SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2365 421X "

Sökning: L773:2365 421X

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Garousi, Javad, et al. (författare)
  • Imaging using radiolabelled targeted proteins : radioimmunodetection and beyond.
  • 2020
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer Science and Business Media LLC. - 2365-421X. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of radiolabelled antibodies was proposed in 1970s for staging of malignant tumours. Intensive research established chemistry for radiolabelling of proteins and understanding of factors determining biodistribution and targeting properties. The use of radioimmunodetection for staging of cancer was not established as common practice due to approval and widespread use of [18F]-FDG, which provided a more general diagnostic use than antibodies or their fragments. Expanded application of antibody-based therapeutics renewed the interest in radiolabelled antibodies. RadioimmunoPET emerged as a powerful tool for evaluation of pharmacokinetics of and target engagement by biotherapeutics. In addition to monoclonal antibodies, new radiolabelled engineered proteins have recently appeared, offering high-contrast imaging of expression of therapeutic molecular targets in tumours shortly after injection. This creates preconditions for noninvasive determination of a target expression level and stratification of patients for targeted therapies. Radiolabelled proteins hold great promise to play an important role in development and implementation of personalised targeted treatment of malignant tumours. This article provides an overview of biodistribution and tumour-seeking features of major classes of targeting proteins currently utilized for molecular imaging. Such information might be useful for researchers entering the field of the protein-based radionuclide molecular imaging.
  •  
4.
  •  
5.
  • Kanellopoulos, Panagiotis, et al. (författare)
  • Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology
  • 2024
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer Nature. - 2365-421X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1).Results: These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto (R) to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ.Conclusions: These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.
  •  
6.
  • Mallapura, Hemantha, et al. (författare)
  • Microfluidic-based production of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC using the cassette-based iMiDEVâ„¢ microfluidic radiosynthesizer
  • 2023
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer. - 2365-421X. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The demand for Ga-68-labeled radiotracers has significantly increased in the past decade, driven by the development of diversified imaging tracers, such as FAPI derivatives, PSMA-11, DOTA-TOC, and DOTA-TATE. These tracers have exhibited promising results in theranostic applications, fueling interest in exploring them for clinical use. Among these probes, Ga-68-labeled FAPI-46 and DOTA-TOC have emerged as key players due to their ability to diagnose a broad spectrum of cancers ([Ga-68]Ga-FAPI-46) in late-phase studies, whereas [Ga-68]Ga-DOTA-TOC is clinically approved for neuroendocrine tumors. To facilitate their production, we leveraged a microfluidic cassette-based iMiDEV radiosynthesizer, enabling the synthesis of [Ga-68]Ga-FAPI-46 and [Ga-68]Ga-DOTA-TOC based on a dose-on-demand (DOD) approach.Results Different mixing techniques were explored to influence radiochemical yield. We achieved decay-corrected yield of 44 +/- 5% for [Ga-68]Ga-FAPI-46 and 46 +/- 7% for [Ga-68]Ga-DOTA-TOC in approximately 30 min. The radiochemical purities (HPLC) of [Ga-68]Ga-FAPI-46 and [Ga-68]Ga-DOTA-TOC were 98.2 +/- 0.2% and 98.4 +/- 0.9%, respectively. All the quality control results complied with European Pharmacopoeia quality standards. We optimized various parameters, including Ga-68 trapping and elution, cassette batches, passive mixing in the reactor, and solid-phase extraction (SPE) purification and formulation. The developed synthesis method reduced the amount of precursor and other chemicals required for synthesis compared to conventional radiosynthesizers.Conclusions The microfluidic-based approach enabled the implementation of radiosynthesis of [Ga-68]Ga-FAPI-46 and [Ga-68]Ga-DOTA-TOC on the iMiDEV (TM) microfluidic module, paving the way for their use in preclinical and clinical applications. The microfluidic synthesis approach utilized 2-3 times less precursor than cassette-based conventional synthesis. The synthesis method was also successfully validated in a similar microfluidic iMiDEV module at a different research center for the synthesis of [Ga-68]Ga-FAPI-46 with limited runs. Our study demonstrated the potential of microfluidic methods for efficient and reliable radiometal-based radiopharmaceutical synthesis, contributing valuable insights for future advancements in this field and paving the way for routine clinical applications in the near future.
  •  
7.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • Comparison of approaches for increasing affinity of affibody molecules for imaging of B7-H3 : dimerization and affinity maturation
  • 2024
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer. - 2365-421X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundRadionuclide molecular imaging can be used to visualize the expression levels of molecular targets. Affibody molecules, small and high affinity non-immunoglobulin scaffold-based proteins, have demonstrated promising properties as targeting vectors for radionuclide tumour imaging of different molecular targets. B7-H3 (CD276), an immune checkpoint protein belonging to the B7 family, is overexpressed in different types of human malignancies. Visualization of overexpression of B7-H3 in malignancies enables stratification of patients for personalized therapies. Affinity maturation of anti-B7-H3 Affibody molecules as an approach to improve the binding affinity and targeting properties was recently investigated. In this study, we tested the hypothesis that a dimeric format may be an alternative option to increase the apparent affinity of Affibody molecules to B7-H3 and accordingly improve imaging contrast.ResultsTwo dimeric variants of anti-B7-H3 Affibody molecules were produced (designated ZAC12*-ZAC12*-GGGC and ZAC12*-ZTaq_3-GGGC). Both variants were labelled with Tc-99m (99mTc) and demonstrated specific binding to B7-H3-expressing cells in vitro. [99mTc]Tc-ZAC12*-ZAC12*-GGGC showed subnanomolar affinity (KD1=0.28 ± 0.10 nM, weight = 68%), which was 7.6-fold higher than for [99mTc]Tc-ZAC12*-ZTaq_3-GGGC (KD=2.1 ± 0.9 nM). Head-to-head biodistribution of both dimeric variants of Affibody molecules compared with monomeric affinity matured SYNT-179 (all labelled with 99mTc) in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrates that both dimers have lower tumour uptake and lower tumour-to-organ ratios compared to the SYNT-179 Affibody molecule.ConclusionThe improved functional affinity by dimerization does not compensate the disadvantage of increased molecular size for imaging purposes.
  •  
8.
  • Rokka, Johanna, et al. (författare)
  • Improved synthesis of SV2A targeting radiotracer [11C]UCB-J
  • 2019
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer Nature. - 2365-421X. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • [11C]UCB-J is a tracer developed for PET (positron emission tomography) that has high affinity towards synaptic vesicle glycoprotein 2A (SV2A), a protein believed to participate in the regulation of neurotransmitter release in neurons and endocrine cells. The localisation of SV2A in the synaptic terminals makes it a viable target for in vivo imaging of synaptic density in the brain. Several SV2A targeting compounds have been evaluated as PET tracers, including [11C]UCB-J, with the aim to facilitate studies of synaptic density in neurological diseases.The original two-step synthesis method failed in our hands to produce sufficient amounts of [11C]UCB-J, but served as an excellent starting point for further optimizations towards a high yielding and simplified one-step method. [11C]Methyl iodide was trapped in a clear THF-water solution containing the trifluoroborate substituted precursor, potassium carbonate and palladium complex. The resulting reaction mixture was heated at 70 °C for 4 min to produce [11C]UCB-J.After semi-preparative HPLC purification and reformulation in 10% ethanol/phosphate buffered saline, the product was obtained in 39 ± 5% radiochemical yield based on [11C]methyl iodide, corresponding to 1.8 ± 0.5 GBq at EOS. The radiochemical purity was > 99% and the molar activity was 390 ± 180 GBq/μmol at EOS. The product solution contained < 2 ppb palladium.A robust and high yielding production method has been developed for [11C]UCB-J, suitable for both preclinical and clinical PET applications.
  •  
9.
  • Schlein, Eva, et al. (författare)
  • Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET
  • 2024
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer Nature. - 2365-421X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this challenge we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. These ligands, when radiolabelled, can be used for brain imaging with high affinity and specificity, but their long residence time in the blood and brain can be challenging for their use as PET radioligands. This could be solved by using a two-step approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a radiolabelled molecule, with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants.In this study, two 18F-labelled tetrazines were synthesized and evaluated for their potential as agents for pre-targeted imaging, i.e. for their ability to rapidly enter the brain and then, if non-bound, be sufficiently cleared with low background retention. The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans revealed that the [18F]MeTz had the most favourable profile for an imaging agent for pre-targeting, due to its fast and homogenous brain distribution and rapid clearance from the brain.
  •  
10.
  • Todde, S., et al. (författare)
  • Guidance on validation and qualification of processes and operations involving radiopharmaceuticals
  • 2017
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer. - 2365-421X. ; 2:1
  • Forskningsöversikt (refereegranskat)abstract
    • Validation and qualification activities are nowadays an integral part of the day by day routine work in a radiopharmacy. This document is meant as an Appendix of Part B of the EANM "Guidelines on Good Radiopharmacy Practice (GRPP)" issued by the Radiopharmacy Committee of the EANM, covering the qualification and validation aspects related to the small-scale "in house" preparation of radiopharmaceuticals. The aim is to provide more detailed and practice-oriented guidance to those who are involved in the small-scale preparation of radiopharmaceuticals which are not intended for commercial purposes or distribution.
  •  
11.
  • Verbeek, Joost, et al. (författare)
  • Synthesis and preliminary preclinical evaluation of fluorine-18 labelled isatin-4-(4-methoxyphenyl)-3-thiosemicarbazone ([18F]4FIMPTC) as a novel PET tracer of P-glycoprotein expression
  • 2018
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer. - 2365-421X. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several P-glycoprotein (P-gp) substrate tracers are available to assess P-gp function in vivo, but attempts to develop a tracer for measuring expression levels of P-gp have not been successful. Recently, (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide was described as a potential selective P-gp inhibitor that is not transported by P-gp. Therefore, the purpose of this study was to radiolabel two of its analogues and to assess their potential for imaging P-gp expression using PET.Results: [18F]2-(4-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide ([18F]5) and [18F]2-(6-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide ([18F]6) were synthesized and both their biodistribution and metabolism were evaluated in rats. In addition, PET scans were acquired in rats before and after tariquidar (P-gp inhibitor) administration as well as in P-gp knockout (KO) mice.Both [18F]5 and [18F]6 were synthesized in 2-3% overall yield, and showed high brain uptake in ex vivo biodistribution studies. [18F]6 appeared to be metabolically unstable in vivo, while [18F]5 showed moderate stability with limited uptake of radiolabelled metabolites in the brain. PET studies showed that transport of [18F]5 across the blood-brain barrier was not altered by pre-treatment with the P-gp inhibitor tariquidar, and uptake was significantly lower in P-gp KO than in wild-type animals and indeed transported across the BBB or bound to P-gp in endothelial cells.Conclusion: In conclusion, [18F]5 and [18F]6 were successfully and reproducibly synthesized, albeit with low radiochemical yields. [18F]5 appears to be a radiotracer that binds to P-gp, as showed in P-gp knock-out animals, but is not a substrate for P-gp.
  •  
12.
  • Wegrzyniak, Olivia, et al. (författare)
  • Imaging of fibrogenesis in the liver by [18F]TZ-Z0959 : an Affibody molecule targeting platelet derived growth factor receptor β
  • 2023
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer Nature. - 2365-421X. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Platelet-derived growth factor receptor beta (PDGFRβ) is a receptor overexpressed on activated hepatic stellate cells (aHSCs). Positron emission tomography (PET) imaging of PDGFRβ could potentially allow the quantification of fibrogenesis in fibrotic livers. This study aims to evaluate a fluorine-18 radiolabeled Affibody molecule ([18F]TZ-Z09591) as a PET tracer for imaging liver fibrogenesis. Results: In vitro specificity studies demonstrated that the trans-Cyclooctenes (TCO) conjugated Z09591 Affibody molecule had a picomolar affinity for human PDGFRβ. Biodistribution performed on healthy rats showed rapid clearance of [18F]TZ-Z09591 through the kidneys and low liver background uptake. Autoradiography (ARG) studies on fibrotic livers from mice or humans correlated with histopathology results. Ex vivo biodistribution and ARG revealed that [18F]TZ-Z09591 binding in the liver was increased in fibrotic livers (p = 0.02) and corresponded to binding in fibrotic scars. Conclusions: Our study highlights [18F]TZ-Z09591 as a specific tracer for fibrogenic cells in the fibrotic liver, thus offering the potential to assess fibrogenesis clearly. Graphical abstract: [Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy