SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2214 0301 "

Sökning: L773:2214 0301

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Raphael, 1990, et al. (författare)
  • Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols
  • 2018
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 6, s. 22-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy by overexpressing genes encoding a deregulated acetyl-CoA carboxylase, ACC1 S659A/S1157A (ACC1**), as well as the last two steps of TAG formation: phosphatidic phosphatase (PAH1) and diacylglycerol acyltransferase (DGA1), ultimately leading to 129 mg∙gCDW −1 of TAGs. Disruption of TAG lipase genes TGL3, TGL4, TGL5 and sterol acyltransferase gene ARE1 increased the TAG content to 218 mg∙gCDW −1 . Further disruption of the beta-oxidation by deletion of POX1, as well as glycerol-3-phosphate utilization through deletion of GUT2, did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter PXA1 led to accumulation of 254 mg∙gCDW −1 . The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species for high level lipid production.
  •  
2.
  • Hagrot, Erika, et al. (författare)
  • Novel column generation-based optimization approach for poly-pathway kinetic model applied to CHO cell culture
  • 2019
  • Ingår i: Metabolic Engineering Communications. - : Elsevier. - 2214-0301. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mathematical modelling can provide precious tools for bioprocess simulation, prediction, control and optimization of mammalian cell-based cultures. In this paper we present a novel method to generate kinetic models of such cultures, rendering complex metabolic networks in a poly-pathway kinetic model. The model is based on subsets of elementary flux modes (EFMs) to generate macro-reactions. Thanks to our column generation-based optimization algorithm, the experimental data are used to identify the EFMs, which are relevant to the data. Here the systematic enumeration of all the EFMs is eliminated and a network including a large number of reactions can be considered. In particular, the poly-pathway model can simulate multiple metabolic behaviors in response to changes in the culture conditions. We apply the method to a network of 126 metabolic reactions describing cultures of antibody-producing Chinese hamster ovary cells, and generate a poly-pathway model that simulates multiple experimental conditions obtained in response to variations in amino acid availability. A good fit between simulated and experimental data is obtained, rendering the variations in the growth, product, and metabolite uptake/secretion rates. The intracellular reaction fluxes simulated by the model are explored, linking variations in metabolic behavior to adaptations of the intracellular metabolism.
  •  
3.
  • Kildegaard, K. R., et al. (författare)
  • Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae
  • 2015
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 2, s. 132-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP), a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17g 3HPL-1 in 120hours with an overall yield of 29±1%Cmol 3HPCmol-1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose.
  •  
4.
  • Kristjansdottir, Thordis, et al. (författare)
  • Engineering the carotenoid biosynthetic pathway in Rhodothermus marinus for lycopene production
  • 2020
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhodothermus marinus has the potential to be well suited for biorefineries, as an aerobic thermophile that produces thermostable enzymes and is able to utilize polysaccharides from different 2nd and 3rd generation biomass. The bacterium produces valuable chemicals such as carotenoids. However, the native carotenoids are not established for industrial production and R. marinus needs to be genetically modified to produce higher value carotenoids. Here we genetically modified the carotenoid biosynthetic gene cluster resulting in three different mutants, most importantly the lycopene producing mutant TK-3 (ΔtrpBΔpurAΔcruFcrtB::trpBcrtBT.thermophilus). The genetic modifications and subsequent structural analysis of carotenoids helped clarify the carotenoid biosynthetic pathway in R. marinus. The nucleotide sequences encoding the enzymes phytoene synthase (CrtB) and the previously unidentified 1′,2′-hydratase (CruF) were found fused together and encoded by a single gene in R. marinus. Deleting only the cruF part of the gene did not result in an active CrtB enzyme. However, by deleting the entire gene and inserting the crtB gene from Thermus thermophilus, a mutant strain was obtained, producing lycopene as the sole carotenoid. The lycopene produced by TK-3 was quantified as 0.49 ​g/kg CDW (cell dry weight).
  •  
5.
  • Liang, Feiyan, et al. (författare)
  • Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis
  • 2017
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 4, s. 29-36
  • Tidskriftsartikel (refereegranskat)abstract
    • The ribulose-1,5-bisphosphate (RuBP) oxygenation reaction catalyzed by Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is competing with carboxylation, being negative for both energy and carbon balances in photoautotrophic organisms. This makes RuBisCO one of the bottlenecks for oxygenic photosynthesis and carbon fixation. In this study, RuBisCO was overexpressed in the unicellular cyanobacterium Synechocystis PCC 6803. Relative RuBisCO levels in the engineered strains FL50 and FL52 increased 2.1 times and 1.4 times, respectively, and both strains showed increased growth, photosynthesis and in vitro RuBisCO activity. The oxygen evolution rate increased by 54% and 42% on per chlorophyll basis, while the in vitro RuBisCO activity increased by 52% and 8.6%, respectively. The overexpressed RuBisCO were tagged with a FLAG tag, in strain FL50 on the N terminus of the large subunit while in strain FL52 on the C terminus of the small subunit. The presence of a FLAG tag enhanced transcription of the genes encoding RuBisCO, and, with high possibility, also enhanced the initiation of translation or stability of the enzyme. However, when using a streptavidin-binding tag II (strep-tag II), we did not observe a similar effect. Tagged RuBisCO offers an opportunity for further studying RuBisCO expression and stability. Increased levels of RuBisCO can further improve photosynthesis and growth in the cyanobacterium Synechocystis PCC 6803 under certain growth conditions.
  •  
6.
  • Ljungqvist, Emil E., et al. (författare)
  • Genome-scale reconstruction and metabolic modelling of the fast-growing thermophile Geobacillus sp. LC300
  • 2022
  • Ingår i: METABOLIC ENGINEERING COMMUNICATIONS. - : Elsevier BV. - 2214-0301. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermophilic microorganisms show high potential for use as biorefinery cell factories. Their high growth temperatures provide fast conversion rates, lower risk of contaminations, and facilitated purification of volatile products. To date, only a few thermophilic species have been utilized for microbial production purposes, and the development of production strains is impeded by the lack of metabolic engineering tools. In this study, we constructed a genome-scale metabolic model, an important part of the metabolic engineering pipeline, of the fast-growing thermophile Geobacillus sp. LC300. The model (iGEL604) contains 604 genes, 1249 reactions and 1311 metabolites, and the reaction reversibility is based on thermodynamics at the optimum growth temperature. The growth phenotype is analyzed by batch cultivations on two carbon sources, further closing balances in carbon and degree-of-reduction. The predictive ability of the model is benchmarked against experimentally determined growth characteristics and internal flux distributions, showing high similarity to experimental phenotypes.
  •  
7.
  • Martinez Ruiz, Jose Luis, 1981, et al. (författare)
  • The impact of respiration and oxidative stress response on recombinant ?-amylase production by Saccharomyces cerevisiae
  • 2016
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 3, s. 205-210
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS accumulation associated to protein folding and hence increasing the production capacity during batch fermentations.
  •  
8.
  • Miao, Rui, et al. (författare)
  • Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases
  • 2017
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 5, s. 45-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. In this study, we examined the capacity of engineered strains of Synechocystis PCC 6803 containing the α-ketoisovalerate decarboxylase from Lactococcus lactis and different heterologous and endogenous alcohol dehydrogenases (ADH) for isobutanol production. A strain expressing an introduced kivdwithout any additional copy of ADH produced 3 mg L−1 OD750−1 isobutanol in 6 days. After the cultures were supplemented with external addition of isobutyraldehyde, the substrate for ADH, 60.8 mg L−1 isobutanol was produced after 24 h when OD750 was 0.8. The in vivo activities of four different ADHs, two heterologous and two putative endogenous in Synechocystis, were examined and the Synechocystis endogenous ADH encoded by slr1192 showed the highest efficiency for isobutanol production. Furthermore, the strain overexpressing the isobutanol pathway on a self-replicating vector with the strong Ptrc promoter showed significantly higher gene expression and isobutanol production compared to the corresponding strains expressing the same operon introduced on the genome. Hence, this study demonstrates that Synechocystis endogenous AHDs have a high capacity for isobutanol production, and identifies kivd encoded α-ketoisovalerate decarboxylase as one of the likely bottlenecks for further isobutanol production.
  •  
9.
  • Mustila, Henna, et al. (författare)
  • Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus
  • 2021
  • Ingår i: Metabolic engineering communications. - : Elsevier. - 2214-0301. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ​± ​9 ​ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ​ng ​l-1 OD750 -1 ​h-1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts.
  •  
10.
  • Narayanan, Venkatachalam, et al. (författare)
  • Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae
  • 2023
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Various rational metabolic engineering and random approaches have been applied to introduce and improve xylose utilization and ethanol productivity by Saccharomyces cerevisiae. Among them, the BUD21 gene was identified as an interesting candidate for enhancing xylose consumption as its deletion appeared to be sufficient to improve growth, substrate utilization and ethanol productivity on xylose, even in a laboratory strain lacking a heterologous xylose pathway. The present study aimed at studying the influence of BUD21 deletion in recombinant strains carrying heterologous oxido-reductive xylose utilization pathway. The positive effect of BUD21 gene deletion on aerobic growth and xylose utilization could not be confirmed in two non-engineered laboratory strains (BY4741 and CEN.PK 113-7D) that were grown in YP rich medium with 20 g/L xylose as sole carbon source, despite the fact that effective deletion of BUD21 gene was confirmed using both genotypic (colony PCR) and phenotypic (heat sensitive phenotype of the BUD21 deletion mutant) control experiments. Therefore, the effect of BUD21 deletion on xylose fermentation might be strain- or medium-dependent.
  •  
11.
  • Nowrouzi, Behnaz, et al. (författare)
  • Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production
  • 2024
  • Ingår i: Metabolic Engineering Communications. - 2214-0301. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.
  •  
12.
  • Pattanaik, Bagmi, et al. (författare)
  • Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803
  • 2020
  • Ingår i: METABOLIC ENGINEERING COMMUNICATIONS. - : Elsevier. - 2214-0301. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Squalene is a triterpene which is produced as a precursor for a wide range of terpenoid compounds in many organisms. It has commercial use in food and cosmetics but could also be used as a feedstock for production of chemicals and fuels, if generated sustainably on a large scale. We have engineered a cyanobacterium, Synechocystis sp. PCC 6803, for production of squalene from CO2. In this organism, squalene is produced via the methylerythritol-phosphate (MEP) pathway for terpenoid biosynthesis, and consumed by the enzyme squalene hopene cyclase (Shc) for generation of hopanoids. The gene encoding Shc in Synechocystis was inactivated (Delta shc) by insertion of a gene encoding a squalene synthase from the green alga Botryococcus braunii, under control of an inducible promoter. We could demonstrate elevated squalene generation in cells where the algal enzyme was induced. Heterologous overexpression of genes upstream in the MEP pathway further enhanced the production of squalene, to a level three times higher than the.shc background strain. During growth in flat panel bioreactors, a squalene titer of 5.1 mg/L of culture was reached.
  •  
13.
  • Pereira, Rui, 1986, et al. (författare)
  • Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae
  • 2016
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 3, s. 153-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-scale metabolic models (GEMs) can be used to evaluate genotype-phenotype relationships and their application to microbial strain engineering is increasing in popularity. Some of the algorithms used to simulate the phenotypes of mutant strains require the determination of a wild-type flux distribution. However, the accuracy of this reference, when calculated with flux balance analysis, has not been studied in detail before.Here, the wild-type simulations of selected GEMs for Saccharomyces cerevisiae have been analysed and most of the models tested predicted erroneous fluxes in central pathways, especially in the pentose phosphate pathway. Since the problematic fluxes were mostly related to areas of the metabolism consuming or producing NADPH/NADH, we have manually curated all reactions including these cofactors by forcing the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for catabolic reactions. The curated models predicted more accurate flux distributions and performed better in the simulation of mutant phenotypes.
  •  
14.
  • Pozdniakova, Tatiana A., et al. (författare)
  • Optimization of a hybrid bacterial/Arabidopsis thaliana fatty acid synthase system II in Saccharomyces cerevisiae
  • 2023
  • Ingår i: Metabolic Engineering Communications. - 2214-0301. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty acids are produced by eukaryotes like baker's yeast Saccharomyces cerevisiae mainly using a large multifunctional type I fatty acid synthase (FASI) where seven catalytic steps and a carrier domain are shared between one or two protein subunits. While this system may offer efficiency in catalysis, only a narrow range of fatty acids are produced. Prokaryotes, chloroplasts and mitochondria rely instead on a FAS type II (FASII) where each catalytic step is carried out by a monofunctional enzyme encoded by a separate gene. FASII is more flexible and capable of producing a wider range of fatty acid structures, such as the direct production of unsaturated fatty acids. An efficient FASII in the preferred industrial organism S. cerevisiae could provide a platform for developing sustainable production of specialized fatty acids. We functionally replaced either yeast FASI genes (FAS1 or FAS2) with a FASII consisting of nine genes from Escherichia coli (acpP, acpS and fab -A, -B, -D, -F, -G, -H, -Z) as well as three from Arabidopsis thaliana (MOD1, FATA1 and FATB). The genes were expressed from an autonomously replicating multicopy vector assembled using the Yeast Pathway Kit for in-vivo assembly in yeast. Two rounds of adaptation led to a strain with a maximum growth rate (μmax) of 0.19 h−1 without exogenous fatty acids, twice the growth rate previously reported for a comparable strain. Additional copies of the MOD1 or fabH genes resulted in cultures with higher final cell densities and three times higher lipid content compared to the control.
  •  
15.
  • Rodrigues, Joao S., et al. (författare)
  • Metabolic engineering of Synechocystis sp. PCC 6803 for improved bisabolene production
  • 2021
  • Ingår i: Metabolic Engineering Communications. - : Elsevier. - 2214-0301. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Terpenoids are a wide class of organic compounds with industrial relevance. The natural ability of cyanobacteria to produce terpenoids via the methylerythritol 4-phosphate (MEP) pathway makes these organisms appealing candidates for the generation of light-driven cell factories for green chemistry. Here we address the improvement of the production of (E)-alpha-bisabolene, a valuable biofuel feedstock, in Synechocystis sp. PCC 6803 via sequential heterologous expression of bottleneck enzymes of the native pathway. Expression of the bisabolene synthase is sufficient to complete the biosynthetic pathway of bisabolene. Expression of a farnesyl-pyrophosphate synthase from Escherichia coli did not influence production of bisabolene, while enhancement of the MEP pathway via additional overexpression of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and IPP/DMAPP isomerase (IDI) significantly increased production per cell. However, in the absence of a carbon sink, the overexpression of DXS and IDI leads to significant growth impairment. The final engineered strain reached a volumetric titre of 9 mg L-1 culture of bisabolene after growing for 12 days. When the cultures were grown in a high cell density (HCD) system, we observed an increase in the volumetric titres by one order of magnitude for all producing-strains. The strain with improved MEP pathway presented an increase twice as much as the remaining engineered strains, yielding more than 180 mg L-1 culture after 10 days of cultivation. Furthermore, the overexpression of these two MEP enzymes prevented the previously reported decrease in the bisabolene specific titres when grown in HCD conditions, where primary metabolism is usually favoured. We conclude that fine-tuning of the cyanobacterial terpenoid pathway is crucial for the generation of microbial platforms for terpenoid production on industrial-scale.
  •  
16.
  • Roussou, Stamatina, et al. (författare)
  • Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production
  • 2021
  • Ingår i: Metabolic Engineering Communications. - : Elsevier. - 2214-0301. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria are one of the most promising microorganisms to produce biofuels and renewable chemicals due to their oxygenic autotrophic growth properties. However, to rely on photosynthesis, which is one of the main reasons for slow growth, low carbon assimlation rate and low production, is a bottleneck. To address this challenge, optimizing the Calvin-Benson-Bassham (CBB) cycle is one of the strategies since it is the main carbon fixation pathway. In a previous study, we showed that overexpression of either aldolase (FBA), transketolase (TK), or fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), enzymes responsible for RuBP regeneration and vital for controlling the CBB carbon flux, led to higher production rates and titers in ethanol producing strains of Synechocystis PCC 6803. In the present study, we investigated the combined effects of the above enzymes on ethanol production in Synechocystis PCC 6803.The ethanol production of the strains overexpressing two CBB enzymes (FBA + TK, FBP/SBPase + FBA or FBP/SBPase + TK) was higher than the respective control strains, overexpressing either FBA or TK. The co-overexpression of FBA and TK led to more than 9 times higher ethanol production compared to the overexpression of FBA. Compared to TK the respective increase is 4 times more ethanol production. Overexpression of FBP/SBPase in combination with FBA showed 2.5 times higher ethanol production compared to FBA. Finally, co-overexpression of FBP/SBPase and TK reached about twice the production of ethanol compared to overexpression of only TK. This study clearly demonstrates that overexpression of two selected CBB enzymes leads to significantly increased ethanol production compared to overexpression of a single CBB enzyme.
  •  
17.
  • Shabestary, Kiyan, et al. (författare)
  • Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis
  • 2016
  • Ingår i: Metabolic Engineering Communications. - : Elsevier. - 2214-0301. ; 3, s. 216-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could increase biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid based fuels require creating imbalances in intracellular ATP and NADPH production and consumption. The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in the literature. We also discuss the physiological and practical feasibility of implementing these knockouts. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel productivities.
  •  
18.
  • Westman, Johan, 1983, et al. (författare)
  • A novel chimaeric flocculation protein enhances flocculation in Saccharomyces cerevisiae
  • 2018
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 6, s. 49-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast flocculation is the reversible formation of multicellular complexes mediated by lectin-like cell wall proteins binding to neighbouring cells. Strong flocculation can improve the inhibitor tolerance and fermentation performance of yeast cells in second generation bioethanol production. The strength of flocculation increases with the size of the flocculation protein and is strain dependent. However, the large number of internal repeats in the sequence of FLO1 from Saccharomyces cerevisiae S288c makes it difficult to recombinantly express the gene to its full length. In the search for novel flocculation genes resulting in strong flocculation, we discovered a DNA sequence, FLONF, that gives NewFlo phenotype flocculation in S. cerevisiae CEN.PK 113-7D. The nucleotide sequence of the internal repeats of FLONF differed from those of FLO1. We hypothesized that a chimaeric flocculation gene made up of a FLO1 variant derived from S. cerevisiae S288c and additional repeats from FLONF from S. cerevisiae CCUG 53310 would be more stable and easier to amplify by PCR. The constructed gene, FLOw, had 22 internal repeats compared to 18 in FLO1. Expression of FLOw in otherwise non-flocculating strains led to strong flocculation. Despite the length of the gene, the cassette containing FLOw could be easily amplified and transformed into yeast strains of different genetic background, leading to strong flocculation in all cases tested. The developed gene can be used as a self-immobilization technique or to obtain rapidly sedimenting cells for application in e.g. sequential batches without need for centrifugation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (18)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Nielsen, Jens B, 196 ... (4)
Lindblad, Peter (3)
Lindberg, Pia (3)
Liang, Feiyan (2)
Englund, Elias (2)
Martinez Ruiz, Jose ... (2)
visa fler...
Turner, Charlotta (1)
Gorwa-Grauslund, Mar ... (1)
Kerkhoven, Eduard, 1 ... (1)
Johansson, Björn (1)
Fridjonsson, Olafur ... (1)
Hreggvidsson, Gudmun ... (1)
Karlsson, Eva Nordbe ... (1)
Petranovic Nielsen, ... (1)
Stensjö, Karin (1)
Chotteau, Véronique (1)
Franzén, Carl Johan, ... (1)
Chen, Yun, 1978 (1)
Kristjansdottir, Tho ... (1)
Carlquist, Magnus (1)
Siewers, Verena, 197 ... (1)
Shabestary, Kiyan (1)
Hudson, Elton P. (1)
Mapelli, Valeria, 19 ... (1)
Azevedo, Flavio (1)
Borodina, I. (1)
Liu, Xufeng (1)
Forsgren, Anders (1)
Wang, Zheng, 1980 (1)
Gossing, Michael, 19 ... (1)
Ferreira, Raphael, 1 ... (1)
David, Florian, 1981 (1)
Teixeira, Paulo, 199 ... (1)
Kildegaard, K. R. (1)
van Niel, Ed W.J. (1)
Sandström, Anders G. (1)
Rocha, I (1)
Gustavsson, Martin, ... (1)
Mäkinen, Meeri (1)
Rodrigues, Joao S. (1)
Pereira, Rui, 1986 (1)
Albergati, Alessia (1)
Miao, Rui (1)
Pattanaik, Bagmi (1)
Westman, Johan, 1983 (1)
Domingues, Maria Ros ... (1)
Hagrot, Erika (1)
Oddsdóttir, Hildur A ... (1)
Kugler, Amit (1)
Ron, Emanuel Y.C. (1)
visa färre...
Lärosäte
Uppsala universitet (6)
Chalmers tekniska högskola (6)
Kungliga Tekniska Högskolan (3)
Lunds universitet (3)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Teknik (4)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy