SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2157 6564 OR L773:2157 6580 "

Sökning: L773:2157 6564 OR L773:2157 6580

  • Resultat 1-29 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arias, J, et al. (författare)
  • Hematopoietic stem cell- and induced pluripotent stem cell-derived CAR-NK cells as reliable cell-based therapy solutions
  • 2021
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6580 .- 2157-6564. ; 10:7, s. 987-995
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cell- (HSC) and induced pluripotent stem (iPS) cell-derived natural killer (NK) cells containing engineered functions, such as chimeric antigen receptors (CAR), offer great promise for the treatment of seemingly incurable oncological malignancies. Today, some of the main challenges of CAR cell-based therapeutics are the long manufacturing time and safety of the cell sources used. Additional challenges include avoiding graft vs host disease (GVHD) and cytokine release syndrome (CRS). Here, we show compelling evidence for the use of NK cell therapeutics as a reliable off-the-shelf option, as they address key issues. Furthermore, we highlight how iPS cells and directed differentiation toward HSC and NK cells address industrial scalability and safety.
  •  
2.
  • Boreström, Cecilia, 1974, et al. (författare)
  • Footprint-Free Human Induced Pluripotent Stem Cells From Articular Cartilage With Redifferentiation Capacity: A First Step Toward a Clinical-Grade Cell Source.
  • 2014
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 3:4, s. 433-447
  • Tidskriftsartikel (refereegranskat)abstract
    • Human induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine; however, clinical applications of iPSCs are restricted because of undesired genomic modifications associated with most reprogramming protocols. We show, for the first time, that chondrocytes from autologous chondrocyte implantation (ACI) donors can be efficiently reprogrammed into iPSCs using a nonintegrating method based on mRNA delivery, resulting in footprint-free iPSCs (no genome-sequence modifications), devoid of viral factors or remaining reprogramming molecules. The search for universal allogeneic cell sources for the ACI regenerative treatment has been difficult because making chondrocytes with high matrix-forming capacity from pluripotent human embryonic stem cells has proven challenging and human mesenchymal stem cells have a predisposition to form hypertrophic cartilage and bone. We show that chondrocyte-derived iPSCs can be redifferentiated in vitro into cartilage matrix-producing cells better than fibroblast-derived iPSCs and on par with the donor chondrocytes, suggesting the existence of a differentiation bias toward the somatic cell origin and making chondrocyte-derived iPSCs a promising candidate universal cell source for ACI. Whole-genome single nucleotide polymorphism array and karyotyping were used to verify the genomic integrity and stability of the established iPSC lines. Our results suggest that RNA-based technology eliminates the risk of genomic integrations or aberrations, an important step toward a clinical-grade cell source for regenerative medicine such as treatment of cartilage defects and osteoarthritis.
  •  
3.
  • Bruzelius, Andreas, et al. (författare)
  • The human bone marrow harbors a CD45− CD11B+ cell progenitor permitting rapid microglia-like cell derivative approaches
  • 2021
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 10:4, s. 582-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia, the immune sentinel of the central nervous system (CNS), are generated from yolk sac erythromyeloid progenitors that populate the developing CNS. Interestingly, a specific type of bone marrow-derived monocyte is able to express a yolk sac microglial signature and populate CNS in disease. Here we have examined human bone marrow (hBM) in an attempt to identify novel cell sources for generating microglia-like cells to use in cell-based therapies and in vitro modeling. We demonstrate that hBM stroma harbors a progenitor cell that we name stromal microglial progenitor (STR-MP). STR-MP single-cell gene analysis revealed the expression of the consensus genetic microglial signature and microglial-specific genes present in development and CNS pathologies. STR-MPs can be expanded and generate microglia-like cells in vitro, which we name stromal microglia (STR-M). STR-M cells show phagocytic ability, classically activate, and survive and phagocyte in human brain tissue. Thus, our results reveal that hBM harbors a source of microglia-like precursors that can be used in patient-centered fast derivative approaches.
  •  
4.
  • Chen, Jialin, et al. (författare)
  • Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea
  • 2017
  • Ingår i: Stem Cells Translational Medicine. - : WILEY. - 2157-6564 .- 2157-6580. ; 6:5, s. 1356-1365
  • Tidskriftsartikel (refereegranskat)abstract
    • High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved.
  •  
5.
  • Chen, Jialin, et al. (författare)
  • Fos Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon
  • 2017
  • Ingår i: Stem Cells Translational Medicine. - : John Wiley & Sons. - 2157-6564 .- 2157-6580. ; 6:11, s. 2009-2019
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration.
  •  
6.
  • Davies, Lindsay C., et al. (författare)
  • Type 1 Diabetes Mellitus Donor Mesenchymal. Stromal Cells Exhibit Comparable Potency to Healthy Controls In Vitro
  • 2016
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 5:11, s. 1485-1495
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone marrow mesenchymal stromal cells (BM-MSCs) have been characterized and used in many clinical studies based on their immunomodulatory and regenerative properties. We have recently reported the benefit of autologous MSC systemic therapy in the treatment of type 1 diabetes mellitus (T1D). Compared with allogeneic cells, use of autologous products reduces the risk of eliciting undesired complications in the recipient, including rejection, immunization, and transmission of viruses and prions; however, comparable potency of autologous cells is required for this treatment approach to remain feasible. To date, no analysis has been reported that phenotypically and functionally characterizes MSCs derived from newly diagnosed and late-stage T1D donors in vitro with respect to their suitability for systemic immunotherapy. In this study, we used gene array in combination with functional in vitro assays to address these questions. MSCs from T1D donors and healthy controls were expanded from BM aspirates. BM mononuclear cell counts and growth kinetics were comparable between the groups, with equivalent colony-forming unit-fibroblast capacity. Gene microarrays demonstrated differential gene expression between healthy and late-stage T1D donors in relation to cytokine secretion, immunomodulatory activity, and wound healing potential. Despite transcriptional differences, T1D MSCs did not demonstrate a significant difference from healthy controls in immunosuppressive activity, migratory capacity, or hemocompatibility. We conclude that despite differential gene expression, expanded MSCs from T1D donors are phenotypically and functionally similar to healthy control MSCs with regard to their immunomodulatory and migratory potential, indicating their suitability for use in autologous systemic therapy.
  •  
7.
  • Garcia-Bennett, Alfonso E., et al. (författare)
  • Delivery of Differentiation Factors by Mesoporous Silica Particles Assists Advanced Differentiation of Transplanted Murine Embryonic Stem Cells
  • 2013
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 2:11, s. 906-915
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application. Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation.
  •  
8.
  • Gotherstrom, Cecilia, et al. (författare)
  • Pre- and Postnatal Transplantation of Fetal Mesenchymal Stem Cells in Osteogenesis Imperfecta : A Two-Center Experience
  • 2014
  • Ingår i: Stem Cells Transnational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 3:2, s. 255-264
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta (OI) can be recognized prenatally with ultrasound. Transplantation of mesenchymal stem cells (MSCs) has the potential to ameliorate skeletal damage. We report the clinical course of two patients with OI who received prenatal human fetal MSC (hfMSC) transplantation and postnatal boosting with same-donor MSCs. We have previously reported on prenatal transplantation for OI type III. This patient was retransplanted with 2.8 x 10(6) same-donor MSCs per kilogram at 8 years of age, resulting in low-level engraftment in bone and improved linear growth, mobility, and fracture incidence. An infant with an identical mutation who did not receive MSC therapy succumbed at 5 months despite postnatal bisphosphonate therapy. A second fetus with OI type IV was also transplanted with 30 x 10(6) hfMSCs per kilogram at 31 weeks of gestation and did not suffer any new fractures for the remainder of the pregnancy or during infancy. The patient followed her normal growth velocity until 13 months of age, at which time longitudinal length plateaued. A postnatal infusion of 10 x 10(6) MSCs per kilogram from the same donor was performed at 19 months of age, resulting in resumption of her growth trajectory. Neither patient demonstrated alloreactivity toward the donor hfMSCs or manifested any evidence of toxicities after transplantation. Our findings suggest that prenatal transplantation of allogeneic hfMSCs in OI appears safe and is of likely clinical benefit and that retransplantation with same-donor cells is feasible. However, the limited experience to date means that it is not possible to be conclusive and that further studies are required.
  •  
9.
  • Grønning Hansen, Marita, et al. (författare)
  • Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry
  • 2020
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 9:11, s. 1365-1377
  • Tidskriftsartikel (refereegranskat)abstract
    • Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long-term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke-injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell-derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt-NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer-specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno-electron microscopy, rabies virus retrograde monosynaptic tracing, and whole-cell patch-clamp recordings. Our findings provide the first evidence that pluripotent stem cell-derived neurons can integrate into adult host neural networks also in a human-to-human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.
  •  
10.
  • Haidet-Phillips, Amanda M, et al. (författare)
  • Gene Profiling of Human Induced Pluripotent Stem Cell-Derived Astrocyte Progenitors Following Spinal Cord Engraftment.
  • 2014
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6580 .- 2157-6564. ; 3:5, s. 575-585
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of human induced pluripotent stem cells (hiPSCs) represents an exciting advancement with promise for stem cell transplantation therapies as well as for neurological disease modeling. Based on the emerging roles for astrocytes in neurological disorders, we investigated whether hiPSC-derived astrocyte progenitors could be engrafted to the rodent spinal cord and how the characteristics of these cells changed between in vitro culture and after transplantation to the in vivo spinal cord environment. Our results show that human embryonic stem cell- and hiPSC-derived astrocyte progenitors survive long-term after spinal cord engraftment and differentiate to astrocytes in vivo with few cells from other lineages present. Gene profiling of the transplanted cells demonstrates the astrocyte progenitors continue to mature in vivo and upregulate a variety of astrocyte-specific genes. Given this mature astrocyte gene profile, this work highlights hiPSCs as a tool to investigate disease-related astrocyte biology using in vivo disease modeling with significant implications for human neurological diseases currently lacking animal models.
  •  
11.
  • Heslop, James A., et al. (författare)
  • Concise Review : Workshop Review: Understanding and Assessing the Risks of Stem Cell-Based Therapies
  • 2015
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 4:4, s. 389-400
  • Forskningsöversikt (refereegranskat)abstract
    • The field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients. Here, we attempt to identify the important safety issues, assessing the current advances in scientific knowledge and how they may translate to clinical therapeutic strategies in the identification and management of these risks. We also investigate the tools and techniques currently available to researchers during preclinical and clinical development of stem cell products, their utility and limitations, and how these tools may be strategically used in the development of these therapies. We conclude that ensuring safety through cutting-edge science and robust assays, coupled with regular and open discussions between regulators and academic/industrial investigators, is likely to prove the most fruitful route to ensuring the safest possible development of new products.
  •  
12.
  • Hovatta, O, et al. (författare)
  • Concise review: animal substance-free human embryonic stem cells aiming at clinical applications
  • 2014
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 3:11, s. 1269-1274
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells have been considered the gold standard as a cell source for regenerative medicine since they were first cultured in 1998. They are pluripotent and can form principally all the cells types in the body. They are obtained from supernumerary human in vitro fertilization embryos that cannot be used for infertility treatment. Following studies on factors regulating pluripotency and differentiation, we now have techniques to establish and effectively expand these cells in animal substance-free conditions, even from single cells biopsied from eight-cell stage embryos in chemically defined feeder-free cultures. The genetic stability and absence of tumorigenic mutations can be determined. There are satisfactory animal tests for functionality and safety. The first clinical trials are ongoing for two indications: age-related macular degeneration and spinal cord injury.
  •  
13.
  • Iacobaeus, E, et al. (författare)
  • Dynamic Changes in Brain Mesenchymal Perivascular Cells Associate with Multiple Sclerosis Disease Duration, Active Inflammation, and Demyelination
  • 2017
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 6:10, s. 1840-1851
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular changes, including blood brain barrier destabilization, are common pathological features in multiple sclerosis (MS) lesions. Blood vessels within adult organs are reported to harbor mesenchymal stromal cells (MSCs) with phenotypical and functional characteristics similar to pericytes. We performed an immunohistochemical study of MSCs/pericytes in brain tissue from MS and healthy persons. Post-mortem brain tissue from patients with early progressive MS (EPMS), late stage progressive MS (LPMS), and healthy persons were analyzed for the MSC and pericyte markers CD146, platelet-derived growth factor receptor beta (PDGFRβ), CD73, CD271, alpha-smooth muscle actin, and Ki67. The MS samples included active, chronic active, chronic inactive lesions, and normal-appearing white matter. MSC and pericyte marker localization were detected in association with blood vessels, including subendothelial CD146+PDGFRβ+Ki67+ cells and CD73+CD271+PDGFRβ+Ki67– cells within the adventitia and perivascular areas. Both immunostained cell subpopulations were termed mesenchymal perivascular cells (MPCs). Quantitative analyses of immunostainings showed active lesions containing increased regions of CD146+PDGFRβ+Ki67+ and CD73+CD271+PDGFRβ+Ki67– MPC subpopulations compared to inactive lesions. Chronic lesions presented with decreased levels of CD146+PDGFRβ+Ki67+ MPC cells compared to control tissue. Furthermore, LPMS lesions displayed increased numbers of blood vessels harboring greatly enlarged CD73+CD271+ adventitial and perivascular areas compared to control and EPMS tissue. In conclusion, we demonstrate the presence of MPC subgroups in control human brain vasculature, and their phenotypic changes in MS brain, which correlated with inflammation, demyelination and MS disease duration. Our findings demonstrate that brain-derived MPCs respond to pathologic mechanisms involved in MS disease progression and suggest that vessel-targeted therapeutics may benefit patients with progressive MS.
  •  
14.
  • Joshi, Meghnad, 1977, et al. (författare)
  • Chemokine-Mediated Robust Augmentation of Liver Engraftment: A Novel Approach.
  • 2015
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 4:1, s. 21-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective repopulation of the liver is essential for successful clinical hepatocyte transplantation. The objective was to improve repopulation of the liver with human hepatocytes using chemokines. We used flow cytometry and immunohistochemistry assays to identify commonly expressed chemokine receptors on human fetal and adult hepatocytes. The migratory capacity of the cells to various chemokines was tested. For in vivo studies, we used a nude mouse model of partial hepatectomy followed by intraparenchymal injections of chemokine ligands at various concentrations. Human fetal liver cells transformed with human telomerase reverse transcriptase were used for intrasplenic cell transplantation. Repopulation and functionality were assessed 4 weeks after transplantation. The receptor CXCR3 was commonly expressed on both fetal and adult hepatocytes. Both cell types migrated efficiently toward corresponding CXC chemokine ligands 9, 10, and 11. In vivo, animals injected with recombinant chemokines showed the highest cell engraftment compared with controls (p < .05). The engrafted cells expressed several human hepatic markers such as cytokeratin 8 and 18 and albumin as well as transferrin, UGT1A1, hepatocyte nuclear factor (1α, 1β, and 4α), cytochrome CYP3A1, CCAAT/enhancer binding protein (α and β), and human albumin compared with controls. No inflammatory cells were detected in the livers at 4 weeks after transplantation. The improved repopulation of transplanted cells is likely a function of the chemokines to mediate cell homing and retention in the injured liver and might be an attractive strategy to augment repopulation of transplanted hepatocytes in vivo.
  •  
15.
  • Li, XF, et al. (författare)
  • Stem Cell Therapies for Central Nervous System Trauma: The 4 Ws-What, When, Where, and Why
  • 2022
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6580 .- 2157-6564. ; 11:1, s. 14-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic injury of the central nervous system (CNS) is a worldwide health problem affecting millions of people. Trauma of the CNS, that is, traumatic brain injury (TBI) and spinal cord injury (SCI), lead to massive and progressive cell loss and axonal degeneration, usually with very limited regeneration. At present, there are no treatments to protect injured CNS tissue or to replace the lost tissue. Stem cells are a cell type that by definition can self-renew and give rise to multiple cell lineages. In recent years, therapies using stem and progenitor cells have shown promising effects in experimental CNS trauma, particularly in the acute-subacute stage, but also in chronic injuries. However, the therapeutic mechanisms by which transplanted cells achieve the structural and/or functional improvements are often not clear. Stem cell therapies for CNS trauma can be categorized into 2 main concepts, transplantation of exogenous neural stem cells and neural progenitor cells and recruitment of endogenous stem and progenitor cells. In this review, focusing on the advances during the last decade, we will discuss the major cell therapies, the pros and cons of these 2 concepts for TBI and SCI, and the treatment strategies we believe will be successful.
  •  
16.
  • Lim, ML, et al. (författare)
  • Decellularized feeders: an optimized method for culturing pluripotent cells
  • 2013
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 2:12, s. 975-982
  • Tidskriftsartikel (refereegranskat)abstract
    • Pluripotent cells such as human embryonic stem cells and human induced pluripotent stem cells are useful in the field of regenerative medicine because they can proliferate indefinitely and differentiate into all cell types. However, a limiting factor for maintaining and propagating stem cells is the need for inactivated fibroblasts as a growth matrix, since these may potentially cause cross-contamination. In this study, we aimed to maintain stem cells on the extracellular matrix (ECM) of either nonirradiated or γ-irradiated fibroblasts. It has been demonstrated that the ECM contains factors and proteins vital for the adhesion, proliferation, and differentiation of pluripotent cells. In order to preserve the ECM, the cell layers of the fibroblasts were decellularized by treatment with 0.05% sodium dodecyl sulfate (SDS), which resulted in an absence of DNA as compared with conventional feeder culture. However, SDS treatment did not cause a detectable change in the ECM architecture and integrity. Furthermore, immunohistochemistry demonstrated that expressions of major ECM proteins, such as fibronectin, collagen, and laminin, remained unaltered. The human pluripotent cells cultured on this decellularized matrix maintained gene expression of the pluripotency markers NANOG and OCT4 and had the potency to differentiate to three germ layers. The in vitro culture system shown here has an excellent potential since the main allogeneic components (i.e., DNA of the feeder cells) are removed. It is also a technically easy, fast, safe, and cheap method for maintaining a refined feeder-free stem cell culture for further cell differentiation studies.
  •  
17.
  • Patil, Pradeep B, 1982, et al. (författare)
  • Recellularization of acellular human small intestine using bone marrow stem cells.
  • 2013
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 2:4, s. 307-15
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to produce an acellular human tissue scaffold with a view to test the possibility of recellularization with bone marrow stem cells to produce a tissue-engineered small intestine (TESI). Human small-bowel specimens (n = 5) were obtained from cadaveric organ donors and treated sequentially with 6% dimethyl sulfoxide in hypotonic buffer, 1% Triton X-100, and DNase. Each small intestine (SI) piece (6 cm) was recellularized with EPCAM+ and CD133+ allogeneic bone marrow stem cells. Histological and molecular analysis demonstrated that after decellularization, all cellular components and nuclear material were removed. Our analysis also showed that the decellularized human SI tissue retained its histoarchitecture with intact villi and major structural proteins. Protein films of common extracellular matrix constituents (collagen I, laminin, and fibronectin) were found in abundance. Furthermore, several residual angiogenic factors were found in the decellularized SI. Following recellularization, we found viable mucin-positive goblet cells, CK18+ epithelial cells in villi adjacent to a muscularis mucosa with α-actin+ smooth muscle cells, and a high repopulation of blood vessels with CD31+ endothelial cells. Our results show that in the future, such a TESI would be ideal for clinical purposes, because it can be derived from the recipient's own immunocompatible bone marrow cells, thus avoiding the use of immunosuppression.
  •  
18.
  • Reiner, A. T., et al. (författare)
  • Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles
  • 2017
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 6:8
  • Forskningsöversikt (refereegranskat)abstract
    • Growing interest in extracellular vesicles (EVs, including exosomes and microvesicles) as therapeutic entities, particularly in stem cell-related approaches, has underlined the need for standardization and coordination of development efforts. Members of the International Society for Extracellular Vesicles and the Society for Clinical Research and Translation of Extracellular Vesicles Singapore convened a Workshop on this topic to discuss the opportunities and challenges associated with development of EV-based therapeutics at the preclinical and clinical levels. This review outlines topic-specific action items that, if addressed, will enhance the development of best-practice models for EV therapies.
  •  
19.
  • Ringden, O, et al. (författare)
  • Placenta-Derived Decidua Stromal Cells for Treatment of Severe Acute Graft-Versus-Host Disease
  • 2018
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 7:4, s. 325-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation (HSCT). The placenta protects the fetus from the mother's immune system. We evaluated placenta-derived decidua stromal cells (DSCs), which differ from bone marrow mesenchymal stromal cells (BM-MSCs), as a treatment for severe acute GVHD. DSCs were obtained from term placentas. The DSCs were given to 38 patients with severe acute GVHD; 25 were steroid refractory (SR). DSCs were thawed and infused in buffer supplemented with either 10% AB plasma (group 1, n = 17), or 5% albumin (group 2, n = 21). The viability of cells was higher when thawed in albumin rather than AB plasma (p &lt; .001). Group 1 received a higher cell dose (p &lt; .001), cells of lower passage number (p &lt; .001), and fewer infusions (p = .002) than group 2. The GVHD response (no/partial/complete) was 7/5/5 in group 1 and 0/10/11 in group 2 (p = .01). One-year survival in the two groups was 47% (95% confidence interval [CI] 23–68) and 76% (95% CI 51–89), respectively (p = .016). For the SR patients, 1-year survival was 73% (95% CI 37–90) in SR group 2 (n = 11), which was better than 31% (95% CI 11–54) in SR group 1 (n = 13; p = .02), 20% (95% CI 5–42) in BM-MSC treated (n = 15; p = .0015), and 3% (95% CI 0–14) in historic controls (n = 32; p &lt; .001). DSCs are a promising new treatment for severe acute GVHD. Prospective randomized trials are needed for evaluation of efficacy. (Clinical trial NCT-02172937.)
  •  
20.
  • Rogal, Julia, et al. (författare)
  • Human In Vitro Models of Neuroenergetics and Neurometabolic Disturbances: Current Advances and Clinical Perspectives
  • 2024
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press. - 2157-6564 .- 2157-6580. ; 13:6, s. 505-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurological conditions conquer the world; they are the leading cause of disability and the second leading cause of death worldwide, and they appear all around the world in every age group, gender, nationality, and socioeconomic class. Despite the growing evidence of an immense impact of perturbations in neuroenergetics on overall brain function, only little is known about the underlying mechanisms. Especially human insights are sparse, owing to a shortage of physiologically relevant model systems. With this perspective, we aim to explore the key steps and considerations involved in developing an advanced human in vitro model for studying neuroenergetics. We discuss biological and technological strategies to meet the requirements of a predictive model, aiming at providing a guide and inspiration for future in vitro models of neuroenergetics.
  •  
21.
  • Simonson, Oscar E., et al. (författare)
  • In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome
  • 2015
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 4:10, s. 1199-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti-inflammatory actions. Both patients received 2 x 10(6) cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti-inflammatory capacity, including suppression of T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation. STEM CELLS TRANSLATIONAL MEDICINE 2015;4:1199-1213
  •  
22.
  •  
23.
  • Takahashi, Tohru, et al. (författare)
  • Multipotent mesenchymal stromal cells synergize with costimulation blockade in the inhibition of immune responses and the induction of foxp3+ regulatory T cells.
  • 2014
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 3:12, s. 1484-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent mesenchymal stromal cell (MSC) therapy and costimulation blockade are two immunomodulatory strategies being developed concomitantly for the treatment of immunological diseases. Both of these strategies have the capacity to inhibit immune responses and induce regulatory T cells; however, their ability to synergize remains largely unexplored. In order to study this, MSCs from C57BL/6 (H2(b)) mice were infused together with fully major histocompatibility complex-mismatched Balb/c (H2(d)) allogeneic islets into the portal vein of diabetic C57BL/6 (H2(b)) mice, which were subsequently treated with costimulation blockade for the first 10 days after transplantation. Mice receiving both recipient-type MSCs, CTLA4Ig, and anti-CD40L demonstrated indefinite graft acceptance, just as did most of the recipients receiving MSCs and CTLA4Ig. Recipients of MSCs only rejected their grafts, and fewer than one half of the recipients treated with costimulation blockade alone achieved permanent engraftment. The livers of the recipients treated with MSCs plus costimulation blockade contained large numbers of islets surrounded by Foxp3(+) regulatory T cells. These recipients showed reduced antidonor IgG levels and a glucose tolerance similar to that of naïve nondiabetic mice. Intrahepatic lymphocytes and splenocytes from these recipients displayed reduced proliferation and interferon-γ production when re-exposed to donor antigen. MSCs in the presence of costimulation blockade prevented dendritic cell maturation, inhibited T cell proliferation, increased Foxp3(+) regulatory T cell numbers, and increased indoleamine 2,3-dioxygenase activity. These results indicate that MSC infusion and costimulation blockade have complementary immune-modulating effects that can be used for a broad number of applications in transplantation, autoimmunity, and regenerative medicine.
  •  
24.
  • Wahlestedt, Martin, et al. (författare)
  • Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation.
  • 2015
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6580 .- 2157-6564. ; 4:2, s. 186-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the continuous increases in lifetime expectancy, the incidence of age-related diseases will, unless counteracted, represent an increasing problem at both the individual and socioeconomic levels. Studies on the processes of blood cell formation have revealed several shortcomings as a consequence of chronological age. They include a reduced ability to mount adaptive immune responses and a blood cell composition skewed toward myeloid cells, with the latter coinciding with a dramatically increased incidence of myelogenous diseases, including cancer. Conversely, the dominant forms of acute leukemia affecting children associate with the lymphoid lineages. A growing body of evidence has suggested that aging of various organs and cellular systems, including the hematopoietic system, associates with a functional demise of tissue-resident stem cell populations. Mechanistically, DNA damage and/or altered transcriptional landscapes appear to be major drivers of the hematopoietic stem cell aging state, with recent data proposing that stem cell aging phenotypes are characterized by at least some degree of reversibility. These findings suggest the possibility of rejuvenating, or at least dampening, stem cell aging phenotypes in the elderly for therapeutic benefit.
  •  
25.
  • Xu, Maojia, et al. (författare)
  • Chondrocytes Derived From Mesenchymal Stromal Cells and Induced Pluripotent Cells of Patients With Familial Osteochondritis Dissecans Exhibit an Endoplasmic Reticulum Stress Response and Defective Matrix Assembly
  • 2016
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 5:9, s. 1171-1181
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial osteochondritis dissecans (FOCD) is an inherited skeletal defect characterized by the development of large cartilage lesions in multiple joints, short stature, and early onset of severe osteoarthritis. It is associated with a heterozygous mutation in the ACAN gene, resulting in a Val-Met replacement in the C-type lectin domain of aggrecan. To understand the cellular pathogenesis of this condition, we studied the chondrogenic differentiation of patient bone marrow mesenchymal stromal cells (BM-MSCs). We also looked at cartilage derived from induced pluripotent stem cells (iPSCs) generated from patient fibroblasts. Our results revealed several characteristics of the differentiated chondrocytes that help to explain the disease phenotype and susceptibility to cartilage injury. First, patient chondrogenic pellets had poor structural integrity but were rich in glycosaminoglycan. Second, it was evident that large amounts of aggrecan accumulated within the endoplasmic reticulum of chondrocytes differentiated from both BM-MSCs and iPSCs. In turn, there was a marked absence of aggrecan in the extracellular matrix. Third, it was evident that matrix synthesis and assembly were globally dysregulated. These results highlight some of the abnormal aspects of chondrogenesis in these patient cells and help to explain the underlying cellular pathology. The results suggest that FOCD is a chondrocyte aggrecanosis with associated matrix dysregulation. The work provides a new in vitro model of osteoarthritis and cartilage degeneration based on the use of iPSCs and highlights how insights into disease phenotype and pathogenesis can be uncovered by studying differentiation of patient stem cells.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-29 av 29
Typ av publikation
tidskriftsartikel (27)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
aut (6)
Korsgren, Olle (2)
Holgersson, Jan (2)
Olausson, Michael, 1 ... (2)
Zhang, Wei (2)
Arias, J (1)
visa fler...
Hovatta, O (1)
Yin, H. (1)
Scholz, H. (1)
Weiss, DJ (1)
Tibell, Annika (1)
Johansson, Henrik J. (1)
Johansson, HJ (1)
Lu, Ping (1)
Sandberg, R (1)
Corbascio, M (1)
Oltean, Mihai, 1976 (1)
Herlenius, Gustaf, 1 ... (1)
Ericzon, Bo-Göran (1)
Kozlova, Elena N (1)
Liu, Huanhuan (1)
Weiss, Daniel J. (1)
Salomon, C (1)
Andrews, Peter W. (1)
Hyllner, Johan (1)
Nilsson, Bo (1)
Gabrielsson, S (1)
Lötvall, Jan, 1956 (1)
Bryder, David (1)
Sigvardsson, Mikael (1)
Ljung, Karin (1)
Hägglund, Hans (1)
Ringden, O (1)
Hagglund, H (1)
Heinegård, Dick (1)
Lindahl, Anders, 195 ... (1)
Ewald, Uwe (1)
Kokaia, Zaal (1)
Hallberg, David (1)
Deierborg, Tomas (1)
Monni, Emanuela (1)
Lindvall, Olle (1)
de Beer, J (1)
Lim, ML (1)
Önnerfjord, Patrik (1)
Rodin, S (1)
Le Blanc, K (1)
Grinnemo, Karl-Henri ... (1)
Aldskogius, Håkan (1)
Kozhevnikova, Mariya (1)
visa färre...
Lärosäte
Karolinska Institutet (17)
Uppsala universitet (6)
Göteborgs universitet (5)
Lunds universitet (5)
Umeå universitet (2)
Linköpings universitet (2)
visa fler...
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (16)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy