SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2168 2194 OR L773:2168 2208 "

Sökning: L773:2168 2194 OR L773:2168 2208

  • Resultat 1-50 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghanavesi, Somayeh, 1981-, et al. (författare)
  • Motion sensor-based assessment of Parkinson's disease motor symptoms during leg agility tests : results from levodopa challenge
  • 2020
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE Computer Society. - 2168-2194 .- 2168-2208. ; 24:1, s. 111-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the Unified PD Rating Scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees and linear regression, using 10-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.
  •  
2.
  • Aghanavesi, S., et al. (författare)
  • Motion Sensor-Based Assessment of Parkinson's Disease Motor Symptoms During Leg Agility Tests: Results From Levodopa Challenge
  • 2020
  • Ingår i: Ieee Journal of Biomedical and Health Informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 24:1, s. 111-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinsons disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the unified PD rating scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees, and linear regression, using ten-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS 31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: 26-leg agility, 27-arising from chair, and 29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.
  •  
3.
  • Akay, Altug, et al. (författare)
  • A Novel Data-Mining Approach Leveraging Social Media to Monitor Consumer Opinion of Sitagliptin
  • 2015
  • Ingår i: IEEE journal of biomedical and health informatics. - 2168-2194 .- 2168-2208. ; 19:1, s. 389-396
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel data mining method was developed to gauge the experience of the drug Sitagliptin (trade name Januvia) by patients with diabetes mellitus type 2. To this goal, we devised a two-step analysis framework. Initial exploratory analysis using self-organizing maps was performed to determine structures based on user opinions among the forum posts. The results were a compilation of user's clusters and their correlated (positive or negative) opinion of the drug. Subsequent modeling using network analysis methods was used to determine influential users among the forum members. These findings can open new avenues of research into rapid data collection, feedback, and analysis that can enable improved outcomes and solutions for public health and important feedback for the manufacturer.
  •  
4.
  • Akay, Altug, et al. (författare)
  • Assessing Antidepressants Using Intelligent Data Monitoring and Mining of Online Fora
  • 2016
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 20:4, s. 977-986
  • Tidskriftsartikel (refereegranskat)abstract
    • Depression is a global health concern. Social networks allow the affected population to share their experiences. These experiences, when mined, extracted, and analyzed, can be converted into either warnings to recall drugs (dangerous side effects), or service improvement (interventions, treatment options) based on observations derived from user behavior in depression-related social networks. Our aim was to develop a weighted network model to represent user activity on social health networks. This enabled us to accurately represent user interactions by relying on the data's semantic content. Our three-step method uses the weighted network model to represent user's activity, and network clustering and module analysis to characterize user interactions and extract further knowledge from user's posts. The network's topological properties reflect user activity such as posts' general topic as well as timing, while weighted edges reflect the posts semantic content and similarities among posts. The result, a synthesis from word data frequency, statistical analysis of module content, and the modeled health network's properties, has allowed us to gain insight into consumer sentiment of antidepressants. This approach will allow all parties to participate in improving future health solutions of patients suffering from depression.
  •  
5.
  • Akay, Altug, et al. (författare)
  • Network-Based Modeling and Intelligent Data Mining of Social Media for Improving Care
  • 2015
  • Ingår i: IEEE journal of biomedical and health informatics. - 2168-2194 .- 2168-2208. ; 19:1, s. 210-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users' forum posts, and identifies user communities (modules) and influential users for the purpose of ascertaining user opinion of cancer treatment. We used a self-organizing map to analyze word frequency data derived from users' forum posts. We then introduced a novel network-based approach for modeling users' forum interactions and employed a network partitioning method based on optimizing a stability quality measure. This allowed us to determine consumer opinion and identify influential users within the retrieved modules using information derived from both word-frequency data and network-based properties. Our approach can expand research into intelligently mining social media data for consumer opinion of various treatments to provide rapid, up-to-date information for the pharmaceutical industry, hospitals, and medical staff, on the effectiveness (or ineffectiveness) of future treatments.
  •  
6.
  • Ali Hamad, Rebeen, 1989-, et al. (författare)
  • Efficient Activity Recognition in Smart Homes Using Delayed Fuzzy Temporal Windows on Binary Sensors
  • 2020
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 24:2, s. 387-395
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activity recognition has become an active research field over the past few years due to its wide application in various fields such as health-care, smart home monitoring, and surveillance. Existing approaches for activity recognition in smart homes have achieved promising results. Most of these approaches evaluate real-time recognition of activities using only sensor activations that precede the evaluation time (where the decision is made). However, in several critical situations, such as diagnosing people with dementia, “preceding sensor activations” are not always sufficient to accurately recognize the inhabitant's daily activities in each evaluated time. To improve performance, we propose a method that delays the recognition process in order to include some sensor activations that occur after the point in time where the decision needs to be made. For this, the proposed method uses multiple incremental fuzzy temporal windows to extract features from both preceding and some oncoming sensor activations. The proposed method is evaluated with two temporal deep learning models (convolutional neural network and long short-term memory), on a binary sensor dataset of real daily living activities. The experimental evaluation shows that the proposed method achieves significantly better results than the real-time approach, and that the representation with fuzzy temporal windows enhances performance within deep learning models. © Copyright 2020 IEEE
  •  
7.
  • Banaee, Hadi, 1986-, et al. (författare)
  • Data-driven rule mining and representation of temporal patterns in physiological sensor data
  • 2015
  • Ingår i: IEEE journal of biomedical and health informatics. - 2168-2194 .- 2168-2208. ; 19:5, s. 1557-1566
  • Tidskriftsartikel (refereegranskat)abstract
    • Mining and representation of qualitative patterns is a growing field in sensor data analytics. This paper leverages from rule mining techniques to extract and represent temporal relation of prototypical patterns in clinical data streams. The approach is fully data-driven, where the temporal rules are mined from physiological time series such as heart rate, respiration rate, and blood pressure. To validate the rules, a novel similarity method is introduced, that compares the similarity between rule sets. An additional aspect of the proposed approach has been to utilize natural language generation techniques to represent the temporal relations between patterns. In this study, the sensor data in the MIMIC online database was used for evaluation, in which the mined temporal rules as they relate to various clinical conditions (respiratory failure, angina, sepsis, ...) were made explicit as a textual representation. Furthermore, it was shown that the extracted rule set for any particular clinical condition was distinct from other clinical conditions.
  •  
8.
  • Bao, Nan, et al. (författare)
  • Wi-Breath : A WiFi-based Contactless and Real-time Respiration Monitoring Scheme for Remote Healthcare
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 27:5, s. 2276-2285
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiration rate is an important healthcare indicator, and it has become a popular research topic in remote healthcare applications with Internet of Things. Existing respiration monitoring systems have limitations in terms of convenience, comfort, and privacy, etc. This paper presents a contactless and real-time respiration monitoring system, the so-called Wi-Breath, based on off-the-shelf WiFi devices. The system monitors respiration with both the amplitude and phase difference of the WiFi channel state information (CSI), which is sensitive to human body micro movement. The phase information of the CSI signal is considered and both the amplitude and phase difference are used. For better respiration detection accuracy, a signal selection method is proposed to select an appropriate signal from the amplitude and phase difference based on a support vector machine (SVM) algorithm. Experimental results demonstrate that the Wi-Breath achieves an accuracy of 91.2% for respiration detection, and has a 17.0% reduction in average error in comparison with state-of-the-art counterparts.
  •  
9.
  • Barua, Shaibal, et al. (författare)
  • Automated EEG Artifact Handling with Application in Driver Monitoring
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 22:5, s. 1350-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • Automated analyses of electroencephalographic (EEG) signals acquired in naturalistic environments is becoming increasingly important in areas such as brain computer interfaces and behaviour science. However, the recorded EEG in such environments is often heavily contaminated by motion artifacts and eye movements. This poses new requirements on artifact handling. The objective of this paper is to present an automated EEG artifacts handling algorithm which will be used as a pre-processing step in a driver monitoring application. The algorithm, named ARTE (Automated aRTifacts handling in EEG), is based on wavelets, independent component analysis and hierarchical clustering. The algorithm is tested on a dataset obtained from a driver sleepiness study including 30 drivers and 540 30-minute 30-channel EEG recordings. The algorithm is evaluated by a clinical neurophysiologist, by quantitative criteria (signal quality index, mean square error, relative error and mean absolute error), and by demonstrating its usefulness as a pre-processing step in driver monitoring, here exemplified with driver sleepiness classification. All results are compared with a state of the art algorithm called FORCe. The quantitative and expert evaluation results show that the two algorithms are comparable and that both algorithms significantly reduce the impact of artifacts in recorded EEG signals. When artifact handling is used as a pre-processing step in driver sleepiness classification, the classification accuracy increased by 5% when using ARTE and by 2% when using FORCe. The advantage with ARTE is that it is data driven and does not rely on additional reference signals or manually defined thresholds, making it well suited for use in dynamic settings where unforeseen and rare artifacts are commonly encountered.
  •  
10.
  • Durusoy, Goktekin, et al. (författare)
  • B-Tensor : Brain Connectome Tensor Factorization for Alzheimers Disease
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 25:5, s. 1591-1600
  • Tidskriftsartikel (refereegranskat)abstract
    • AD is the highly severe part of the dementia spectrum and impairs cognitive abilities of individuals, bringing economic, societal and psychological burdens beyond the diseased. A promising approach in AD research is the analysis of structural and functional brain connectomes, i.e., sNETs and fNETs, respectively. We propose to use tensor representation (B-tensor) of uni-modal and multi-modal brain connectomes to define a low-dimensional space via tensor factorization. We show on a cohort of 47 subjects, spanning the spectrum of dementia, that diagnosis with an accuracy of 77% to 100% is achievable in a 5D connectome space using different structural and functional connectome constructions in a uni-modal and multi-modal fashion. We further show that multi-modal tensor factorization improves the results suggesting complementary information in structure and function. A neurological assessment of the connectivity patterns identified largely agrees with prior knowledge, yet also suggests new associations that may play a role in the disease progress.
  •  
11.
  • Ericsson, Leon, et al. (författare)
  • Generalized super-resolution 4D Flow MRI - using ensemble learning to extend across the cardiovascular system
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - 2168-2194 .- 2168-2208. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • 4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was therefore to explore the generalizability of SR 4D Flow MRI using a combination of existing super-resolution base models, novel heterogeneous training sets, and dedicated ensemble learning techniques; the latter-most being effectively used for improved domain adaption in other domains or modalities, however, with no previous exploration in the setting of 4D Flow MRI. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with the novel use of ensemble learning in the setting of advanced fullfield flow imaging extending utility across various clinical areas of interest.
  •  
12.
  • Fang, Bo, et al. (författare)
  • Dual-Channel Neural Network for Atrial Fibrillation Detection From a Single Lead ECG Wave
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 27:5, s. 2296-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • With the dramatic progress of wearable devices, continuous collection of single lead ECG wave is able to be implemented in a comfortable fashion. Data mining on single lead ECG wave is therefore attracting increasing attention, where atrial fibrillation (AF) detection is a hot topic. In this paper, we propose a dual-channel neural network for AF detection from a single lead ECG wave. Two primary phases are included, the data preprocessing part followed by a dual-channel neural network. A two-stage denoising procedure is developed for data preprocessing, so as to tackle the high noise and disturbance which generally resides in the ECG wave collected by wearable devices. Then the time-frequency spectrum and Poincare plot of the denoised ECG signal are imported into the developed dual-channel neural network for feature extraction and AF detection. On the 2017 PhysioNet/CinC Challenge database, the F1 values were 0.83, 0.90, and 0.75 for AF rhythm and normal rhythm, and other rhythm, respectively. The results well validate the effectiveness of the proposed method for AF detection from a single lead ECG wave, and also indicate its performance advantages over some state-of-the-art counterparts.
  •  
13.
  • Ferreira, Javier, 1982-, et al. (författare)
  • A handheld and textile-enabled bioimpedance system for ubiquitous body composition analysis. : An initial functional validation
  • 2016
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 21:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, many efforts have been made to promote a healthcare paradigm shift from the traditional reactive hospital-centered healthcare approach towards a proactive, patient-oriented and self-managed approach that could improve service quality and help reduce costs while contributing to sustainability. Managing and caring for patients with chronic diseases accounts over 75% of healthcare costs in developed countries. One of the most resource demanding diseases is chronic kidney disease (CKD), which often leads to a gradual and irreparable loss of renal function, with up to 12% of the population showing signs of different stages of this disease. Peritoneal dialysis and home haemodialysis are life-saving home-based renal replacement treatments that, compared to conventional in-center hemodialysis, provide similar long-term patient survival, less restrictions of life-style, such as a more flexible diet, and better flexibility in terms of treatment options and locations. Bioimpedance has been largely used clinically for decades in nutrition for assessing body fluid distributions. Moreover, bioimpedance methods are used to assess the overhydratation state of CKD patients, allowing clinicians to estimate the amount of fluid that should be removed by ultrafiltration. In this work, the initial validation of a handheld bioimpedance system for the assessment of body fluid status that could be used to assist the patient in home-based CKD treatments is presented. The body fluid monitoring system comprises a custom-made handheld tetrapolar bioimpedance spectrometer and a textile-based electrode garment for total body fluid assessment. The system performance was evaluated against the same measurements acquired using a commercial bioimpedance spectrometer for medical use on several voluntary subjects. The analysis of the measurement results and the comparison of the fluid estimations indicated that both devices are equivalent from a measurement performance perspective, allowing for its use on ubiquitous e-healthcare dialysis solutions.
  •  
14.
  • Gbouna, Zakka Vincent, et al. (författare)
  • User-Interactive Robot Skin With Large-Area Scalability for Safer and Natural Human-Robot Collaboration in Future Telehealthcare
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 25:12, s. 4276-4288
  • Tidskriftsartikel (refereegranskat)abstract
    • With the fourth revolution of healthcare, i.e., Healthcare 4.0, collaborative robotics is spilling out from traditional manufacturing and will blend into human living or working environments to deliver care services, especially telehealthcare. Because of the frequent and seamless interaction between robots and care recipients, it poses several challenges that require careful consideration: 1) the ability of the human to collaborate with the robots in a natural manner; and 2) the safety of the human collaborating with the robot. In this regard, we have proposed a proximity sensing solution based on the self-capacitive technology to provide an extended sense of touch for collaborative robots, allowing approach and contact measurement to enhance safe and natural human-robot collaboration. The modular design of our solution enables it to scale up to form a large-area sensing system. The sensing solution is proposed to work in two operation modes: the interaction mode and the safety mode. In the interaction mode, utilizing the ability of the sensor to localize the point of action, gesture command is used for robot manipulation. In the safety mode, the sensor enables the robot to actively avoid obstacles.
  •  
15.
  • Ghayvat, Hemant, et al. (författare)
  • CP-BDHCA : Blockchain-Based Confidentiality-Privacy Preserving Big Data Scheme for Healthcare Clouds and Applications
  • 2022
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 26:5, s. 1937-1948
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthcare big data (HBD) allows medical stakeholders to analyze, access, retrieve personal and electronic health records (EHR) of patients. Mostly, the records are stored on healthcare cloud and application (HCA) servers, and thus, are subjected to end-user latency, extensive computations, single-point failures, and security and privacy risks. A joint solution is required to address the issues of responsive analytics, coupled with high data ingestion in HBD and secure EHR access. Motivated from the research gaps, the paper proposes a scheme, that integrates blockchain (BC)-based confidentiality-privacy (CP) preserving scheme, CP-BDHCA, that operates in two phases. In the first phase, elliptic curve cryptographic (ECC)-based digital signature framework, HCA-ECC is proposed to establish a session key for secure communication among different healthcare entities. Then, in the second phase, a two-step authentication framework is proposed that integrates Rivest-Shamir-Adleman (RSA) and advanced encryption standard (AES), named as HCA-RSAE that safeguards the ecosystem against possible attack vectors. CP-BDAHCA is compared against existing HCA cloud applications in terms of parameters like response time, average delay, transaction and signing costs, signing and verifying of mined blocks, and resistance to DoS and DDoS attacks. We consider 10 BC nodes and create a real-world customized dataset to be used with SEER dataset. The dataset has 30,000 patient profiles, with 1000 clinical accounts. Based on the combined dataset the proposed scheme outperforms traditional schemes like AI4SAFE, TEE, Secret, and IIoTEED, with a lower response time. For example, the scheme has a very less response time of 300 ms in DDoS. The average signing cost of mined BC transactions is 3,34 seconds, and for 205 transactions, has a signing delay of 1405 ms, with improved accuracy of approximate to 12% than conventional state-of-the-art approaches.
  •  
16.
  • Ghayvat, Hemant, et al. (författare)
  • Guest Editorial AIoPT (Artificial Intelligence of Paediatric Things) : Informatics in Meeting Paediatric Needs and Patient Monitoring
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 27:6, s. 2600-2602
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Medical (health) informatics broadly encompasses the cognitive, information processing, and communication tasks inherent in medical practice, education, and research, with a particular emphasis on the development of computer-based patient records, decision support systems, information standards, data aggregation systems, communication systems, and educational programs for patients and health providers. In addition, this rapidly growing area is confronted with developing technological solutions sensitive to special populations' specific requirements, i.e., Preventive, Assistive, and Medical Children Health Informatics . First, children have distinct physiology, come from diverse backgrounds, and are disproportionately affected by illnesses. Thus, children are not little adults, as a famous adage among child health experts. These distinctions have been extensively discussed and are frequently called the four D's. Second, children depend on their parents and extended relatives to access necessary health care. Thus, plans must include gathering and distributing information to many patients. Third, childhood is defined by a developmental trajectory marked by fast change and the emergence of capacities for health information utilization. Fourth, children's health is defined by distinct epidemiology characterized by fewer significant chronic diseases, a high prevalence of acute illnesses, and reliance on preventative interventions. Finally, since children are the poorest and most varied in our society, they exhibit distinct demographic trends.
  •  
17.
  • Gupta, Ankit, et al. (författare)
  • SimSearch : A Human-in-The-Loop Learning Framework for Fast Detection of Regions of Interest in Microscopy Images
  • 2022
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 26:8, s. 4079-4089
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Large-scale microscopy-based experiments often result in images with rich but sparse information content. An experienced microscopist can visually identify regions of interest (ROIs), but this becomes a cumbersome task with large datasets. Here we present SimSearch, a framework for quick and easy user-guided training of a deep neural model aimed at fast detection of ROIs in large-scale microscopy experiments. Methods: The user manually selects a small number of patches representing different classes of ROIs. This is followed by feature extraction using a pre-trained deep-learning model, and interactive patch selection pruning, resulting in a smaller set of clean (user approved) and larger set of noisy (unapproved) training patches of ROIs and background. The pre-trained deep-learning model is thereafter first trained on the large set of noisy patches, followed by refined training using the clean patches. Results: The framework is evaluated on fluorescence microscopy images from a large-scale drug screening experiment, brightfield images of immunohistochemistry-stained patient tissue samples, and malaria-infected human blood smears, as well as transmission electron microscopy images of cell sections. Compared to state-of-the-art and manual/visual assessment, the results show similar performance with maximal flexibility and minimal a priori information and user interaction. Conclusions: SimSearch quickly adapts to different data sets, which demonstrates the potential to speed up many microscopy-based experiments based on a small amount of user interaction. Significance: SimSearch can help biologists quickly extract informative regions and perform analyses on large datasets helping increase the throughput in a microscopy experiment.
  •  
18.
  • Hafid, Abdelakram, et al. (författare)
  • Full Impedance Cardiography Measurement Device Using Raspberry PI3 and System-on-Chip Biomedical Instrumentation Solutions
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 22:6, s. 1883-1894
  • Tidskriftsartikel (refereegranskat)abstract
    • Impedance cardiography (ICG) is a noninvasive method for monitoring cardiac dynamics using electrical bioimpedance (EBI) measurements. Since its appearance more than 40 years ago, ICG has been used for assessing hemodynamic parameters. This paper presents a measurement system based on two System on Chip (SoC) solutions and Raspberry PI, implementing both a full three-lead ECG recorder and an impedance cardiographer, for educational and research development purposes. Raspberry PI is a platform supporting Do-I t-Yourself project and education applications across the world. The development is part of Biosignal PI, an open hardware platform focusing in quick prototyping of physiological measurement instrumentation. The SoC used for sensing cardiac biopotential is the ADAS1000, and for the EBI measurement is the AD5933. The recordings were wirelessly transmitted through Bluetooth to a PC, where the waveforms were displayed, and hemodynamic parameters such as heart rate, stroke volume, ejection time and cardiac output were extracted from the ICG and ECG recordings. These results show how Raspberry PI can be used for quick prototyping using relatively widely available and affordable components, for supporting developers in research and engineering education. The design and development documents will be available on www.BiosignalPl.com, for open access under a Non Commercial-Share A like 4.0 International License.
  •  
19.
  • Hafid, Abdelakram, et al. (författare)
  • Full impedance cardiography measurement device using raspberry PI3 and system-on-chip biomedical instrumentation solutions
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 22:6, s. 1883-1894
  • Tidskriftsartikel (refereegranskat)abstract
    • Impedance cardiography (ICG) is a noninvasive method for monitoring cardiac dynamics using electrical bioimpedance (EBI) measurements. Since its appearance more than 40 years ago, ICG has been used for assessing hemodynamic parameters. This paper presents a measurement system based on two System on Chip (SoC) solutions and Raspberry PI, implementing both a full three-lead ECG recorder and an impedance cardiographer, for educational and research development purposes. Raspberry PI is a platform supporting Do-It-Yourself project and education applications across the world. The development is part of Biosignal PI, an open hardware platform focusing in quick prototyping of physiological measurement instrumentation. The SoC used for sensing cardiac biopotential is the ADAS1000, and for the EBI measurement is the AD5933. The recordings were wirelessly transmitted through Bluetooth to a PC, where the waveforms were displayed, and hemodynamic parameters such as heart rate, stroke volume, ejection time and cardiac output were extracted from the ICG and ECG recordings. These results show how Raspberry PI can be used for quick prototyping using relatively widely available and affordable components, for supporting developers in research and engineering education. The design and development documents will be available on www.BiosignalPI.com, for open access under a Non Commercial-Share A like 4.0 International License.
  •  
20.
  • Jha, D., et al. (författare)
  • A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation
  • 2021
  • Ingår i: IEEE Journal of Biomedical and Health Informatics. - 2168-2194 .- 2168-2208. ; 25:6, s. 2029-2040
  • Tidskriftsartikel (refereegranskat)abstract
    • Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using CRF and TTA. We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other State-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.
  •  
21.
  • Jiao, Yiping, et al. (författare)
  • LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 28:3, s. 1161-1172
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzhen (China). The competition required participants to automatically assess the number of lymphocytes, in particular T-cells, in images of colon, breast, and prostate cancer stained with CD3 and CD8 immunohistochemistry. Differently from other challenges setup in medical image analysis, LYSTO participants were solely given a few hours to address this problem. In this paper, we describe the goal and the multi-phase organization of the hackathon; we describe the proposed methods and the on-site results. Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists. We show that some of the participants were capable to achieve pathologist-level performance at lymphocyte assessment. After the hackathon, LYSTO was left as a lightweight plug-and-play benchmark dataset on grand-challenge website, together with an automatic evaluation platform.
  •  
22.
  • Khan, Taha, 1983-, et al. (författare)
  • Prediction of Mild Cognitive Impairment Using Movement Complexity
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 25:1, s. 227-236
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Aimless movement or wandering may be a symptom of mild cognitive impairment (MCI) that arises as a consequence of confusion and forgetfulness. This paper presents a support vector machine (SVM) framework based on movement analysis for the prediction of the onset and progression of MCI.Methods: Movement data of 22 subjects with MCI, and 22 other healthy subjects, living independently in smart homes were collected for ten years using motion sensors. Features were extracted from the sensor data using movement metrics, including cyclomatic complexity, detrended fluctuation analysis, fractal index, entropy, and room transitions. Two different SVM classification algorithms were trained using the features, first to predict the progression of MCI in the post-transition period, and second to predict the onset of MCI in the pre-transition phase.Results: The two SVMs were able to detect the onset six months earlier than the clinical diagnosis. The model accuracy in classifying MCI increased monotonically from the onset month and reached maximum (81%) at the 11th post-transition month. The features of cyclomatic complexity contributed significantly to the prediction results.Conclusion: Findings support the use of movement complexity measures and machine learning for monitoring cognitive behavior in an independent living environment.© Copyright 2020 IEEE., All rights reserved.
  •  
23.
  • Linmans, Jasper, et al. (författare)
  • The Latent Doctor Model for Modeling Inter-Observer Variability
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 28:1, s. 343-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Many inherently ambiguous tasks in medical imaging suffer from inter-observer variability, resulting in a reference standard defined by a distribution of labels with high variance. Training only on a consensus or majority vote label, as is common in medical imaging, discards valuable information on uncertainty amongst a panel of experts. In this work, we propose to train on the full label distribution to predict the uncertainty within a panel of experts and the most likely ground-truth label. To do so, we propose a new stochastic classification framework based on the conditional variational auto-encoder, which we refer to as the Latent Doctor Model (LDM). In an extensive comparative analysis, we compare the LDM with a model trained on the majority vote label and other methods capable of learning a distribution of labels. We show that the LDM is able to reproduce the reference-standard distribution significantly better than the majority vote baseline. Compared to the other baseline methods, we demonstrate that the LDM performs best at modeling the label distribution and its corresponding uncertainty in two prostate tumor grading tasks. Furthermore, we show competitive performance of the LDM with the more computationally demanding deep ensembles on a tumor budding classification task.
  •  
24.
  • Lv, Zhihan, Dr. 1984-, et al. (författare)
  • Augmented Reality for Bioinformatics
  • 2022
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 26:6, s. 2403-2404
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
25.
  •  
26.
  • Memedi, Mevludin, et al. (författare)
  • Validity and responsiveness of at-home touch-screen assessments in advanced Parkinson's disease
  • 2015
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 19:6, s. 1829-1834
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate if a telemetry test battery can be used to measure effects of Parkinson’s disease (PD) treatment intervention and disease progression in patients with fluctuations. Sixty-five patients diagnosed with advanced PD were recruited in an open longitudinal 36-month study; 35 treated with levodopa-carbidopa intestinal gel (LCIG) and 30 were candidates for switching from oral PD treatment to LCIG. They utilized a test battery, consisting of self-assessments of symptoms and fine motor tests (tapping and spiral drawings), four times per day in their homes during week-long test periods. The repeated measurements were summarized into an overall test score (OTS) to represent the global condition of the patient during a test period. Clinical assessments included ratings on Unified PD Rating Scale (UPDRS) and 39-item PD Questionnaire (PDQ-39) scales. In LCIG-naïve patients, mean OTS compared to baseline was significantly improved from the first test period on LCIG treatment until month 24. In LCIG-non-naïve patients, there were no significant changes in mean OTS until month 36. The OTS correlated adequately with total UPDRS (rho = 0.59) and total PDQ-39 (0.59). Responsiveness measured as effect size was 0.696 and 0.536 for OTS and UPDRS respectively. The trends of the test scores were similar to the trends of clinical rating scores but dropout rate was high. Correlations between OTS and clinical rating scales were adequate indicating that the test battery contains important elements of the information of well-established scales. The responsiveness and reproducibility were better for OTS than for total UPDRS.
  •  
27.
  • Minhas, Riaz, et al. (författare)
  • A Novel Approach to Quantify Microsleep in Drivers With Obstructive Sleep Apnea by Concurrent Analysis of EEG Patterns and Driving Attributes
  • 2024
  • Ingår i: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. - 2168-2194 .- 2168-2208. ; 28:3, s. 1341-1352
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate quantification of microsleep (MS) in drivers is crucial for preventing real-time accidents. We propose one-to-one correlation between events of high-fidelity driving simulator (DS) and corresponding brain patterns, unlike previous studies focusing general impact of MS on driving performance. Fifty professional drivers with obstructive sleep apnea (OSA) participated in a 50-minute driving simulation, wearing six-channel Electroencephalography (EEG) electrodes. 970 out-of-road OOR (microsleep) events (wheel and boundary contact >= 1 s), and 1020 on-road OR (wakefulness) events (wheel and boundary disconnection >= 1 s), were recorded. Power spectrum density, computed using discrete wavelet transform, analyzed power in different frequency bands and theta/alpha ratios were calculated for each event. We classified OOR (microsleep) events with higher theta/alpha ratio compared to neighboring OR (wakefulness) episodes as true MS and those with lower ratio as false MS. Comparative analysis, focusing on frontal brain, matched 791 of 970 OOR (microsleep) events with true MS episodes, outperforming other brain regions, and suggested that some unmatched instances were due to driving performance, not sleepiness. Combining frontal channels F3 and F4 yielded increased sensitivity in detecting MS, achieving 83.7% combined mean identification rate (CMIR), surpassing individual channel's MIR, highlighting potential for further improvement with additional frontal channels. We quantified MS duration, with 95% of total episodes lasting between 1 to 15 seconds, and pioneered a robust correlation (r = 0.8913, p<0.001) between maximum drowsiness level and MS density. Validating simulator's signals with EEG patterns by establishing a direct correlation improves reliability of MS identification for assessing fitness-to-drive of OSA-afflicted adults.
  •  
28.
  • Qiao, Sibo, et al. (författare)
  • A Pseudo-Siamese Feature Fusion Generative Adversarial Network for Synthesizing High-quality Fetal Four-chamber Views
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 27:3, s. 1193-1204
  • Tidskriftsartikel (refereegranskat)abstract
    • Four-chamber (FC) views are the primary ultrasound (US) images that cardiologists diagnose whether the fetus has congenital heart disease (CHD) in prenatal diagnosis and screening. FC views intuitively depict the developmental morphology of the fetal heart. Early diagnosis of fetal CHD has always been the focus and difficulty of prenatal screening. Furthermore, deep learning technology has achieved great success in medical image analysis. Hence, applying deep learning technology in the early screening of fetal CHD helps improve diagnostic accuracy. However, the lack of large-scale and high-quality fetal FC views brings incredible difficulties to deep learning models or cardiologists. Hence, we propose a Pseudo-Siamese Feature Fusion Generative Adversarial Network (PSFFGAN), synthesizing high-quality fetal FC views using FC sketch images. In addition, we propose a novel Triplet Generative Adversarial Loss Function (TGALF), which optimizes PSFFGAN to fully extract the cardiac anatomical structure information provided by FC sketch images to synthesize the corresponding fetal FC views with speckle noises, artifacts, and other ultrasonic characteristics. The experimental results show that the fetal FC views synthesized by our proposed PSFFGAN have the best objective evaluation values: SSIM of 0.4627, MS-SSIM of 0.6224, and FID of 83.92, respectively. More importantly, two professional cardiologists evaluate healthy FC views and CHD FC views synthesized by our PSFFGAN, giving a subjective score that the average qualified rate is 82% and 79%, respectively, which further proves the effectiveness of the PSFFGAN. 
  •  
29.
  • Qiao, Sibo, et al. (författare)
  • SPReCHD : Four-Chamber Semantic Parsing Network for Recognizing Fetal Congenital Heart Disease in Medical Metaverse
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 28:6, s. 3672-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Echocardiography is essential for evaluating cardiac anatomy and function during early recognition and screening for congenital heart disease (CHD), a widespread and complex congenital malformation. However, fetal CHD recognition still faces many difficulties due to instinctive fetal movements, artifacts in ultrasound images, and distinctive fetal cardiac structures. These factors hinder capturing robust and discriminative representations from ultrasound images, resulting in CHD's low prenatal detection rate. Hence, we propose a multi-scale gated axial-transformer network (MSGATNet) to capture fetal four-chamber semantic information. Then, we propose a SPReCHD: four-chamber semantic parsing network for recognizing fetal CHD in the clinical treatment of the medical metaverse, integrating MSGATNet to segment and locate four-chamber arbitrary contours, further capturing distinguished representations for the fetal heart. Comprehensive experiments indicate that our SPReCHD is sufficient in recognizing fetal CHD, achieving a precision of 95.92%, a recall of 94%, an accuracy of 95%, and a F1 score of 94.95% on the test set, dramatically improving the fetal CHD's prenatal detection rate.
  •  
30.
  • Qu, Zhiguo, et al. (författare)
  • DTQFL : A Digital Twin-Assisted Quantum Federated Learning Algorithm for Intelligent Diagnosis in 5G Mobile Network
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway, NJ : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; , s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Smart healthcare aims to revolutionize med-ical services by integrating artificial intelligence (AI). The limitations of classical machine learning include privacy concerns that prevent direct data sharing among medical institutions, untimely updates, and long training times. To address these issues, this study proposes a digital twin-assisted quantum federated learning algorithm (DTQFL). By leveraging the 5G mobile network, digital twins (DT) of patients can be created instantly using data from various Internet of Medical Things (IoMT) devices and simultane-ously reduce communication time in federated learning (FL) at the same time. DTQFL generates DT for patients with specific diseases, allowing for synchronous training and updating of the variational quantum neural network (VQNN) without disrupting the VQNN in the real world. This study utilized DTQFL to train its own personalized VQNN for each hospital, considering privacy security and training speed. Simultaneously, the personalized VQNN of each hospital was obtained through further local iterations of the final global parameters. The results indicate that DTQFL can train a good VQNN without collecting local data while achieving accuracy comparable to that of data-centralized algorithms. In addition, after personalized train-ing, the VQNN can achieve higher accuracy than that with-out personalized training.
  •  
31.
  • Qu, Zhiguo, et al. (författare)
  • IoMT-based smart healthcare detection system driven by quantum blockchain and quantum neural network
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway, NJ : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 28:6, s. 3317-3328
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrocardiogram (ECG) is the main criterion for arrhythmia detection. As a means of identification, ECG leakage seems to be a common occurrence due to the development of the Internet of Medical Things (IoMT). The advent of the quantum era makes it difficult for classical blockchain technology to provide security for ECG data storage. Therefore, from the perspective of safety and practicality, this article proposes a quantum arrhythmia detection system named QADS, which achieves secure storage and sharing of ECG data based on quantum blockchain technology. Furthermore, a quantum neural network is used in QADS to recognize abnormal ECG data, which contributes to further cardiovascular disease diagnosis. Each quantum block stores the hash of the current and previous block to construct a quantum block network. The new quantum blockchain algorithm introduces a controlled quantum walk hash function and a quantum authentication protocol to guarantee legitimacy and security while creating new blocks. In addition, this article constructs a hybrid quantum convolutional neural network nameded HQCNN to extract the temporal features of ECG to detect abnormal heartbeats. The simulation experimental results show that HQCNN achieves an average training and testing accuracy of 94.7% and 93.6%. And the detection stability is much higher than classical CNN with the same structure. HQCNN also has certain robustness under the perturbation of quantum noise. Besides, this article demonstrates through mathematical analysis that the proposed quantum blockchain algorithm has strong security and can effectively resist various quantum attacks, such as external attacks, Entanglement-Measure attack and Interception-Measurement-Repeat attack. © IEEE
  •  
32.
  • Seepers, Robert Mark, et al. (författare)
  • Attacks on Heartbeat-Based Security Using Remote Photoplethysmography
  • 2018
  • Ingår i: IEEE Journal of Biomedical and Health Informatics. - 2168-2194 .- 2168-2208. ; 22:3, s. 714-721
  • Tidskriftsartikel (refereegranskat)abstract
    • The time interval between consecutive heartbeats (interpulse interval, IPI) has previously been suggested for securing mobile-health solutions. This time interval is known to contain a degree of randomness, permitting the generation of a time-and person-specific identifier. It is commonly assumed that only devices trusted by a person can make physical contact with him/her, and that this physical contact allows each device to generate a similar identifier based on its own cardiac recordings. Under these conditions, the identifiers generated by different trusted devices can facilitate secure authentication. Recently, a wide range of techniques have been proposed for measuring heartbeats remotely, a prominent example of which is remote photoplethysmography (rPPG). These techniques may pose a significant threat to heartbeat-based security, as an adversary may pretend to be a trusted device by generating a similar identifier without physical contact, thus bypassing one of the core security conditions. In this paper, we assess the feasibility of such remote attacks using state-of-the-art rPPG methods. Our evaluation shows that rPPG has similar accuracy as contact PPG and, thus, forms a substantial threat to heartbeat-based-security systems that permit trusted devices to obtain their identifiers from contact PPG recordings. Conversely, rPPG cannot obtain an accurate representation of an identifier generated from electrical cardiac signals, making the latter invulnerable to state-of-the-art remote attacks.
  •  
33.
  • Seepers, R.M., et al. (författare)
  • Enhancing heart-beat-based security for mHealth applications
  • 2017
  • Ingår i: IEEE Journal of Biomedical and Health Informatics. - 2168-2194 .- 2168-2208. ; 21:1, s. 254-262
  • Tidskriftsartikel (refereegranskat)abstract
    • In heart-beat-based security, a security key is derived from the time difference between two consecutive heart beats (the Inter-Pulse-Interval, IPI) which may, subsequently, be used to enable secure communication. While heart-beatbased security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects which should be considered in practice, including subjects with reduced heart-rate variability, different sensor-sampling frequencies, inter-sensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-caseauthentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, lessentropic keys may actually increase the key strength by reducing the effects of inter-sensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's heart-rate variability. To improve security, we introduce the Inter-multi-Pulse Interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between two non-consecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4x (+19.2 bits) for subjects with limited heart-rate variability, at the cost of an extended key-generation time of 4.8x (+45 sec).
  •  
34.
  • Simplício, M A, Jr, et al. (författare)
  • SecourHealth : a delay-tolerant security framework for mobile health data collection.
  • 2015
  • Ingår i: IEEE journal of biomedical and health informatics. - 2168-2194 .- 2168-2208. ; 19:2, s. 761-772
  • Tidskriftsartikel (refereegranskat)abstract
    • Security is one of the most imperative requirements for the success of systems that deal with highly sensitive data, such as medical information. However, many existing mobile health solutions focused on collecting patients' data at their homes that do not include security among their main requirements. Aiming to tackle this issue, this paper presents SecourHealth, a lightweight security framework focused on highly sensitive data collection applications. SecourHealth provides many security services for both stored and in-transit data, displaying interesting features such as tolerance to lack of connectivity (a common issue when promoting health in remote locations) and the ability to protect data even if the device is lost/stolen or shared by different data collection agents. Together with the system's description and analysis, we also show how SecourHealth can be integrated into a real data collection solution currently deployed in the city of Sao Paulo, Brazil.
  •  
35.
  • Singh, Parminder, et al. (författare)
  • Dew-Cloud-Based Hierarchical Federated Learning for Intrusion Detection in IoMT
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 27:2, s. 722-731
  • Tidskriftsartikel (refereegranskat)abstract
    • The coronavirus pandemic has overburdened medical institutions, forcing physicians to diagnose and treat their patients remotely. Moreover, COVID-19 has made humans more conscious about their health, resulting in the extensive purchase of IoT-enabled medical devices. The rapid boom in the market worth of the internet of medical things (IoMT) captured cyber attackers attention. Like health, medical data is also sensitive and worth a lot on the dark web. Despite the fact that the patients health details have not been protected appropriately, letting the trespassers exploit them. The system administrator is unable to fortify security measures due to the limited storage capacity and computation power of the resource-constrained network devices. Although various supervised and unsupervised machine learning algorithms have been developed to identify anomalies, the primary undertaking is to explore the swift progressing malicious attacks before they deteriorate the wellness systems integrity. In this paper, a Dew-Cloud based model is designed to enable hierarchical federated learning (HFL). The proposed Dew-Cloud model provides a higher level of data privacy with greater availability of IoMT critical application(s). The hierarchical long-term memory (HLSTM) model is deployed at distributed Dew servers with a backend supported by cloud computing. Data pre-processing feature helps the proposed model achieve high training accuracy (99.31%) with minimum training loss (0.034). The experiment results demonstrate that the proposed HFL-HLSTM model is superior to existing schemes in terms of performance metrics such as accuracy, precision, recall, and f-score.
  •  
36.
  • Solorzano, Leslie, 1989-, et al. (författare)
  • Towards automatic protein co-expression quantification in immunohistochemical TMA slides
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 25:2, s. 393-402
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunohistochemical (IHC) analysis of tissue biopsies is currently used for clinical screening of solid cancers to assess protein expression. The large amount of image data produced from these tissue samples requires specialized computational pathology methods to perform integrative analysis. Even though proteins are traditionally studied independently, the study of protein co-expression may offer new insights towards patients' clinical and therapeutic decisions. To explore protein co-expression, we constructed a modular image analysis pipeline to spatially align tissue microarray (TMA) image slides, evaluate alignment quality, define tumor regions, and ultimately quantify protein expression, before and after tumor segmentation. The pipeline was built with open-source tools that can manage gigapixel slides. To evaluate the consensus between pathologist and computer, we characterized a cohort of 142 gastric cancer (GC) cases regarding the extent of E-cadherin and CD44v6 expression. We performed IHC analysis in consecutive TMA slides and compared the automated quantification with the pathologists' manual assessment. Our results show that automated quantification within tumor regions improves agreement with the pathologists' classification. A co-expression map was created to identify the cores co-expressing both proteins. The proposed pipeline provides not only computational tools forwarding current pathology practices to explore co-expression, but also a framework for merging data and transferring information in learning-based approaches to pathology.
  •  
37.
  • Stacke, Karin, 1990-, et al. (författare)
  • Measuring Domain Shift for Deep Learning in Histopathology
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208. ; 25:2, s. 325-336
  • Tidskriftsartikel (refereegranskat)abstract
    • The high capacity of neural networks allows fitting models to data with high precision, but makes generalization to unseen data a challenge. If a domain shift exists, i.e. differences in image statistics between training and test data, care needs to be taken to ensure reliable deployment in real-world scenarios. In digital pathology, domain shift can be manifested in differences between whole-slide images, introduced by for example differences in acquisition pipeline - between medical centers or over time. In order to harness the great potential presented by deep learning in histopathology, and ensure consistent model behavior, we need a deeper understanding of domain shift and its consequences, such that a model's predictions on new data can be trusted. This work focuses on the internal representation learned by trained convolutional neural networks, and shows how this can be used to formulate a novel measure - the representation shift - for quantifying the magnitude of model specific domain shift. We perform a study on domain shift in tumor classification of hematoxylin and eosin stained images, by considering different datasets, models, and techniques for preparing data in order to reduce the domain shift. The results show how the proposed measure has a high correlation with drop in performance when testing a model across a large number of different types of domain shifts, and how it improves on existing techniques for measuring data shift and uncertainty. The proposed measure can reveal how sensitive a model is to domain variations, and can be used to detect new data that a model will have problems generalizing to. We see techniques for measuring, understanding and overcoming the domain shift as a crucial step towards reliable use of deep learning in the future clinical pathology applications.
  •  
38.
  • Stenman, Sebastian, et al. (författare)
  • Antibody Supervised Training of a Deep Learning Based Algorithm for Leukocyte Segmentation in Papillary Thyroid Carcinoma
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 25:2, s. 422-428
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantity of leukocytes in papillary thyroid carcinoma (PTC) potentially have prognostic and treatment predictive value. Here, we propose a novel method for training a convolutional neural network (CNN) algorithm for segmenting leukocytes in PTCs. Tissue samples from two retrospective PTC cohort were obtained and representative tissue slides from twelve patients were stained with hematoxylin and eosin (HE) and digitized. Then, the HE slides were destained and restained immunohistochemically (IHC) with antibodies to the pan-leukocyte anti CD45 antigen and scanned again. The two stain-pairs of all representative tissue slides were registered, and image tiles of regions of interests were exported. The image tiles were processed and the 3,3'-diaminobenzidine (DAB) stained areas representing anti CD45 expression were turned into binary masks. These binary masks were applied as annotations on the HE image tiles and used in the training of a CNN algorithm. Ten whole slide images (WSIs) were used for training using a five-fold cross-validation and the remaining two slides were used as an independent test set for the trained model. For visual evaluation, the algorithm was run on all twelve WSIs, and in total 238,144 tiles sized 500 x 500 pixels were analyzed. The trained CNN algorithm had an intersection over union of 0.82 for detection of leukocytes in the HE image tiles when comparing the prediction masks to the ground truth anti CD45 mask. We conclude that this method for generating antibody supervised annotations using the destain-restain IHC guided annotations resulted in high accuracy segmentations of leukocytes in HE tissue images.
  •  
39.
  • Sun, Le, et al. (författare)
  • Energy-efficient Online Continual Learning for Time Series Classification in Nanorobot-based Smart Health
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway, NJ : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208.
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanorobots have been used in smart health to collect time series data such as electrocardiograms and electroencephalograms. Real-time classification of dynamic time series signals in nanorobots is a challenging task. Nanorobots in the nanoscale range require a classification algorithm with low computational complexity. First, the classification algorithm should be able to dynamically analyze time series signals and update itself to process the concept drifts (CD). Second, the classification algorithm should have the ability to handle catastrophic forgetting (CF) and classify historical data. Most importantly, the classification algorithm should be energy-efficient to use less computing power and memory to classify signals in real-time on a smart nanorobot. To solve these challenges, we design an algorithm that can Prevent Concept Drift in Online continual Learning for time series classification (PCDOL). The prototype suppression item in PCDOL can reduce the impact caused by CD. It also solves the CF problem through the replay feature. The computation per second and the memory consumed by PCDOL are only 3.572M and 1KB, respectively. The experimental results show that PCDOL is better than several state-of-the-art methods for dealing with CD and CF in energy-efficient nanorobots. © IEEE
  •  
40.
  • Sun, Le, et al. (författare)
  • Few-Shot Class-Incremental Learning for Medical Time Series Classification
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway, N.J. : IEEE. - 2168-2194 .- 2168-2208. ; 28:4, s. 1872-1882
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuously analyzing medical time series as new classes emerge is meaningful for health monitoring and medical decision-making. Few-shot class-incremental learning (FSCIL) explores the classification of few-shot new classes without forgetting old classes. However, little of the existing research on FSCIL focuses on medical time series classification, which is more challenging to learn due to its large intra-class variability. In this paper, we propose a framework, the Meta self-Attention Prototype Incrementer (MAPIC) to address these problems. MAPIC contains three main modules: an embedding encoder for feature extraction, a prototype enhancement module for increasing inter-class variation, and a distance-based classifier for reducing intra-class variation. To mitigate catastrophic forgetting, MAPIC adopts a parameter protection strategy in which the parameters of the embedding encoder module are frozen at incremental stages after being trained in the base stage. The prototype enhancement module is proposed to enhance the expressiveness of prototypes by perceiving inter-class relations using a self-attention mechanism. We design a composite loss function containing the sample classification loss, the prototype non-overlapping loss, and the knowledge distillation loss, which work together to reduce intra-class variations and resist catastrophic forgetting. Experimental results on three different time series datasets show that MAPIC significantly outperforms state-of-the-art approaches by 27.99%, 18.4%, and 3.95%, respectively. IEEE
  •  
41.
  • Teng, Fei, et al. (författare)
  • Automatic Medical Code Assignment via Deep Learning Approach for Intelligent Healthcare
  • 2020
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 24:9, s. 2506-2515
  • Tidskriftsartikel (refereegranskat)abstract
    • With the development of healthcare 4.0, there has been an explosion in the amount of data such as image, medical text, physiological signals, lab tests, etc. Among them, medical records provide a complete picture of the associated clinical events. However, the processing of medical texts is difficult because they are structurally free, diverse in style, and have subjective factors. Assigning metadata codes from the International Classification of Diseases (ICD) presents a standardized way of indicating diagnoses and procedures, so it becomes a mandatory process for understanding medical records to make better clinical and financial decisions. Such a manual encoding task is time-consuming, error-prone and expensive. In this paper, we proposed a deep learning approach and a medical topic mining method to automatically predict ICD codes from text-free medical records. The result of the F1 score on Medical Information Mart for Intensive Care (MIMIC-III) dataset increases by 5% over the state of art. It also suitable for multiple ICD versions and languages. For the specific disease, atrial fibrillation, the F1 score is up to 96% and 93.3% using in-house ICD-10 datasets and MIMIC-III datasets, respectively. We developed an Artificial Intelligence based coding system, which can greatly improve the efficiency and accuracy of human coders, and meanwhile accelerate the secondary use for clinical informatics.
  •  
42.
  • Thomas, I., et al. (författare)
  • A Treatment-Response Index From Wearable Sensors for Quantifying Parkinson's Disease Motor States
  • 2018
  • Ingår i: Ieee Journal of Biomedical and Health Informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 22:5, s. 1341-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • The goal of this study was to develop an algorithm that automatically quantifies motor states (off, on, dyskinesia) in Parkinson's disease (PD), based on accelerometry during a hand pronation-supination test. Clinician's ratings using the Treatment Response Scale (TRS), ranging from -3 (veryOff) to 0 (On) to +3 (very dyskinetic), were used as target. For that purpose, 19 participants with advanced PD and 22 healthy persons were recruited in a single center open label clinical trial in Uppsala, Sweden. The trial consisted of single levodopa dose experiments for the people with PD (PwP), where participants were asked to perform standardized wrist rotation tests, using each hand, before and at prespecified time points after the dose. The participants used wrist sensors containing a three-dimensional accelerometer and gyroscope. Features to quantify the level, variation, and asymmetry of the sensor signals, three-level discrete wavelet transform features, and approximate entropy measures were extracted from the sensors data. At the time of the tests, the PwP were video recorded. Three movement disorder specialists rated the participants' state on the TRS. A Treatment Response Index from Sensors (TRIS) was constructed to quantify the motor states based on the wrist rotation tests. Different machine learning algorithms were evaluated to map the features derived from the sensor data to the ratings provided by the three specialists. Results from cross validation, both in tenfold and a leave-one-individual out setting, showed good predictive power of a support vector machine model and high correlation to the TRS. Values at the end tails of the TRS were under and over predicted due to the lack of observations at those values but the model managed to accurately capture the dose-effect profiles of the patients. In addition, the TRIS had good test-retest reliability on the baseline levels of the PD participants (Intraclass correlation coefficient of 0.83) and reasonable sensitivity to levodopa treatment (0.33 for the TRIS). For a series of test occasions, the proposed algorithms provided dose-effect time profiles for participants with PD, which could be useful during therapy individualization of people suffering from advanced PD.
  •  
43.
  • Thomas, Ilias, et al. (författare)
  • A treatment–response index from wearable sensors for quantifying Parkinson's disease motor states
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 22:5, s. 1341-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • The goal of this study was to develop an algorithm that automatically quantifies motor states (off,on,dyskinesia) in Parkinson's disease (PD), based on accelerometry during a hand pronation-supination test. Clinician's ratings using the Treatment Response Scale (TRS), ranging from -3 (very Off) to 0 (On) to +3 (very dyskinetic), was used as target. For that purpose, 19 participants with advanced PD and 22 healthy persons were recruited in a single center open label clinical trial in Uppsala, Sweden. The trial consisted of single levodopa dose experiments for the people with PD (PwP), where participants were asked to perform standardized wrist rotation tests, using each hand, before and at pre-specified time points after the dose. The participants used wrist sensors containing a 3D accelerometer and gyroscope. Features to quantify the level, variation and asymmetry of the sensor signals, three-level Discrete Wavelet Transform features and approximate entropy measures were extracted from the sensors data. At the time of the tests, the PwP were video recorded. Three movement disorder specialists rated the participants’ state on the TRS scale. A Treatment Response Index from Sensors (TRIS) was constructed to quantify the motor states based on the wrist rotation tests. Different machine learning algorithms were evaluated to map the features derived from the sensor data to the ratings provided by the three specialists. Results from cross validation, both in 10-fold and a leave-one-individual out setting, showed good predictive power of a support vector machine model and high correlation to the TRS scale. Values at the end tails of the TRS scale were under and over predicted due to the lack of observations at those values but the model managed to accurately capture the dose - effect profiles of the patients. In addition, the TRIS had good test-retest reliability on the baseline levels of the PD participants (Intraclass correlation coefficient of 0.83) and reasonable sensitivity to levodopa treatment (0.33 for the TRIS). For a series of test occasions the proposed algorithms provided dose - effect time profiles for participants with PD, which could be useful during therapy individualization of people suffering from advanced PD
  •  
44.
  •  
45.
  • Wang, Chunzhuo, et al. (författare)
  • Eating Speed Measurement Using Wrist-Worn IMU Sensors Towards Free-Living Environments
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE. - 2168-2194 .- 2168-2208.
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating speed is an important indicator that has been widely investigated in nutritional studies. The relationship between eating speed and several intake-related problems such as obesity, diabetes, and oral health has received increased attention from researchers. However, existing studies mainly use self-reported questionnaires to obtain participants' eating speed, where they choose options from slow, medium, and fast. Such a non-quantitative method is highly subjective and coarse at the individual level. This study integrates two classical tasks in automated food intake monitoring domain: bite detection and eating episode detection, to advance eating speed measurement in near-free-living environments automatically and objectively. Specifically, a temporal convolutional network combined with a multi-head attention module (TCN-MHA) is developed to detect bites (including eating and drinking gestures) from IMU data. The predicted bite sequences are then clustered into eating episodes. Eating speed is calculated by using the time taken to finish the eating episode to divide the number of bites. To validate the proposed approach on eating speed measurement, a 7-fold cross validation is applied to the self-collected fine-annotated full-day-I (FD-I) dataset, and a holdout experiment is conducted on the full-day-II (FD-II) dataset. The two datasets are collected from 61 participants with a total duration of 513 h, which are publicly available. Experimental results show that the proposed approach achieves a mean absolute percentage error (MAPE) of 0.110 and 0.146 in the FD-I and FD-II datasets, respectively, showcasing the feasibility of automated eating speed measurement in near-free-living environments.
  •  
46.
  • Wang, Shudong, et al. (författare)
  • MSHGANMDA : Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction
  • 2023
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 27:10, s. 4639-4648
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGATMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGATMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNAdisease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGATMDA in predicting unknown diseases.
  •  
47.
  • Wazid, Mohammad, et al. (författare)
  • A Novel Authentication and Key Agreement Scheme for Implantable Medical Devices Deployment
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 2:4, s. 1299-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Implantable medical devices (IMDs) are man-made devices, which can be implanted in the human body to improve the functioning of various organs. The IMDs monitor and treat physiological condition of the human being (for example, monitoring of blood glucose level by insulin pump). The advancement of information and communication technology (ICT) enhances the communication capabilities of IMDs. In healthcare applications, after mutual authentication, a user (for example, doctor) can access the health data from the IMDs implanted in a patient's body. However, in this kind of communication environment, there are always security and privacy issues such as leakage of health data and malfunctioning of IMDs by an unauthorized access.
  •  
48.
  • Wieslander, Håkan, et al. (författare)
  • Deep learning and conformal prediction for hierarchical analysis of large-scale whole-slide tissue images
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 25:2, s. 371-380
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increasing amount of image data collected from biomedical experiments there is an urgent need for smarter and more effective analysis methods. Many scientific questions require analysis of image subregions related to some specific biology. Finding such regions of interest (ROIs) at low resolution and limiting the data subjected to final quantification at high resolution can reduce computational requirements and save time. In this paper we propose a three-step pipeline: First, bounding boxes for ROIs are located at low resolution. Next, ROIs are subjected to semantic segmentation into sub-regions at mid-resolution. We also estimate the confidence of the segmented sub-regions. Finally, quantitative measurements are extracted at high resolution. We use deep learning for the first two steps in the pipeline and conformal prediction for confidence assessment. We show that limiting final quantitative analysis to sub regions with high confidence reduces noise and increases separability of observed biological effects.
  •  
49.
  • Xie, Qianqian, et al. (författare)
  • Knowledge-enhanced Graph Topic Transformer for Explainable Biomedical Text Summarization
  • 2024
  • Ingår i: IEEE journal of biomedical and health informatics. - Piscataway, NJ : IEEE. - 2168-2194 .- 2168-2208. ; 8:4, s. 1836-1847
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the overwhelming and rapidly increasing volumes of the published biomedical literature, automatic biomedical text summarization has long been a highly important task. Recently, great advances in the performance of biomedical text summarization have been facilitated by pre-trained language models (PLMs) based on fine-tuning. However, existing summarization methods based on PLMs do not capture domain-specific knowledge. This can result in generated summaries with low coherence, including redundant sentences, or excluding important domain knowledge conveyed in the full-text document. Furthermore, the black-box nature of the transformers means that they lack explainability, i.e. it is not clear to users how and why the summary was generated. The domain-specific knowledge and explainability are crucial for the accuracy and transparency of biomedical text summarization methods. In this article, we aim to address these issues by proposing a novel domain knowledge-enhanced graph topic transformer (DORIS) for explainable biomedical text summarization. The model integrates the graph neural topic model and the domain-specific knowledge from the Unified Medical Language System (UMLS) into the transformer-based PLM, to improve the explainability and accuracy. Experimental results on four biomedical literature datasets show that our model outperforms existing state-of-the-art (SOTA) PLM-based summarization methods on biomedical extractive summarization. Furthermore, our use of graph neural topic modeling means that our model possesses the desirable property of being explainable, i.e. it is straightforward for users to understand how and why the model selects particular sentences for inclusion in the summary. The domain-specific knowledge helps our model to learn more coherent topics, to better explain the performance. © IEEE
  •  
50.
  • Yang, Geng, et al. (författare)
  • IoT-Based Remote Pain Monitoring System : From Device to Cloud Platform
  • 2018
  • Ingår i: IEEE journal of biomedical and health informatics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2168-2194 .- 2168-2208. ; 22:6, s. 1711-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • Facial expressions are among behavioral signs of pain that can be employed as an entry point to develop an automatic human pain assessment tool. Such a tool can be an alternative to the self-report method and particularly serve patients who are unable to self-report like patients in the intensive care unit and minors. In this paper, a wearable device with a biosensing facial mask is proposed to monitor pain intensity of a patient by utilizing facial surface electromyogram (sEMG). The wearable device works as a wireless sensor node and is integrated into an Internet of Things (IoT) system for remote pain monitoring. In the sensor node, up to eight channels of sEMG can be each sampled at 1000 Hz, to cover its full frequency range, and transmitted to the cloud server via the gateway in real time. In addition, both low energy consumption and wearing comfort are considered throughout the wearable device design for long-term monitoring. To remotely illustrate real-time pain data to caregivers, a mobile web application is developed for real-time streaming of high-volume sEMG data, digital signal processing, interpreting, and visualization. The cloud platform in the system acts as a bridge between the sensor node and web browser, managing wireless communication between the server and the web application. In summary, this study proposes a scalable IoT system for real-time biopotential monitoring and a wearable solution for automatic pain assessment via facial expressions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 65
Typ av publikation
tidskriftsartikel (65)
Typ av innehåll
refereegranskat (62)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Nyholm, Dag (3)
Chen, J. (2)
Hafid, Abdelakram (2)
van der Laak, Jeroen (2)
Seoane, Fernando, 19 ... (2)
Aminifar, Amir (2)
visa fler...
Benouar, Sara (2)
Westin, Jerker (2)
Bergquist, Filip, 19 ... (2)
Memedi, M. (2)
Nyholm, D. (2)
Senek, M. (2)
Senek, Marina (2)
Memedi, Mevludin (2)
Tenhunen, Hannu (2)
Wang, K. (1)
Zhang, H. (1)
Zhang, L. (1)
Yu, X. (1)
Bergh, J (1)
Song, H. (1)
Chen, W. (1)
Vasilakos, Athanasio ... (1)
Johansen, H (1)
Johansson, Anders (1)
Wang, W. (1)
Lundin, Johan (1)
Abtahi, Farhad (1)
Ji, Guangchao (1)
Abtahi, Farhad, 1981 ... (1)
Seoane, Fernando (1)
Lindecrantz, Kaj, 19 ... (1)
Zhang, L. Y. (1)
Loutfi, Amy, 1978- (1)
Acs, B (1)
Hartman, J (1)
Karlsson, Johan (1)
Özarslan, Evren (1)
Aghanavesi, Somayeh, ... (1)
Memedi, Mevludin, Ph ... (1)
Thomas, Ilias (1)
Bergquist, Filip (1)
Aghanavesi, S. (1)
Jha, D (1)
Carneiro, Fatima (1)
Carli, V (1)
Ahlström, Christer, ... (1)
Gurtov, Andrei (1)
Zheng, Li-Rong (1)
Eilertsen, Gabriel, ... (1)
visa färre...
Lärosäte
Uppsala universitet (17)
Kungliga Tekniska Högskolan (11)
Högskolan i Halmstad (8)
Karolinska Institutet (8)
Linköpings universitet (6)
Örebro universitet (5)
visa fler...
Lunds universitet (5)
Göteborgs universitet (4)
Högskolan Dalarna (3)
Umeå universitet (2)
Chalmers tekniska högskola (2)
Linnéuniversitetet (2)
Högskolan i Borås (2)
Luleå tekniska universitet (1)
Högskolan i Gävle (1)
Mälardalens universitet (1)
Karlstads universitet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (65)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (37)
Teknik (28)
Medicin och hälsovetenskap (22)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy