the active role of MOM, we provided a detailed molecular view of its structural and dynamic reorganization upon oxidative stress by solid-state C-13 MAS NMR (magic angle spinning nuclear magnetic resonance) accompanied by calorimetric studies. By focusing on MOM-like vesicles doped with oxidized lipid species, direct polarization C-13 MAS NMR provided a quantitative overview and identification of all lipid moieties across the membrane. H-1-C-1(3) cross polarization and insensitive nuclei enhanced by polarization transfer MAS NMR generated a dynamic - mobile versus restricted - membrane profile. Oxidized phospholipids significantly perturb the structural membrane organization and increase membrane dynamics. These perturbations are not uniformly distributed as the hydrophobic core is reflecting the melting of lipid chains and increase in molecular disorder directly, whereas the interface and headgroup region undergo complex dynamical changes, reflecting increased intra-molecular flexibility of these moieties. These changes are potentially crucial in augmenting pro-apoptotic action of proteins like Bax.
  •  
18.
  • Dinic, Jelena, et al. (författare)
  • Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains
  • 2013
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1828:3, s. 1102-1111
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between ordered plasma membrane nanodomains, known as lipid rafts, and actin filaments is the focus of this study. Plasma membrane order was followed in live cells at 37°C using laurdan and di-4-ANEPPDHQ to report on lipid packing. Disrupting actin polymerisation decreased the fraction of ordered domains, which strongly argue that unstimulated cells have a basal level of ordered domains. Stabilising actin filaments had the opposite effect and increased the proportion of ordered domains. Decreasing the plasma membrane level of 4-phosphate-inositides lowers the number of attachment points for actin filaments and reduced the proportion of ordered domains. Aggregation of plasma membrane molecules, both lipid raft and non-lipid raft markers, lead to the formation of ordered domains. The increase in ordered domains was correlated with an increase in actin filaments just beneath the plasma membrane. In live cell plasma membrane blebs, which are detached from the underlying actin filaments, the fraction of ordered domains was low and GM1 could not be patched to form ordered domains. We conclude that ordered domains form when actin filaments attach to the plasma membrane. This downplays lipid-lipid interactions as the main driving force behind the formation of ordered membrane domains in vivo, giving greater prominence to membrane-intracellular filament interactions.
  •  
19.
  • Dos Santos, Nancy, et al. (författare)
  • Influence of poly(ethylene glycol) grafting density and polymer length on liposomes : Relating plasma circulation lifetimes to protein binding
  • 2007
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768:6, s. 1367-1377
  • Tidskriftsartikel (refereegranskat)abstract
    • The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG(2000)) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG(2000). At this proportion of DSPE-PEG(2000), the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG(2000) in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.
  •  
20.
  • Eiríksdóttir, Emelía, 1976-, et al. (författare)
  • Secondary Structure of Cell-Penetrating Peptides Controls Membrane Interaction and Insertion
  • 2010
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1798:6, s. 1119-1128
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical use of efficient therapeutic agents is often limited by the poor permeability of the biological membranes. In order to enhance their cell delivery, short amphipathic peptides called cell-penetrating peptides (CPPs) have been intensively developed for the last two decades. CPPs are based either on protein transduction domains, model peptide or chimeric constructs and have been used to deliver cargoes into cells through either covalent or non-covalent strategies. Although several parameters are simultaneously involved in their internalization mechanism, recent focuses on CPPs suggested that structural properties and interactions with membrane phospholipids could play a major role in the cellular uptake mechanism. In the present work, we report a comparative analysis of the structural plasticity of 10 well-known CPPs as well as their ability to interact with phospholipid membranes. We propose a new classification of CPPs based on their structural properties, affinity for phospholipids and internalization pathways already reported in the literature.
  •  
21.
  • Eriksson, Emma K., et al. (författare)
  • Effect of ubiquinone-10 on the stability of biomimetic membranes of relevance for the inner mitochondrial membrane.
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1860:5, s. 1205-1215
  • Tidskriftsartikel (refereegranskat)abstract
    • Ubiquinone-10 (Q10) plays a pivotal role as electron-carrier in the mitochondrial respiratory chain, and is also well known for its powerful antioxidant properties. Recent findings suggest moreover that Q10 could have an important membrane stabilizing function. In line with this, we showed in a previous study that Q10 decreases the permeability to carboxyfluorescein (CF) and increases the mechanical strength of 1-palmitoyl-2-oleyl-sn-glycero-phosphocholine (POPC) membranes. In the current study we report on the effects exerted by Q10 in membranes having a more complex lipid composition designed to mimic that of the inner mitochondrial membrane (IMM). Results from DPH fluorescence anisotropy and permeability measurements, as well as investigations probing the interaction of liposomes with silica surfaces, corroborate a membrane stabilizing effect of Q10 also in the IMM-mimicking membranes. Comparative investigations examining the effect of Q10 and the polyisoprenoid alcohol solanesol on the IMM model and on membranes composed of individual IMM components suggest, moreover, that Q10 improves the membrane barrier properties via different mechanisms depending on the lipid composition of the membrane. Thus, whereas Q10's inhibitory effect on CF release from pure POPC membranes appears to be directly and solely related to Q10's lipid ordering and condensing effect, a mechanism linked to Q10's ability to amplify intrinsic curvature elastic stress dominates in case of membranes containing high proportions of palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE).
  •  
22.
  • Eriksson, Emma K., et al. (författare)
  • Osmoprotective effect of ubiquinone in lipid vesicles modelling the E. coli plasma membrane
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1861:7, s. 1388-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria need to be able to adapt to sudden changes in their environment, including drastic changes in the surrounding osmolarity. As part of this adaptation, the cells adjust the composition of their cytoplasmic membrane. Recent studies have shown that ubiquinones, lipid soluble molecules involved in cell respiration, are overproduced by bacteria grown in hyperosmotic conditions and it is thus believed that these molecules can provide with osmoprotection. Hereby we explore the mechanisms behind these observations. Liposomes with a lipid headgroup composition mimicking that of the cytoplasmic membrane of E. coli are used as suitable models. The effect of ubiquinone-10 (Q10) on water transport across the membranes is characterized using a custom developed fluorescence-based experimental approach to simultaneously determine the membrane permeability coefficient and estimate the elastic resistance of the membrane towards deformation. It is shown that both parameters are affected by the presence of ubiquinone-10. Solanesol, a molecule similar to Q10 but lacking the quinone headgroup, also provides with osmoprotection although it only improves the resistance of the membrane against deformation. The fluorescence experiments are complemented by cryogenic transmission electron microscopy studies showing that the E. coli membrane mimics tend to flatten into spheroid oblate structures when osmotically stressed, suggesting the possibility of lipid segregation. In agreement with its proposed osmoprotective role, the flattening process is hindered by the presence of Q10.
  •  
23.
  • Forooqi Motlaq, Vahid, et al. (författare)
  • Dissolution mechanism of supported phospholipid bilayer in the presence of amphiphilic drug investigated by neutron reflectometry and quartz crystal microbalance with dissipation monitoring
  • 2022
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642. ; 1864:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence and interaction of the ionizable amphiphilic drug amitriptyline hydrochloride (AMT) on a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid bilayer supported on a silica surface have been investigated using a combination of neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Adding AMT solutions with concentrations 3, 12, and 50 mM leaves the lipid bilayer mainly intact and we observe most of the AMT molecules attached to the head-group region of the outer bilayer leaflet. Virtually no AMT penetrates into the hydrophilic head-group region of the inner leaflet close to the silica surface. By adding 200 mM AMT solution, the lipid bilayer dissolved entirely, indicating a threshold concentration for the solubilization of the bilayer by AMT. The observed threshold concentration is consistent with the observation that various bilayer structures abruptly transform into mixed AMT-DOPC micelles beyond a certain AMT-DOPC composition. Based on our experimental observations, we suggest that the penetration of drug into the phospholipid bilayer, and subsequent solubilization of the membrane, follows a two-step mechanism with the outer leaflet being removed prior to the inner leaflet.
  •  
24.
  • Grad, Philipp, et al. (författare)
  • A closer look at calcium-induced interactions between phosphatidylserine-(PS) doped liposomes and the structural effects caused by inclusion of gangliosides or polyethylene glycol- (PEG) modified lipids
  • 2024
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642. ; 1866:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of polyethylene glycol- (PEG) modified lipids and gangliosides on the Ca2+ induced interaction between liposomes composed of palmitoyl-oleoyl phosphatidylethanolamine (POPE) and palmitoyl-oleoyl phosphatidylserine (POPS) was investigated at physiological ionic strength. Förster resonance energy transfer (FRET) studies complemented with dynamic light scattering (DLS) and cryo-transmission electron microscopy (Cryo-EM) show that naked liposomes tend to adhere, rupture, and collapse on each other's surfaces upon addition of Ca2+, eventually resulting in the formation of large multilamellar aggregates and bilayer sheets. Noteworthy, the presence of gangliosides or PEGylated lipids does not prevent the adhesion-rupture process, but leads to the formation of small, long-lived bilayer fragments/disks. PEGylated lipids seem to be more effective than gangliosides at stabilizing these structures. Attractive interactions arising from ion correlation are proposed to be a driving force for the liposome-liposome adhesion and rupture processes. The results suggest that, in contrast with the conclusions drawn from previous solely FRET-based studies, direct liposome-liposome fusion is not the dominating process triggered by Ca2+ in the systems studied.
  •  
25.
  • Guterstam, Peter, 1977-, et al. (författare)
  • Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate
  • 2009
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1788:12, s. 2509-2517
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are membrane permeable vectors recognized for their intrinsic ability to gain access to the cell interior. The hydrophobic counter-anion, pyrenebutyrate, enhances cellular uptake of oligoarginine CPPs. To elucidate CPP uptake mechanisms, the effect of pyrenebutyrate on well-recognized CPPs with various hydrophobicity and arginine content is investigated. The cellular CPP-uptake and CPP-mediated oligonucleotide delivery is analyzed by fluorescence activated cell sorting, confocal microscopy, and a cell based splice-switching assay. The splice-switching oligonucleotide is a mixmer of 2’-O-methyl RNA and locked nucleic acids delivered as a non-covalent complex with 10-fold molar CPP excess. CPP-induced membrane perturbation on large unilamellar vesicles is investigated in calcein release experiments. We observed that pyrenebutyrate facilitates cellular uptake and translocation of oligonucleotide mediated by oligoarginine nonamer while limited effect of pyrenebutyrate on more hydrophobic CPPs was observed. By combining the different experimental results we conclude that the pathway for cellular uptake of oligoarginine is dominated by direct membrane translocation, whereas the pathway for oligoarginine-mediated oligonucleotide translocation is dominated by endocytosis. Both mechanisms are promoted by pyrenebutyrate and we suggest that pyrenebutyrate has different sites of action for the two uptake and translocation mechanisms.
  •  
26.
  • Harpole, Tyler J., et al. (författare)
  • Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642. ; 1860:4, s. 909-926
  • Forskningsöversikt (refereegranskat)abstract
    • The expansion of computational power, better parameterization of force fields, and the development of novel algorithms to enhance the sampling of the free energy landscapes of proteins have allowed molecular dynamics (MD) simulations to become an indispensable tool to understand the function of biomolecules. The temporal and spatial resolution of MD simulations allows for the study of a vast number of processes of interest. Here, we review the computational efforts to uncover the conformational free energy landscapes of a subset of membrane proteins: ion channels, transporters and G-protein coupled receptors. We focus on the various enhanced sampling techniques used to study these questions, how the conclusions come together to build a coherent picture, and the relationship between simulation outcomes and experimental observables.
  •  
27.
  • Holdbrook, Daniel A., et al. (författare)
  • Influence of pH on the activity of thrombin-derived antimicrobial peptides
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1860:11, s. 2374-2384
  • Tidskriftsartikel (refereegranskat)abstract
    • The wound environment is characterized by physiological pH changes. Proteolysis of thrombin by wound-derived proteases, such as neutrophil elastase, generates antimicrobial thrombin-derived C-terminal peptides (TCPs), such as HVF18 (HVFRLKKWIQKVIDQFGE). Presence of such TCPs in human wound fluids in vivo, as well as the occurrence of an evolutionarily conserved His residue in the primary amino acid sequence of TCPs, prompted us to investigate the pH-dependent antibacterial action of HVF18, as well as of the prototypic GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE). We show that protonation of this His residue at pH 5.5 increases the antibacterial activity of both TCPs against Gram-negative Escherichia coli by membrane disruption. Physiological salt level (150 mM NaCl) augments antibacterial activity of GKY25 but diminishes for the shorter HVF18. Replacing His with Leu or Ser in GKY25 abolishes the His protonation-dependent increase in antibacterial activity at pH 5.5, whereas substitution with Lys maintains activity at neutral (pH 7.4) and acidic pH. Interestingly, both TCPs display decreased binding affinities to human CD14 with decreasing pH, suggesting a likely switch in mode-of-action, from anti-inflammatory at neutral pH to antibacterial at acidic pH. Together, the results demonstrate that apart from structural prerequisites such as peptide length, charge, and hydrophobicity, the evolutionarily conserved His residue of TCPs influences their antibacterial effects and reveals a previously unknown aspect of TCPs biological action.
  •  
28.
  • Howard, Rebecca J., et al. (författare)
  • Permeating disciplines : Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : ELSEVIER SCIENCE BV. - 0005-2736 .- 1879-2642. ; 1860:4, s. 927-942
  • Forskningsöversikt (refereegranskat)abstract
    • Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process for example with neuroactive drugs demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin Mcllwain.
  •  
29.
  • Hugonin, Loïc, et al. (författare)
  • Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides
  • 2008
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642 .- 0006-3002. ; 1778:5, s. 1267-1273
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors but also induce non-opioid excitotoxic effects. Dynorphin A can increase the intra-neuronal calcium concentration through a non-opioid and non-NMDA mechanism. In this investigation, we show that big dynorphin, dynorphin A and to some extent dynorphin A (1-13), but not dynorphin B, allow calcium to enter into large unilamellar phospholipid vesicles with partly negative headgroups. The effects parallel the previously studied potency of dynorphins to translocate through biological membranes and to cause calcein leakage from large unilamellar phospholipid vesicles. There is no calcium ion influx into vesicles with zwitterionic headgroups. We have also investigated if the dynorphins can translocate through the vesicle membranes and estimated the relative strength of interaction of the peptides with the vesicles by fluorescence resonance energy transfer. The results show that dynorphins do not translocate in this membrane model system. There is a strong electrostatic contribution to the interaction of the peptides with the membrane model system.
  •  
30.
  • Hörnström, David, et al. (författare)
  • Molecular optimization of autotransporter-based tyrosinase surface display
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : ELSEVIER SCIENCE BV. - 0005-2736 .- 1879-2642. ; 1862:2, s. 486-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Display of recombinant enzymes on the cell surface of Gram-negative bacteria is a desirable feature with applications in whole-cell biocatalysis, affinity screening and degradation of environmental pollutants. One common technique for recombinant protein display on the Escherichia colt surface is autotransport. Successful autotransport of an enzyme largely depends on the following: (1) the size, sequence and structure of the displayed protein, (2) the cultivation conditions, and (3) the choice of the autotransporter expression system. Common problems with autotransporter-mediated surface display include low expression levels and truncated fusion proteins, which both limit the cell-specific activity. The present study investigated an autotransporter expression system for improved display of tyrosinase on the surface of E. coli by evaluating different variants of the autotransporter vector including: promoter region, signal peptide, the recombinant passenger, linker regions, and the autotransporter translocation unit itself. The impact of these changes on translocation to the cell surface was monitored by the cell-specific activity as well as antibody-based flow cytometric analysis of full-length and degraded passenger. Applying these strategies, the amount of displayed full-length tyrosinase on the cell surface was increased, resulting in an overall 5-fold increase of activity as compared to the initial autotransport expression system. Surprisingly, heterologous expression using 7 different translocation units all resulted in functional expression and only differed 1.6-fold in activity. This study provides a basis for broadening of the range of proteins that can be surface displayed and the development of new autotransporter-based processes in industrial-scale whole-cell biocatalysis.
  •  
31.
  • Ickenstein, Ludger M., et al. (författare)
  • Disc formation in cholesterol-free liposomes during phase transition
  • 2003
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - 0005-2736 .- 1879-2642. ; 1614:2, s. 135-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryogenic transmission electron microscopy (cryo-TEM) images of lysolipid-containing thermosensitive liposomes (LTSL) revealed that open liposomes and bilayer discs appeared when liposomes were cycled through the gel (Lbeta') to liquid-crystalline (Lalpha) phase transition. The amount of bilayer discs generated was dependent on the combined presence of PEG-lipid and lysolipid in the membrane. We hypothesize that micelle-forming membrane components stabilize the rim of bilayer openings and membrane discs that form when liposomes are cycled through TC.
  •  
32.
  • Jafferali, Mohammed Hakim, et al. (författare)
  • MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells
  • 2014
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642 .- 0006-3002. ; 1838:10, s. 2399-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating interactions of proteins in the nuclear envelope (NE) using co-immunoprecipitation (Co-IP) has previously been difficult or even impossible due to their inherent resistance to extraction. We have developed a novel method, MCLIP (Membrane protein Cross-Link ImmunoPrecipitation), which takes advantage of a cell permeable crosslinker to enable effective detection and analysis of specific interactions of NE proteins in live cells using Western blot. Using MCLIP we show that, in U2OS cells, the integral inner nuclear membrane protein Samp1 interacts with Lamin B1, the LINC (Linker of nucleoskeleton and cytoskeleton) complex protein, Sun1 and the soluble small GTPase Ran. The results show that the previously detected in vitro interaction between Samp1 and Emerin also takes place in live cells. In vitro pull down experiments show, that the nucleoplasmic domains of Samp1 and Emerin can bind directly to each other. We also, show that MCLIP is suitable to coprecipitate protein interactions in different stages of the cell cycle.
  •  
33.
  • Jagalski, Vivien, et al. (författare)
  • Biophysical study of resin acid effects on phospholipid membrane structure and properties
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1858:11, s. 2827-2838
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity.
  •  
34.
  • Jing, Xiaona, et al. (författare)
  • Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with alpha-peptide/beta-peptoid backbone : Effects of hydrogen bonding and alpha-chirality in the beta-peptoid residues
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1818:11, s. 2660-2668
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with alpha-peptide/beta-peptoid backbone were studied to evaluate the effect of alpha-chirality in the beta-peptoid residues and the presence of guanidinium groups in the alpha-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were studied along with their adsorption to lipid bilayers, cellular uptake, and toxicity. The surface hydrogen bonding ability of the peptidomimetics reflected their adsorbed amounts onto lipid bilayers as well as with their cellular uptake, indicating the importance of hydrogen bonding for their membrane interaction and cellular uptake. Ellipsometry studies further demonstrated that the presence of chiral centers in the beta-peptoid residues promotes a higher adsorption to anionic lipid bilayers, whereas circular dichroism results showed that alpha-chirality influences their overall mean residue ellipticity. The presence of guanidinium groups and alpha-chiral beta-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells.
  •  
35.
  • Jing, Yujia, 1985, et al. (författare)
  • Heat-activated liposome targeting to streptavidin-coated surfaces
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 1879-2642 .- 0005-2736. ; 1848:6, s. 1417-1423
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a great need of improved anticancer drugs and corresponding drug carriers. In particular, liposomal drug carriers with heat-activated release and targeting functions are being developed for combined hyperthermia and chemotherapy treatments of tumors. The aim of this study is to demonstrate the heat-activation of liposome targeting to biotinylated surfaces, in model experiments where streptavidin is used as a pretargeting protein. The design of the heat-activated liposomes is based on liposomes assembled in an asymmetric structure and with a defined phase transition temperature. Asymmetry between the inside and the outside of the liposome membrane was generated through the enzymatic action of phospholipase D, where lipid head groups in the outer membrane leaflet, i.e. exposed to the enzyme, were hydrolyzed. The enzymatically treated and purified liposomes did not bind to streptavidin-modified surfaces. When activation heat was applied, starting from 22 degrees C, binding of the liposomes occurred once the temperature approached 33 +/- 0.5 degrees C. Moreover, it was observed that the asymmetric structure remained stable for at least 2 weeks. These results show the potential of asymmetric liposomes for the targeted binding to cell membranes in response to (external) temperature stimulus. By using pretargeting proteins, this approach can be further developed for personalized medicine, where tumor-specific antibodies can be selected for the conjugation of pretargeting agents.
  •  
36.
  • Johansson, Emma, et al. (författare)
  • Nanosized bilayer disks : Attractive model membranes for drug partition studies
  • 2007
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768:6, s. 1518-1525
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable nanosized bilayer disks were prepared from either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, or lipid mixtures with a composition reflecting that of the porcine brush border membrane. Two different polyethylene glycol (PEG)-grafted lipids, the negatively charged 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-5000] (DSPE-PEG5000) and the neutral N-palmitoyl-sphingosine-1-[succinyl (methoxy (polyethylene glycol) 5000] (Ceramide-PEG5000), were used to stabilize the disks. The disks were employed as model membranes in drug partition studies based on a fast chromatography method. Results show that the lipid composition, as well as the choice of PEG-lipid, have an important influence on the partition behavior of charged drugs. Comparative studies using multilamellar liposomes indicate that bilayer disks have the potential to generate more accurate partition data than do liposomes. Further, initial investigations using bacteriorhodopsin suggest that membrane proteins can be reconstituted into the bilayer disks. This fact further strengthens the potential of the bilayer disk as an attractive model membrane.
  •  
37.
  • Johansson, LB-Å, et al. (författare)
  • Phase equilibria and formation of vesicles of dioleoylphosphatidylcholine in glycerol/water mixtures
  • 1993
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - 0005-2736 .- 1879-2642. ; 1149, s. 285-291
  • Tidskriftsartikel (refereegranskat)abstract
    • The lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) forms a lamellar liquid crystalline phase (La) in arbitrary mixtures of glycerol and water. The phase has been characterized by means of X-ray diffraction, 3IP-NMR spectroscopy and differential scanning calorimetry (DSC). In the La state, and for DOPC concentrations greater than 50% (w/w), the thickness of the lipid bilayer decreases, while the area of the polar head group increases with increasing glycerol concentration. The phase transition from gel to La state occurs in the range of 240 to 260 K. Contrary to a previous (McDaniel, R.V., McIntosh, T.J. and Simon, S.A. (1983) Biochim. Biophys. Acta 731, 97) study of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) we find that in the gel state, the thickness of the DOPC lipid bilayer is greater than that in the La state. This suggests that in the gel state, the lipid acyl chains of DOPC are in extended configuration. The lamellar phase reaches its maximum swelling at about 50% (w/w) of DOPC. At lower DOPC concentrations a two-phase system is formed where the lamellar phase exists in equilibrium with excess of solvent. Unilamellar vesicles can be prepared from a diluted suspension of the lamellar phase either by using the sonicator or extruder technique. We show this by means of 3IP-NMR, EPR and fluorescence spectroscopy. The mean radius of the vesicles, prepared by a sonicator, has been determined at different glycerol/water mixtures. It is found to decrease continously from 100 A at 100% water to a minimum of 75 Å at about 50% water in the solvent mixture. By further decreasing the water content in the solution, the radius rapidly increases, and a mean radius of 450 Å is estimated at a water content of 10%. The rotational relaxation times of a fluorescent probe and two EPR spin probes, solubilized in DOPC vesicles, have been measured at different glycerol/water mixtures. It is found that the rotational rates are always much slower in the systems containing glycerol.
  •  
38.
  • Juks, Carmen, et al. (författare)
  • The role of endocytosis in the uptake and intracellular trafficking of PepFect14-nucleic acid nanocomplexes via class A scavenger receptors
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1848:12, s. 3205-3216
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exactfunctioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonudeotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. Naked ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors.
  •  
39.
  • Kacprzyk, Lukasz, et al. (författare)
  • Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions
  • 2007
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768:11, s. 2667-2680
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of art acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.
  •  
40.
  • Kuang, Qie, et al. (författare)
  • The projection structure of Kch, a putative potassium channel in Escherichia coli, by electron crystallography
  • 2014
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642 .- 0006-3002. ; 1838:1, s. 237-243
  • Tidskriftsartikel (refereegranskat)abstract
    • The kch gene, the only potassium channel gene in Escherichia coil, has the property to express both full-length Kch and its cytosolic domain (RCK) due to a methionine at position 240. The RCK domains are believed to form an octameric ring structure and regulate the gating of the potassium channels after having bound certain ligands. Several different gating ring structures have been reported for the soluble RCK domains, however, these were studied isolated from their transmembrane parts. We previously reported an octameric structure of Kch in solution by electron microscopy and single particle reconstruction, composed of two tetrameric full-length proteins through RCK interaction. To exclude the effect of the detergent, we have now performed an electron crystallographic study of the full-length Kch in membrane bound form. Well-ordered two-dimensional crystals were grown in a natural phospholipid environment. A projection map merged from the fifteen best images extended to 6 angstrom resolution. The c12 two-sided plane group of the two-dimensional crystals showed that Kch crystallized as two symmetrically related overlapping layers. The arrangement suggests that the two layers of RCK domains are shifted with respect to each other and the RCK octameric gating ring of Kch does not form under the crystallization condition.
  •  
41.
  • Leal, Cecilia, et al. (författare)
  • Local and translational dynamics in DNA-lipid assemblies monitored by solid-state and diffusion NMR
  • 2008
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1778:1, s. 214-228
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of electrostatic interactions on the dynamic properties of complexes containing DNA and mixtures of cationic- (DDA) and zwitterionic (DLPC) lipids are studied by means of NMR. The systems are arranged in lamellar membrane stacks intercalated by DNA molecules. This is confirmed by P-31-NMR, where a superposition of an axially symmetric powder pattern arising from the phospholipid membrane and an asymmetric tensor due to DNA can be fitted to the experimentally observed lineshape. The local mobility and order is assessed using two solid-state NMR techniques applicable to samples with natural isotopic abundance: WIdeline SEparation (WISE) and Separated Local Field (SLF) spectroscopy. Both experiments yield highly resolved C-13 spectra in the direct dimension. The indirect dimension contains information about molecular dynamics through the H-1 dipolar linewidth (WISE) or the H-1-C-13 dipolar coupling constant (SLF). The experiments suggest that DNA is static while it induces an increased disorder in the hydrocarbon chains as compared to the parent lipid case. DDA chain order is more affected than DLPC due to the attractive electrostatic interaction between DNA and the cationic lipid. Translational dynamics of the lipids and the water was measured with the Pulsed Field Gradient STimulated Echo (PFG STE) technique. The influence of lamellar domain size and the angular dependence of the diffusion coefficients and nuclear relaxation times on the results of the PFG STE experiments are discussed. The local water diffusion coefficient is reduced by a factor four from the value of bulk water, and increases as the DLPC content is increased. We observe two lipid components with an order of magnitude difference in diffusion coefficients in the DNA:DDA:DLPC precipitate and these are assigned to DLPC (fast) and DDA (slow). Cationic lipid (DDA) diffusion is decreasing a factor of 2 when DLPC is added to the pure DNA:DDA system, indicating DNA-induced lipid segregation within the bilayer and the transition from locally 2D to 1D diffusion of the DDA. The results show that DNA-lipid electrostatic interactions reduce the long-range lipid mobility but locally enhance the hydrocarbon chain dynamics by perturbing the preferred lipid packing. 
  •  
42.
  • Lidman, Martin, 1985-, et al. (författare)
  • The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1858:6, s. 1288-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly 15N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface.
  •  
43.
  • Liebau, Jobst, et al. (författare)
  • Fast-tumbling bicelles constructed from native Escherichia coli lipids
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 1879-2642 .- 0005-2736. ; 1858:9, s. 2097-2105
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-state NMR requires small membrane mimetic systems to allow for acquiring high-resolution data. At the same time these mimetics should faithfully mimic biological membranes. Here we characterized two novel fast-tumbling bicelle systems with lipids from two Escherichia coli strains. While strain 1 (AD93WT) contains a characteristic E. coli lipid composition, strain 2 (AD93-PE) is not capable of synthesizing the most abundant lipid in E. coli, phosphatidylethanolamine. The lipid and acyl chain compositions were characterized by P-31 and C-13 NMR. Depending on growth temperature and phase, the lipid composition varies substantially, which means that the bicelle composition can be tuned by using lipids from cells grown at different temperatures and growth phases. The hydrodynamic radii of the bicelles were determined from translational diffusion coefficients and NMR spin relaxation was measured to investigate lipid properties in the bicelles. We find that the lipid dynamics are unaffected by variations in lipid composition, suggesting that the bilayer is in a fluid phase under all conditions investigated here. Backbone glycerol carbons are the most rigid positions in all lipids, while head-group carbons and the first carbons of the acyl chain are somewhat more flexible. The flexibility increases down the acyl chain to almost unrestricted motion at its end. Carbons in double bonds and cyclopropane moieties are substantially restricted in their motional freedom. The bicelle systems characterized here are thus found to faithfully mimic E. coli inner membranes and are therefore useful for membrane interaction studies of proteins with E. coli inner membranes by solution-state NMR. (C) 2016 Elsevier B.V. All rights reserved.
  •  
44.
  • Liebau, Jobst, et al. (författare)
  • New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1860:3, s. 683-690
  • Tidskriftsartikel (refereegranskat)abstract
    • Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.
  •  
45.
  • Lindberg, David, 1986, et al. (författare)
  • Lipid membranes catalyse the fibril formation of the amyloid-? (1–42) peptide through lipid-fibril interactions that reinforce secondary pathways
  • 2017
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 1879-2642 .- 0005-2736. ; 1859:10, s. 1921-1929
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is associated with the aggregation of amyloid-? (A?) peptides into oligomers and fibrils. We have explored how model lipid membranes modulate the rate and mechanisms of A?(1–42) self-assembly, in order to shed light on how this pathological reaction may occur in the lipid-rich environments that the peptide encounters in the brain. Using a combination of in vitro biophysical experiments and theoretical approaches, we show that zwitterionic DOPC lipid vesicles accelerate the A?(1–42) fibril growth rate by interacting specifically with the growing fibrils. We probe this interaction with help of a purpose-developed Förster resonance energy transfer assay that monitors the proximity between a fibril-specific dye and fluorescent lipids in the lipid vesicle membrane. To further rationalise these findings we use mathematical models to fit the aggregation kinetics of A?(1–42) and find that lipid vesicles alter specific mechanistic steps in the aggregation reaction; they augment monomer-dependent secondary nucleation at the surface of existing fibrils and facilitate monomer-independent catalytic processes consistent with fibril fragmentation. We further show that DOPC vesicles have no effect on primary nucleation. This finding is consistent with experiments showing that A?(1–42) monomers do not directly bind to the lipid bilayer. Taken together, our results show that plain lipid membranes with charge and composition that is representative of outer cell membranes can significantly augment autocatalytic steps in the self-assembly of A?(1–42) into fibrils. This new insight suggests that strategies to reduce fibril-lipid interactions in the brain may have therapeutic value.
  •  
46.
  • Lindblom, Göran, et al. (författare)
  • Lipid lateral diffusion and membrane heterogeneity
  • 2009
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - Amsterdam : Elsevier. - 0005-2736 .- 1879-2642. ; 1788:1, s. 234-244
  • Tidskriftsartikel (refereegranskat)abstract
    • The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using 2H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (ld) and liquid ordered (lo) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of ld and lo phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the ld and lo phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i. e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high Tm and one low Tm lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.
  •  
47.
  • Lundquist, Anna, et al. (författare)
  • Melittin–Lipid interaction : A comparative study using liposomes, micelles and bilayer disks
  • 2008
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1778:10, s. 2210-2216
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparison of melittin interaction with liposomes, bilayer disks and micelles showed that melittin binding to lipid aggregates is largely dictated by the amount of highly curved areas in the aggregates. The PEG-stabilised bilayer disks were characterised by a combination of small angle neutron scattering, cryo-transmission electron microscopy and dynamic light scattering. Importantly, the theoretically foreseen partial segregation of the lipid components, important for maintaining the structure of the bilayer disk, was confirmed. Steady state fluorescence spectroscopy indicated that melittin mainly resides at the rim of the bilayer disks. Results of the present study help increase the understanding of the mechanisms behind, and the physico-chemical factors affecting, melittin–lipid interaction. We suggest that bilayer disks, due to their stable structure, constitute interesting vehicles for transport of peptides that have high propensity to associate with lipid surfaces of high curvature.
  •  
48.
  • Lyubartsev, Alexander P., et al. (författare)
  • Force Field Development for Lipid Membrane Simulations
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1858:10, s. 2483-2497
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rapid development of computer power and wide availability of modelling software computer simulations of realistic models of lipid membranes, including their interactions with various molecular species, polypeptides and membrane proteins have become feasible for many research groups. The crucial issue of the reliability of such simulations is the quality of the force field, and many efforts, especially in the latest several years, have been devoted to parametrization and optimization of the force fields for biomembrane modelling. In this review, we give account of the recent development in this area, covering different classes of force fields, principles of the force field parametrization, comparison of the force fields, and their experimental validation. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Rog.
  •  
49.
  • Madani, Fatemeh, et al. (författare)
  • Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient
  • 2013
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1828:4, s. 1198-1204
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) can internalize into cells with covalently or non-covalently bound biologically active cargo molecules, which by themselves are not able to pass the cell membrane. Direct penetration and endocytosis are two main pathways suggested for the cellular uptake of CPPs. Cargo molecules which have entered the cell via an endocytotic pathway must be released from the endosome before degradation by enzymatic processes and endosomal acidification. Endosomal entrapment seems to be a major limitation in delivery of these molecules into the cytoplasm. Bacteriorhodopsin (BR) asymmetrically introduced into large unilamellar vesicles (LUVs) was used to induce a pH gradient across the lipid bilayer. By measuring pH outside the LUVs, we observed light-induced proton pumping mediated by BR from the outside to the inside of the LUVs, creating an acidic pH inside the LUVs, similar to the late endosomes in vivo. Here we studied the background mechanism(s) of endosomal escape. 20% negatively charged LUVs were used as model endosomes with incorporated BR into the membrane and fluorescein-labeled CPPs entrapped inside the LUVs, together with a fluorescence quencher. The translocation of different CPPs in the presence of a pH gradient across the membrane was studied. The results show that the light-induced pH gradient induced by BR facilitates vesicle membrane translocation, particularly for the intermediately hydrophobic CPPs, and much less for hydrophilic CPPs. The presence of chloroquine inside the LUVs or addition of pyrenebutyrate outside the LUVs destabilizes the vesicle membrane, resulting in significant changes of the pH gradient across the membrane.
  •  
50.
  • Maeger, Imre, et al. (författare)
  • The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1818:3, s. 502-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides that can be used to deliver a variety of cargos into cells. However, it is still debated which routes CPPs employ to gain access to intracellular compartments. To assess this, most previously conducted studies have relied on information which is gained by using fluorescently labeled CPPs. More relevant information whether the internalized conjugates are biologically available has been gathered using end-point assays with biological readouts. Uptake kinetic studies have shed even more light on the matter because the arbitrary choice of end-point might have profound effect how the results could be interpreted. To elucidate uptake mechanisms of CPPs, here we have used a bioluminescence based assay to measure cytosolic delivery kinetics of luciferin-CPP conjugates in the presence of endocytosis inhibitors. The results suggest that these conjugates are delivered into cytosol mainly via macropinocytosis; clathrin-mediated endocytosis and caveolae/lipid raft dependent endocytosis are involved in a smaller extent. Furthermore, we demonstrate how the involved endocytic routes and internalization kinetic profiles can depend on conjugate concentration in case of certain peptides, but not in case of others. The employed internalization route, however, likely dictates the intracellular fate and subsequent trafficking of internalized ligands, therefore emphasizing the importance of our novel findings for delivery vector development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 103
Typ av publikation
tidskriftsartikel (100)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (103)
Författare/redaktör
Edwards, Katarina (12)
Langel, Ülo (11)
Malmsten, Martin (11)
Schmidtchen, Artur (10)
Mäler, Lena (7)
Gräslund, Astrid (5)
visa fler...
Agmo Hernández, Víct ... (5)
Esbjörner Winters, E ... (5)
Nordén, Bengt, 1945 (5)
Gröbner, Gerhard (4)
Lincoln, Per, 1958 (4)
Delemotte, Lucie (3)
Mörgelin, Matthias (3)
Karlsson, Göran (3)
Orädd, Greger (3)
Eriksson, Emma K. (3)
Madani, Fatemeh (3)
Hallberg, Einar (3)
Arukuusk, Piret (3)
Pooga, Margus (3)
Ringstad, Lovisa (3)
Figueroa, Ricardo A. (3)
Kasetty, Gopinath (2)
Strömstedt, Adam A. (2)
Burman, Robert (2)
Dvinskikh, Sergey V. (2)
Draheim, Roger R. (2)
Lyubartsev, Alexande ... (2)
Topgaard, Daniel (2)
Gedda, Lars (2)
Ädelroth, Pia (2)
Cardenas, Marite (2)
Futaki, Shiroh (2)
Howard, Rebecca J. (2)
Papareddy, Praveen (2)
Vilhelmsson Wesén, E ... (2)
von Heijne, Gunnar (2)
Ariöz, Candan, 1983 (2)
Sezgin, E (2)
Liebau, Jobst (2)
Margus, Helerin (2)
Vukojevic, Vladana (2)
Eiríksdóttir, Emelía (2)
Lindblom, Göran (2)
Yu, Bao-Zhu (2)
Zuo, Shusheng (2)
Lundquist, Anna (2)
Esbjorner, E. K. (2)
Castro, Vasco (2)
Maliniak, Arnold (2)
visa färre...
Lärosäte
Stockholms universitet (36)
Uppsala universitet (34)
Lunds universitet (16)
Kungliga Tekniska Högskolan (13)
Chalmers tekniska högskola (12)
Umeå universitet (10)
visa fler...
Karolinska Institutet (9)
Göteborgs universitet (4)
Malmö universitet (4)
Linköpings universitet (3)
RISE (2)
visa färre...
Språk
Engelska (103)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (78)
Medicin och hälsovetenskap (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy