SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2379 5077 "

Sökning: L773:2379 5077

  • Resultat 1-50 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Haleem, Alyaa M., et al. (författare)
  • Integrated Metabolic Modeling, Culturing, and Transcriptomics Explain Enhanced Virulence of Vibrio cholerae during Coinfection with Enterotoxigenic Escherichia coli
  • 2020
  • Ingår i: mSystems. - 2379-5077. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene essentiality is altered during polymicrobial infections. Nevertheless, most studies rely on single-species infections to assess pathogen gene essentiality. Here, we use genome-scale metabolic models (GEMs) to explore the effect of coinfection of the diarrheagenic pathogen Vibrio cholerae with another enteric pathogen, enterotoxigenic Escherichia coli (ETEC). Model predictions showed that V. cholerae metabolic capabilities were increased due to ample cross-feeding opportunities enabled by ETEC. This is in line with increased severity of cholera symptoms known to occur in patients with dual infections by the two pathogens. In vitro co-culture systems confirmed that V. cholerae growth is enhanced in cocultures relative to single cultures. Further, expression levels of several V. cholerae metabolic genes were significantly perturbed as shown by dual RNA sequencing (RNAseq) analysis of its cocultures with different ETEC strains. A decrease in ETEC growth was also observed, probably mediated by nonmetabolic factors. Single gene essentiality analysis predicted conditionally independent genes that are essential for the pathogen's growth in both single-infection and coinfection scenarios. Our results reveal growth differences that are of relevance to drug targeting and efficiency in polymicrobial infections. IMPORTANCE Most studies proposing new strategies to manage and treat infections have been largely focused on identifying druggable targets that can inhibit a pathogen's growth when it is the single cause of infection. In vivo, however, infections can be caused by multiple species. This is important to take into account when attempting to develop or use current antibacterials since their efficacy can change significantly between single infections and coinfections. In this study, we used genome-scale metabolic models (GEMs) to interrogate the growth capabilities of Vibrio cholerae in single infections and coinfections with enterotoxigenic E. coli (ETEC), which cooccur in a large fraction of diarrheagenic patients. Coinfection model predictions showed that V. cholerae growth capabilities are enhanced in the presence of ETEC relative to V. cholerae single infection, through cross-fed metabolites made available to V. cholerae by ETEC. In vitro, cocultures of the two enteric pathogens further confirmed model predictions showing an increased growth of V. cholerae in coculture relative to V. cholerae single cultures while ETEC growth was suppressed. Dual RNAseq analysis of the cocultures also confirmed that the transcriptome of V. cholerae was distinct during coinfection compared to single-infection scenarios where processes related to metabolism were significantly perturbed. Further, in silico gene-knockout simulations uncovered discrepancies in gene essentiality for V. cholerae growth between single infections and coinfections. Integrative model-guided analysis thus identified druggable targets that would be critical for V. cholerae growth in both single infections and coinfections; thus, designing inhibitors against those targets would provide a broader spectrum of coverage against cholera infections.
  •  
2.
  • Alalam, Hanna, et al. (författare)
  • A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease
  • 2021
  • Ingår i: MSYSTEMS. - 2379-5077. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing COVID-19 pandemic urges searches for antiviral agents that can block infection or ameliorate its symptoms. Using dissimilar search strategies for new antivirals will improve our overall chances of finding effective treatments. Here, we have established an experimental platform for screening of small molecule inhibitors of the SARS-CoV-2 main protease in Saccharomyces cerevisiae cells, genetically engineered to enhance cellular uptake of small molecules in the environment. The system consists of a fusion of the Escherichia coli toxin MazF and its antitoxin MazE, with insertion of a protease cleavage site in the linker peptide connecting the MazE and MazF moieties. Expression of the viral protease confers cleavage of the MazEF fusion, releasing the MazF toxin from its antitoxin, resulting in growth inhibition. In the presence of a small molecule inhibiting the protease, cleavage is blocked and the MazF toxin remains inhibited, promoting growth. The system thus allows positive selection for inhibitors. The engineered yeast strain is tagged with a fluorescent marker protein, allowing precise monitoring of its growth in the presence or absence of inhibitor. We detect an established main protease inhibitor by a robust growth increase, discernible down to 1 mM. The system is suitable for robotized large-scale screens. It allows in vivo evaluation of drug candidates and is rapidly adaptable for new variants of the protease with deviant site specificities. IMPORTANCE The COVID-19 pandemic may continue for several years before vaccination campaigns can put an end to it globally. Thus, the need for discovery of new antiviral drug candidates will remain. We have engineered a system in yeast cells for the detection of small molecule inhibitors of one attractive drug target of SARS-CoV-2, its main protease, which is required for viral replication. The ability to detect inhibitors in live cells brings the advantage that only compounds capable of entering the cell and remain stable there will score in the system. Moreover, because of its design in yeast cells, the system is rapidly adaptable for tuning the detection level and eventual modification of the protease cleavage site in the case of future mutant variants of the SARSCoV-2 main protease or even for other proteases.
  •  
3.
  • Alalam, Hanna, et al. (författare)
  • A High-Throughput Method for Screening for Genes Controlling Bacterial Conjugation of Antibiotic Resistance.
  • 2020
  • Ingår i: mSystems. - 2379-5077. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid horizontal transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. Plasmid-carrying donor strains are constructed in high-throughput. We then mix the resistance plasmid-carrying donors with recipients in a design where only transconjugants can reproduce, measure growth in dense intervals, and extract transmission times as the growth lag. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within Escherichia coli populations, by screening the Keio deletion collection in high replication. We recover all seven known chromosomal gene mutants affecting conjugation as donors and identify many novel mutants, all of which diminish antibiotic resistance transmission. We validate nine of the novel genes' effects in liquid mating assays and complement one of the novel genes' effect on conjugation (rseA). The new framework holds great potential for exhaustive disclosing of candidate targets for helper drugs that delay resistance development in patients and societies and improve the longevity of current and future antibiotics. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.IMPORTANCE The rapid transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within E. coli populations. We recover all previously known and many novel chromosomal gene mutants that affect conjugation efficiency. The new framework holds great potential for rapid screening of compounds that decrease transmission. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.
  •  
4.
  • Allen, Lisa Zeigler, et al. (författare)
  • The Baltic Sea Virome : Diversity and Transcriptional Activity of DNA and RNA Viruses
  • 2017
  • Ingår i: mSystems. - 2379-5077. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Tornetrask in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Tornetrask. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage.
  •  
5.
  • Amador-García, Ahinara, et al. (författare)
  • Extending the Proteomic Characterization of Candida albicans Exposed to Stress and Apoptotic Inducers through Data-Independent Acquisition Mass Spectrometry
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Candida albicans is a commensal fungus that causes systemic infections in immunosuppressed patients. In order to deal with the changing environment during commensalism or infection, C. albicans must reprogram its proteome. Characterizing the stress-induced changes in the proteome that C. albicans uses to survive should be very useful in the development of new antifungal drugs. We studied the C. albicans global proteome after exposure to hydrogen peroxide (H2O2) and acetic acid (AA), using a data-independent acquisition mass spectrometry (DIA-MS) strategy. More than 2,000 C. albicans proteins were quantified using an ion library previously constructed using data-dependent acquisition mass spectrometry (DDA-MS). C. albicans responded to treatment with H2O2 with an increase in the abundance of many proteins involved in the oxidative stress response, protein folding, and proteasome-dependent catabolism, which led to increased proteasome activity. The data revealed a previously unknown key role for Prn1, a protein similar to pirins, in the oxidative stress response. Treatment with AA resulted in a general decrease in the abundance of proteins involved in amino acid biosynthesis, protein folding, and rRNA processing. Almost all proteasome proteins declined, as did proteasome activity. Apoptosis was observed after treatment with H2O2 but not AA. A targeted proteomic study of 32 proteins related to apoptosis in yeast supported the results obtained by DIA-MS and allowed the creation of an efficient method to quantify relevant proteins after treatment with stressors (H2O2, AA, and amphotericin B). This approach also uncovered a main role for Oye32, an oxidoreductase, suggesting this protein as a possible apoptotic marker common to many stressors. IMPORTANCE Fungal infections are a worldwide health problem, especially in immunocompromised patients and patients with chronic disorders. Invasive candidiasis, caused mainly by C. albicans, is among the most common fungal diseases. Despite the existence of treatments to combat candidiasis, the spectrum of drugs available is limited. For the discovery of new drug targets, it is essential to know the pathogen response to different stress conditions. Our study provides a global vision of proteomic remodeling in C. albicans after exposure to different agents, such as hydrogen peroxide, acetic acid, and amphotericin B, that can cause apoptotic cell death. These results revealed the significance of many proteins related to oxidative stress response and proteasome activity, among others. Of note, the discovery of Prn1 as a key protein in the defense against oxidative stress as well the increase in the abundance of Oye32 protein when apoptotic process occurred point them out as possible drug targets.
  •  
6.
  • Bellieny-Rabelo, Daniel, et al. (författare)
  • Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense
  • 2020
  • Ingår i: mSystems. - Washington : American Society for Microbiology. - 2379-5077. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene acquisition in PhoP and SlyA regulons using as a case study a phytopathosystem comprised of potato tubers and the soft-rot pathogen Pectobacterium brasiliense 1692 (Pb1692). Genome simulations and statistical analyses uncovered the tendency of PhoP and SlyA networks to mobilize lineage-specific traits predicted as horizontal gene transfer at late infection, highlighting the prominence of regulatory network rearrangements in this stage of infection. The evidence further supports the circumscription of two horizontally acquired quorum-sensing regulators (carR and expR1) by the PhoP network. By recruiting carR and expR1, the PhoP network also impacts certain host adaptation- and bacterial competition-related systems, seemingly in a quorum sensing-dependent manner, such as the type VI secretion system, carbapenem biosynthesis, and plant cell wall-degrading enzymes (PCWDE) like cellulases and pectate lyases. Conversely, polygalacturonases and the type III secretion system (T3SS) exhibit a transcriptional pattern that suggests quorum-sensing-independent regulation by the PhoP network. This includes an uncharacterized novel phage-related gene family within the T3SS gene cluster that has been recently acquired by two Pectobacterium species. The evidence further suggests a PhoP-dependent regulation of carbapenem- and PCWDE-encoding genes based on the synthesized products' optimum pH. The PhoP network also controls slyA expression in planta, which seems to impact carbohydrate metabolism regulation, especially at early infection, when 76.2% of the SlyA-regulated genes from that category also require PhoP to achieve normal expression levels.IMPORTANCE: Exchanging genetic material through horizontal transfer is a critical mechanism that drives bacteria to efficiently adapt to host defenses. In this report, we demonstrate that a specific plant-pathogenic species (from the Pectobacterium genus) successfully integrated a population density-based behavior system (quorum sensing) acquired through horizontal transfer into a resident stress-response gene regulatory network controlled by the PhoP protein. Evidence found here underscores that subsets of bacterial weaponry critical for colonization, typically known to respond to quorum sensing, are also controlled by PhoP. Some of these traits include different types of enzymes that can efficiently break down plant cell walls depending on the environmental acidity level. Thus, we hypothesize that PhoP's ability to elicit regulatory responses based on acidity and nutrient availability fluctuations has strongly impacted the fixation of its regulatory connection with quorum sensing. In addition, another global gene regulator, known as SlyA, was found under the PhoP regulatory network. The SlyA regulator controls a series of carbohydrate metabolism-related traits, which also seem to be regulated by PhoP. By centralizing quorum sensing and slyA under PhoP scrutiny, Pectobacterium cells added an advantageous layer of control over those two networks that potentially enhances colonization efficiency.
  •  
7.
  • Benkwitz-Bedford, Sam, et al. (författare)
  • Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes.
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia coli is an important cause of bacterial infections worldwide, with multidrug-resistant strains incurring substantial costs on human lives. Besides therapeutic concentrations of antimicrobials in health care settings, the presence of subinhibitory antimicrobial residues in the environment and in clinics selects for antimicrobial resistance (AMR), but the underlying genetic repertoire is less well understood. Here, we used machine learning to predict the population doubling time and cell growth yield of 1,407 genetically diverse E. coli strains expanding under exposure to three subinhibitory concentrations of six classes of antimicrobials from single-nucleotide genetic variants, accessory gene variation, and the presence of known AMR genes. We predicted cell growth yields in the held-out test data with an average correlation (Spearman's ρ) of 0.63 (0.36 to 0.81 across concentrations) and cell doubling times with an average correlation of 0.59 (0.32 to 0.92 across concentrations), with moderate increases in sample size unlikely to improve predictions further. This finding points to the remaining missing heritability of growth under antimicrobial exposure being explained by effects that are too rare or weak to be captured unless sample size is dramatically increased, or by effects other than those conferred by the presence of individual single-nucleotide polymorphisms (SNPs) and genes. Predictions based on whole-genome information were generally superior to those based only on known AMR genes and were accurate for AMR resistance at therapeutic concentrations. We pinpointed genes and SNPs determining the predicted growth and thereby recapitulated many known AMR determinants. Finally, we estimated the effect sizes of resistance genes across the entire collection of strains, disclosing the growth effects for known resistance genes in each individual strain. Our results underscore the potential of predictive modeling of growth patterns from genomic data under subinhibitory concentrations of antimicrobials, although the remaining missing heritability poses a challenge for achieving the accuracy and precision required for clinical use. IMPORTANCE Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains. In this study, we used a high-throughput phenotypic assay to measure the growth of a systematic collection of natural Escherichia coli strains and then employed machine learning models to predict bacterial growth from genomic data under nontherapeutic subinhibitory concentrations of antimicrobials that are common in nonclinical settings. We found a moderate to strong correlation between predicted and actual values for the different collected data sets. Moreover, we observed that the known resistance genes are still effective at sublethal concentrations, pointing to clinical implications of these concentrations.
  •  
8.
  • Bergenholm, David, 1987, et al. (författare)
  • Reconstruction of a Global Transcriptional Regulatory Network for Control of Lipid Metabolism in Yeast by Using Chromatin Immunoprecipitation with Lambda Exonuclease Digestion
  • 2018
  • Ingår i: mSystems. - 2379-5077. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • To build transcription regulatory networks, transcription factor binding must be analyzed in cells grown under different conditions because their responses and targets differ depending on environmental conditions. We performed wholegenome analysis of the DNA binding of five Saccharomyces cerevisiae transcription factors involved in lipid metabolism, Ino2, Ino4, Hap1, Oaf1, and Pip2, in response to four different environmental conditions in chemostat cultures, which allowed us to keep the specific growth rate constant. Chromatin immunoprecipitation with lambda exonuclease digestion (ChIP-exo) enabled the detection of binding events at a high resolution. We discovered a large number of unidentified targets and thus expanded functions for each transcription factor (e.g., glutamate biosynthesis as a target of Oaf1 and Pip2). Moreover, condition-dependent binding of transcription factors in response to cell metabolic state (e.g., differential binding of Ino2 between fermentative and respiratory metabolic conditions) was clearly suggested. Combining the new binding data with previously published data from transcription factor deletion studies revealed the high complexity of the transcriptional regulatory network for lipid metabolism in yeast, which involves the combinatorial and complementary regulation by multiple transcription factors. We anticipate that our work will provide insights into transcription factor binding dynamics that will prove useful for the understanding of transcription regulatory networks.
  •  
9.
  • Bontemps, Zelia, et al. (författare)
  • Stochastic and deterministic assembly processes of microbial communities in relation to natural attenuation of black stains in Lascaux Cave
  • 2024
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Community assembly processes are complex and understanding them represents a challenge in microbial ecology. Here, we used Lascaux Cave as a stable, confined environment to quantify the importance of stochastic vs deterministic processes during microbial community dynamics across the three domains of life in relation to an anthropogenic disturbance that had resulted in the side-by-side occurrence of a resistant community (unstained limestone), an impacted community (present in black stains), and a resilient community (attenuated stains). Metabarcoding data showed that the microbial communities of attenuated stains, black stains, and unstained surfaces differed, with attenuated stains being in an intermediate position. We found four scenarios to explain community response to disturbance in stable conditions for the three domains of life. Specifically, we proposed the existence of a fourth, not-documented yet scenario that concerns the always-rare microbial taxa, where stochastic processes predominate even after disturbance but are replaced by deterministic processes during post-disturbance recovery. This suggests a major role of always-rare taxa in resilience, perhaps because they might provide key functions required for ecosystem recovery.IMPORTANCEThe importance of stochastic vs deterministic processes in cave microbial ecology has been a neglected topic so far, and this work provided an opportunity to do so in a context related to the dynamics of black-stain alterations in Lascaux, a UNESCO Paleolithic cave. Of particular significance was the discovery of a novel scenario for always-rare microbial taxa in relation to disturbance, in which stochastic processes are replaced later by deterministic processes during post-disturbance recovery, i.e., during attenuation of black stains. The importance of stochastic vs deterministic processes in cave microbial ecology has been a neglected topic so far, and this work provided an opportunity to do so in a context related to the dynamics of black-stain alterations in Lascaux, a UNESCO Paleolithic cave. Of particular significance was the discovery of a novel scenario for always-rare microbial taxa in relation to disturbance, in which stochastic processes are replaced later by deterministic processes during post-disturbance recovery, i.e., during attenuation of black stains.
  •  
10.
  • Borchert, Erik, et al. (författare)
  • Deciphering a Marine Bone-Degrading Microbiome Reveals a Complex Community Effort
  • 2021
  • Ingår i: mSystems. - 2379-5077 .- 2379-5077. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine bone biome is a complex assemblage of macro- and microor- ganisms; however, the enzymatic repertoire to access bone-derived nutrients remains unknown. The bone matrix is a composite material made up mainly of organic colla- gen and inorganic hydroxyapatite. We conducted field experiments to study microbial assemblages that can use organic bone components as nutrient source. Bovine and turkey bones were deposited at 69 m depth in a Norwegian fjord (Byfjorden, Bergen). Metagenomic sequence analysis was used to assess the functional potential of micro- bial assemblages from bone surface and the bone-eating worm Osedax mucofloris, which is a frequent colonizer of whale falls and known to degrade bone. The bone microbiome displayed a surprising taxonomic diversity revealed by the examination of 59 high-quality metagenome-assembled genomes from at least 23 bacterial families. Over 700 genes encoding enzymes from 12 relevant enzymatic families pertaining to collagenases, peptidases, and glycosidases putatively involved in bone degradation were identified. Metagenome-assembled genomes (MAGs) of the class Bacteroidia con- tained the most diverse gene repertoires. We postulate that demineralization of inor- ganic bone components is achieved by a timely succession of a closed sulfur biogeo- chemical cycle between sulfur-oxidizing and sulfur-reducing bacteria, causing a drop in pH and subsequent enzymatic processing of organic components in the bone sur- face communities. An unusually large and novel collagen utilization gene cluster was retrieved from one genome belonging to the gammaproteobacterial genus Colwellia. IMPORTANCE Bones are an underexploited, yet potentially profitable feedstock for biotechnological advances and value chains, due to the sheer amounts of residues produced by the modern meat and poultry processing industry. In this metagenomic study, we decipher the microbial pathways and enzymes that we postulate to be involved in bone degradation in the marine environment. We here demonstrate the interplay between different bacterial community members, each supplying different enzymatic functions with the potential to cover an array of reactions relating to the degradation of bone matrix components. We identify and describe a novel gene cluster for collagen utilization, which is a key function in this unique environment. We propose that the interplay between the different microbial taxa is necessary to achieve the complex task of bone degradation in the marine environment.
  •  
11.
  • Cabrol, Léa, et al. (författare)
  • Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea
  • 2023
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse—previously underappreciated—anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.
  •  
12.
  • Casey, John R., et al. (författare)
  • Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus
  • 2016
  • Ingår i: mSystems. - : AMER SOC MICROBIOLOGY. - 2379-5077. ; 1:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794 reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. IMPORTANCE Microbes are known to employ three basic strategies to compete for limiting elemental resources: (i) cell quotas may be adjusted by alterations to cell physiology or by substitution of a more plentiful resource, (ii) stressed cells may synthesize high-affinity transporters, and (iii) cells may access more costly sources from internal stores, by degradation, or by petitioning other microbes. In the case of phosphorus, a limiting resource in vast oceanic regions, the cosmopolitan cyanobacterium Prochlorococcus marinus thrives by adopting all three strategies and a fourth, previously unknown strategy. By generating a detailed model of its metabolism, we found that strain MED4 has evolved a way to reduce its dependence on phosphate by minimizing the number of enzymes involved in phosphate transformations, despite the stringency of nearly half of its metabolic genes being essential for survival. Relieving phosphorus limitation, both physiologically and throughout intermediate metabolism, substantially improves phosphorus-specific growth rates.
  •  
13.
  • Cheng, Liqin, et al. (författare)
  • A MicroRNA Gene Panel Predicts the Vaginal Microbiota Composition
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The vaginal microbiota plays an essential role in vaginal health. The vaginas of many reproductive-age women are dominated by one of the Lactobacillus species. However, the vaginas of a large number of women are characterized by the colonization of several other anaerobes. Notably, some women with the non-Lactobacillus-dominated vaginal microbiota develop bacterial vaginosis, which has been correlated with sexually transmitted infections and other adverse outcomes. However, interactions and mechanisms linking the vaginal microbiota to host response are still under investigation. There are studies suggesting a link between human microRNAs and gut microbiota, but limited analysis has been carried out on the interplay of microRNAs and vaginal microbiota. In this study, we performed a microRNA expression array profiling on 67 vaginal samples from young Swedish women. MicroRNAs were clustered into distinct groups according to vaginal microbiota composition. Interestingly, 182 microRNAs were significantly elevated in their expression in the non-Lactobacillus-dominated community, suggesting an antagonistic relationship between Lactobacillus and microRNAs. Of the elevated microRNAs, 10 microRNAs displayed excellent diagnostic potential, visualized by receiver operating characteristics analysis. We further validated our findings in 34 independent samples where expression of top microRNA candidates strongly separated the Lactobacillus-dominated community from the non-Lactobacillus-dominated community in the vaginal microbiota. Notably, the Lactobacillus crispatus-dominated community showed the most profound differential microRNA expression compared with the non-Lactobacillus-dominated community. In conclusion, we demonstrate a strong relationship between the vaginal microbiota and numerous genital microRNAs, which may facilitate a deeper mechanistic interplay in this biological niche. IMPORTANCE Vaginal microbiota is correlated with women's health, where a non-Lactobacillus-dominated community predisposes women to a higher risk of disease, including human papillomavirus (HPV). However, the molecular relationship between the vaginal microbiota and host is largely unexplored. In this study, we investigated a link between the vaginal microbiota and host microRNAs in a group of young women. We uncovered an inverse correlation of the expression of microRNAs with the abundance of Lactobacillus species in the vaginal microbiota. Particularly, the expression of microRNA miR-23a-3p and miR-130a-3p, displaying significantly elevated levels in non-Lactobacillus-dominated communities, predicted the bacterial composition of the vaginal microbiota in an independent validation group. Since targeting of microRNAs is explored in the clinical setting, our results warrant investigation of whether microRNA modulation could be used for treating vaginosis recurrence and vaginosis-related diseases. Conversely, commensal bacteria could be used for treating diseases with microRNA aberrations.
  •  
14.
  • Chowdhury, Sounak, et al. (författare)
  • Streptococcus pyogenes Forms Serotype- and Local Environment-Dependent Interspecies Protein Complexes
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:5, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surfaces of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes forms serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modeling of one of the M proteins, M28, revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by the binding of monomeric IgA and C4b-binding protein (C4BP). This indicates that an upsurge of C4BP in the local microenvironment due to damage to the mucosal membrane drives the binding of C4BP and monomeric IgA to M28. These results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat human immune surveillance during both mucosal and systemic infections. IMPORTANCE Streptococcus pyogenes (group A Streptococcus [GAS]), is a human-specific Gram-positive bacterium. Each year, the bacterium affects 700 million people globally, leading to 160,000 deaths. The clinical manifestations of S. pyogenes are diverse, ranging from mild and common infections like tonsillitis and impetigo to life-threatening systemic conditions such as sepsis and necrotizing fasciitis. S. pyogenes expresses multiple virulence factors on its surface to localize and initiate infections in humans. Among all these expressed virulence factors, the M protein is the most important antigen. In this study, we perform an in-depth characterization of the human protein interactions formed around one of the foremost human pathogens. This strategy allowed us to decipher the protein interaction networks around different S. pyogenes strains on a global scale and to compare and visualize how such interactions are mediated by M proteins.
  •  
15.
  •  
16.
  • El-Shehawy, Rehab, et al. (författare)
  • Microbiota-Dependent and -Independent Production of L-Dopa in the Gut of Daphnia magna
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Host-microbiome interactions are essential for the physiological and ecological performance of the host, yet these interactions are challenging to identify. Neurotransmitters are commonly implicated in these interactions, but we know very little about the mechanisms of their involvement, especially in invertebrates. Here, we report a peripheral catecholamine (CA) pathway involving the gut microbiome of the model species Daphnia magna. We demonstrate the following: (i) tyrosine hydroxylase and Dopa (3,4-dihydroxyphenylalanine) decarboxylase enzymes are present in the gut wall; (ii) Dopa decarboxylase gene is expressed in the gut by the host, and its expression follows the molt cycle peaking after ecdysis; (iii) biologically active L-Dopa, but not dopamine, is present in the gut lumen; (iv) gut bacteria produce L-Dopa in a concentration-dependent manner when provided l-tyrosine as a substrate. Impinging on gut bacteria involvement in host physiology and ecologically relevant traits, we suggest L-Dopa as a communication agent in the host-microbiome interactions in daphnids and, possibly, other crustaceans.IMPORTANCE Neurotransmitters are commonly implicated in host-microbiome communication, yet the molecular mechanisms of this communication remain largely elusive. We present novel evidence linking the gut microbiome to host development and growth via neurotransmitter L-Dopa in Daphnia, the established model species in ecology and evolution. We found that both Daphnia and its gut microbiome contribute to the synthesis of the L-Dopa in the gut. We also identified a peripheral pathway in the gut wall, with a molt stage-dependent dopamine synthesis, linking the gut microbiome to the daphnid development and growth. These findings suggest a central role of L-Dopa in the bidirectional communication between the animal host and its gut bacteria and translating into the ecologically important host traits suitable for subsequent testing of causality by experimental studies.
  •  
17.
  • Ellenbogen, Jared B., et al. (författare)
  • Methylotrophy in the Mire : direct and indirect routes for methane production in thawing permafrost
  • 2024
  • Ingår i: mSystems. - 2379-5077. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.
  •  
18.
  • Froslev Nielsen, Jens Christian, 1987, et al. (författare)
  • Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi
  • 2019
  • Ingår i: mSystems. - 2379-5077. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Filamentous fungi possess great potential as sources of medicinal bioactive compounds, such as antibiotics, but efficient production is hampered by a limited understanding of how their metabolism is regulated. We investigated the metabolism of six secondary metabolite-producing fungi of the Penicillium genus during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. A coexpression analysis revealed that expression of biosynthetic genes correlates with expression of genes associated with pathways responsible for the generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for the supply of precursors for secondary metabolism and suggest that the regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying fungal species that are optimized for the production of specific secondary metabolites and in designing metabolic engineering strategies to develop high-yielding fungal cell factories for production of secondary metabolites. IMPORTANCE Secondary metabolites are a major source of pharmaceuticals, especially antibiotics. However, the development of efficient processes of production of secondary metabolites has proved troublesome due to a limited understanding of the metabolic regulations governing secondary metabolism. By analyzing the conservation in gene expression across secondary metabolite-producing fungal species, we identified a metabolic signature that links primary and secondary metabolism and that demonstrates that fungal metabolism is tailored for the efficient production of secondary metabolites. The insight that we provide can be used to develop high-yielding fungal cell factories that are optimized for the production of specific secondary metabolites of pharmaceutical interest.
  •  
19.
  • Fu, Xi, et al. (författare)
  • Continental-Scale Microbiome Study Reveals Different Environmental Characteristics Determining Microbial Richness, Composition, and Quantity in Hotel Rooms
  • 2020
  • Ingår i: mSystems. - : AMER SOC MICROBIOLOGY. - 2379-5077. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Culture-independent microbiome surveys have been conducted in homes, hospitals, schools, kindergartens and vehicles for public transport, revealing diverse microbial distributions in built environments. However, microbiome composition and the associated environmental characteristics have not been characterized in hotel environments. We presented here the first continental-scale microbiome study of hotel rooms (n = 68) spanning Asia and Europe. Bacterial and fungal communities were described by amplicon sequencing of the 16S rRNA gene and internal transcribed spacer (ITS) region and quantitative PCR. Similar numbers of bacterial (4,344) and fungal (4,555) operational taxonomic units were identified in the same sequencing depth, but most fungal taxa showed a restricted distribution compared to bacterial taxa. Aerobic, ubiquitous bacteria dominated the hotel microbiome with compositional similarity to previous samples from building and human nasopharynx environments. The abundance of Aspergillus was negatively correlated with latitude and accounted for -80% of the total fungal load in seven low-latitude hotels. We calculated the association between hotel microbiome and 16 indoor and outdoor environmental characteristics. Fungal composition and absolute quantity showed concordant associations with the same environmental characteristics, including latitude, quality of the interior, proximity to the sea, and visible mold, while fungal richness was negatively associated with heavy traffic (95% confidence interval [CI] = -127.05 to -0.25) and wall-to-wall carpet (95% CI = -47.60 to -3.82). Bacterial compositional variation was associated with latitude, quality of the interior, and floor type, while bacterial richness was negatively associated with recent redecoration (95% CI -179.00 to -44.55) and mechanical ventilation (95% CI = -136.71 to -5.12). IMPORTANCE This is the first microbiome study to characterize the microbiome data and associated environmental characteristics in hotel environments. In this study, we found concordant variation between fungal compositional variation and absolute quantity and discordant variation between community variation/quantity and richness. Our study can be used to promote hotel hygiene standards and provide resource information for future microbiome and exposure studies associated with health effects in hotel rooms.
  •  
20.
  • Garcia, Sarahi L., et al. (författare)
  • Freshwater Chlorobia Exhibit Metabolic Specialization among Cosmopolitan and Endemic Populations
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic bacteria from the class Chlorobia (formerly phylum Chlorobi) sustain carbon fixation in anoxic water columns. They harvest light at extremely low intensities and use various inorganic electron donors to fix carbon dioxide into biomass. Until now, most information on the functional ecology and local adaptations of Chlorobia members came from isolates and merely 26 sequenced genomes that may not adequately represent natural populations. To address these limitations, we analyzed global metagenomes to profile planktonic Chlorobia cells from the oxyclines of 42 freshwater bodies, spanning subarctic to tropical regions and encompassing all four seasons. We assembled and compiled over 500 genomes, including metagenome-assembled genomes (MAGs), single-amplified genomes (SAGs), and reference genomes from cultures, clustering them into 71 metagenomic operational taxonomic units (mOTUs or “species”). Of the 71 mOTUs, 57 were classified within the genus Chlorobium, and these mOTUs represented up to ∼60% of the microbial communities in the sampled anoxic waters. Several Chlorobium-associated mOTUs were globally distributed, whereas others were endemic to individual lakes. Although most clades encoded the ability to oxidize hydrogen, many lacked genes for the oxidation of specific sulfur and iron substrates. Surprisingly, one globally distributed Scandinavian clade encoded the ability to oxidize hydrogen, sulfur, and iron, suggesting that metabolic versatility facilitated such widespread colonization. Overall, these findings provide new insight into the biogeography of the Chlorobia and the metabolic traits that facilitate niche specialization within lake ecosystems.
  •  
21.
  • Getz, Eric W., et al. (författare)
  • The AEGEAN-169 clade of bacterioplankton is synonymous with SAR11 subclade V (HIMB59) and metabolically distinct
  • 2023
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterioplankton of the SAR11 clade are the most abundant marine microorganisms and consist of numerous subclades spanning order-level divergence (Pelagibacterales). The assignment of the earliest diverging subclade V (a.k.a. HIMB59) to the Pelagibacterales is highly controversial, with multiple recent phylogenetic studies placing them completely separate from SAR11. Other than through phylogenomics, subclade V has not received detailed examination due to limited genomes from this group. Here, we assessed the ecogenomic characteristics of subclade V to better understand the role of this group in comparison to the Pelagibacterales. We used a new isolate genome, recently released single-amplified genomes and metagenome-assembled genomes, and previously established SAR11 genomes to perform a comprehensive comparative genomics analysis. We paired this analysis with the recruitment of metagenomes spanning the open ocean, coastal, and brackish systems. Phylogenomics, average amino acid identity, and 16S rRNA gene phylogeny indicate that SAR11 subclade V is synonymous with the ubiquitous AEGEAN-169 clade and support the contention that this group represents a taxonomic family. AEGEAN-169 shared many bulk genome qualities with SAR11, such as streamlining and low GC content, but genomes were generally larger. AEGEAN-169 had overlapping distributions with SAR11 but was metabolically distinct from SAR11 in its potential to transport and utilize a broader range of sugars as well as in the transport of trace metals and thiamin. Thus, regardless of the ultimate phylogenetic placement of AEGEAN-169, these organisms have distinct metabolic capacities that likely allow them to differentiate their niche from canonical SAR11 taxa.
  •  
22.
  • Hamilton, Joshua J., et al. (författare)
  • Metabolic Network Analysis and Metatranscriptomics Reveal Auxotrophies and Nutrient Sources of the Cosmopolitan Freshwater Microbial Lineage acI
  • 2017
  • Ingår i: mSystems. - 2379-5077. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An explosion in the number of available genome sequences obtained through metagenomics and single-cell genomics has enabled a new view of the diversity of microbial life, yet we know surprisingly little about how microbes interact with each other or their environment. In fact, the majority of microbial species remain uncultivated, while our perception of their ecological niches is based on reconstruction of their metabolic potential. In this work, we demonstrate how the “seed set framework,” which computes the set of compounds that an organism must acquire from its environment (E. Borenstein, M. Kupiec, M. W. Feldman, and E. Ruppin, Proc Natl Acad Sci U S A 105:14482–14487, 2008, https://doi.org/10.1073/pnas.0806162105 ), enables computational analysis of metabolic reconstructions while providing new insights into a microbe’s metabolic capabilities, such as nutrient use and auxotrophies. We apply this framework to members of the ubiquitous freshwater actinobacterial lineage acI, confirming and extending previous experimental and genomic observations implying that acI bacteria are heterotrophs reliant on peptides and saccharides. We also present the first metatranscriptomic study of the acI lineage, revealing high expression of transport proteins and the light-harvesting protein actinorhodopsin. Putative transport proteins complement predictions of nutrients and essential metabolites while providing additional support of the hypothesis that members of the acI are photoheterotrophs.
  •  
23.
  • Hossein Khademi, S. M., et al. (författare)
  • Genomic and phenotypic evolution of achromobacter xylosoxidans during chronic airway infections of patients with cystic fibrosis
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the wholegenome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and b-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.
  •  
24.
  •  
25.
  • Hubalek, Valerie, 1981-, et al. (författare)
  • Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions
  • 2017
  • Ingår i: mSystems. - 2379-5077. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Syntrophy among Archaea and Bacteria facilitates the anaerobic degra- dation of organic compounds to CH4 and CO2 . Particularly during aliphatic and aro- matic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutu- alistic microbial partners are of central importance. Using micromanipulation com- bined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methano- genic conditions. Metabolic reconstruction revealed that only a small fraction of genes in the metagenome-assembled genomes encode the capacity for fermenta- tion of alkanes facilitated by energy conservation linked to H2 metabolism. Instead, the presence of inferred lifestyles based on scavenging anabolic products and inter- mediate fermentation products derived from detrital biomass was a common fea- ture. Additionally, inferred auxotrophy for vitamins and amino acids suggests that the hydrocarbon-degrading microbial assemblages are structured and maintained by multiple interactions beyond the canonical H2 -producing and syntrophic alkane degrader-methanogen partnership. Compared to previous work, our report points to a higher order of complexity in microbial consortia engaged in anaerobic hydrocar- bon transformation. IMPORTANCE
  •  
26.
  • Hwang, Yunha, et al. (författare)
  • Diverse Viruses Carrying Genes for Microbial Extremotolerancein the Atacama Desert Hyperarid Soil
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses play an essential role in shaping microbial community structures and serve as reservoirs for genetic diversity in many ecosystems. In hyperarid desert environments, where life itself becomes scarce and loses diversity, the interactions between viruses and host populations have remained elusive. Here, we resolved host-virus interactions in the soil metagenomes of the Atacama Desert hyperarid core, one of the harshest terrestrial environments on Earth. We show evidence of diverse viruses infecting a wide range of hosts found in sites up to 205 km apart. Viral genomes carried putative extremotolerance features (i.e., spore formation proteins) and auxiliary metabolic genes, indicating that viruses could mediate the spread of microbial resilience against environmental stress across the desert. We propose a mutualistic model of host-virus interactions in the hyperarid core where viruses seek protection in microbial cells as lysogens or pseudolysogens, while viral extremotolerance genes aid survival of their hosts. Our results suggest that the host-virus interactions in the Atacama Desert soils are dynamic and complex, shaping uniquely adapted microbiomes in this highly selective and hostile environment.IMPORTANCE Deserts are one of the largest and rapidly expanding terrestrial ecosystems characterized by low biodiversity and biomass. The hyperarid core of the Atacama Desert, previously thought to be devoid of life, is one of the harshest environments, supporting only scant biomass of highly adapted microbes. While there is growing evidence that viruses play essential roles in shaping the diversity and structure of nearly every ecosystem, very little is known about the role of viruses in desert soils, especially where viral contact with viable hosts is significantly reduced. Our results demonstrate that diverse viruses are widely dispersed across the desert, potentially spreading key stress resilience and metabolic genes to ensure host survival. The desertification accelerated by climate change expands both the ecosystem cover and the ecological significance of the desert virome. This study sheds light on the complex virus-host interplay that shapes the unique microbiome in desert soils.
  •  
27.
  • Jimenez-Gonzalez, Alejandro, et al. (författare)
  • Metabolic reconstruction elucidates the lifestyle of the last Diplomonadida common ancestor
  • 2020
  • Ingår i: mSystems. - 2379-5077. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of ancestral traits is essential to understand the evolution of any group. In the case of parasitic groups, this helps to understand the adaptation to this lifestyle and a particular host. The last Diplomonadida common ancestor has been considered a parasite because most diplomonads are found associated with various animals. However, most of the Fornicata relatives are free-living and there are free-living diplomonads, making the lifestyle of the Diplomonadida ancestor elusive. Here, we present an exhaustive metabolic analysis of diplomonads and the first description of the putative metabolism of the last Diplomonadida common ancestor. Our study suggests that the synthesis of UDP-N-acetyl-D-galactosamine necessary for the cyst wall and most of the virulence factors identified in diplomonads evolved in a pre-parasitic lifestyle. This last Diplomonadida common ancestor was able to utilize available metabolites, but had a reduced capacity to synthesize nucleotides, lipids and amino acids de novo, suggesting that most likely, it was an obligate host-associated.
  •  
28.
  • Karlsen, Jan, et al. (författare)
  • Ribosome Profiling of Synechocystis Reveals Altered Ribosome Allocation at Carbon Starvation
  • 2018
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria experience both rapid and periodic fluctuations in light and inorganic carbon (C-i) and have evolved regulatory mechanisms to respond to these, including extensive posttranscriptional gene regulation. We report the first genome-wide ribosome profiling data set for cyanobacteria, where ribosome occupancy on mRNA is quantified with codon-level precision. We measured the transcriptome and translatome of Synechocystis during autotrophic growth before (high carbon [HC] condition) and 24 h after removing CO2 from the feedgas (low carbon [LC] condition). Ribosome occupancy patterns in the 5' untranslated region suggest that ribosomes can assemble there and slide to the Shine-Dalgarno site, where they pause. At LC, total translation was reduced by 80% and ribosome pausing was increased at stop and start codons and in untranslated regions, which may be a sequestration mechanism to inactivate ribosomes in response to rapid C-i depletion. Several stress response genes, such as thioredoxin M (sll1057), a putative endonuclease (slr0915), protease HtrA (slr1204), and heat shock protein HspA (sll1514) showed marked increases in translational efficiency at LC, indicating translational control in response to Ci depletion. Ribosome pause scores within open reading frames were mostly constant, though several ribosomal proteins had significantly altered pause score distributions at LC, which might indicate translational regulation of ribosome biosynthesis in response to Ci depletion. We show that ribosome profiling is a powerful tool to decipher dynamic gene regulation strategies in cyanobacteria. IMPORTANCE Ribosome profiling accesses the translational step of gene expression via deep sequencing of ribosome-protected mRNA footprints. Pairing of ribosome profiling and transcriptomics data provides a translational efficiency for each gene. Here, the translatome and transcriptome of the model cyanobacterium Synechocystis were compared under carbon-replete and carbon starvation conditions. The latter may be experienced when cyanobacteria are cultivated in poorly mixed bioreactors or engineered to be product-secreting cell factories. A small fraction of genes (<200), including stress response genes, showed changes in translational efficiency during carbon starvation, indicating condition-dependent translation-level regulation. We observed ribosome occupancy in untranslated regions, possibly due to an alternative translation initiation mechanism in Synechocystis. The higher proportion of ribosomes residing in untranslated regions during carbon starvation may be a mechanism to quickly inactivate superfluous ribosomes. This work provides the first ribosome profiling data for cyanobacteria and reveals new regulation strategies for coping with nutrient limitation.
  •  
29.
  •  
30.
  • Lordan, Ronan, et al. (författare)
  • Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:3
  • Forskningsöversikt (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic’s devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
  •  
31.
  • Mahmud, A. K. M. Firoj, et al. (författare)
  • Genome-Scale Mapping Reveals Complex Regulatory Activities of RpoN in Yersinia pseudotuberculosis
  • 2020
  • Ingår i: mSystem. - 2379-5077. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • RpoN, an alternative sigma factor commonly known as σ54, is implicated in persistent stages of Yersinia pseudotuberculosis infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for Y. pseudotuberculosis virulence in mice, and in vitro functional assays showed that it controls biofilm formation and motility. Mapping genome-wide associations of Y. pseudotuberculosis RpoN using chromatin immunoprecipitation coupled with next-generation sequencing identified an RpoN binding motif located at 103 inter- and intragenic sites on both sense and antisense strands. Deletion of rpoN had a large impact on gene expression, including downregulation of genes encoding proteins involved in flagellar assembly, chemotaxis, and quorum sensing. There were also clear indications of cross talk with other sigma factors, together with indirect effects due to altered expression of other regulators. Matching differential gene expression with locations of the binding sites implicated around 130 genes or operons potentially activated or repressed by RpoN. Mutagenesis of selected intergenic binding sites confirmed both positive and negative regulatory effects of RpoN binding. Corresponding mutations of intragenic sense sites had less impact on associated gene expression. Surprisingly, mutating intragenic sites on the antisense strand commonly reduced expression of genes carried by the corresponding sense strand.
  •  
32.
  • Martin-Rodriguez, Alberto J., et al. (författare)
  • Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains : Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation
  • 2022
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCE Shewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.
  •  
33.
  • Massing, Jana C., et al. (författare)
  • Quantification of metabolic niche occupancy dynamics in a Baltic Sea bacterial community
  • 2023
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The increase in data availability of bacterial communities highlights the need for conceptual frameworks to advance our understanding of these complex and diverse communities alongside the production of such data. To understand the dynamics of these tremendously diverse communities, we need tools to identify overarching strategies and describe their role and function in the ecosystem in a comprehensive way. Here, we show that a manifold learning approach can coarse grain bacterial communities in terms of their metabolic strategies and that we can thereby quantitatively organize genomic information in terms of potentially occupied niches over time. This approach therefore advances our understanding of how fluctuations in bacterial abundances and species composition can relate to ecosystem functions and it can facilitate the analysis, monitoring and future predictions of the development of microbial communities. Progress in molecular methods has enabled the monitoring of bacterial populations in time. Nevertheless, understanding community dynamics and its links with ecosystem functioning remains challenging due to the tremendous diversity of microorganisms. Conceptual frameworks that make sense of time-series of taxonomically-rich bacterial communities, regarding their potential ecological function, are needed. A key concept for organizing ecological functions is the niche, the set of strategies that enable a population to persist and define its impacts on the surroundings. Here we present a framework based on manifold learning, to organize genomic information into potentially occupied bacterial metabolic niches over time. Manifold learning tries to uncover low-dimensional data structures in high-dimensional datasets, that can be used to describe the data in reduced dimensions. We apply the method to re-construct the dynamics of putatively occupied metabolic niches using a long-term bacterial time-series from the Baltic Sea, the Linnaeus Microbial Observatory (LMO). The results reveal a relatively low-dimensional space of occupied metabolic niches comprising groups of taxa with similar functional capabilities. Time patterns of occupied niches were strongly driven by seasonality. Some metabolic niches were dominated by one bacterial taxon whereas others were occupied by multiple taxa, depending on season. These results illustrate the power of manifold learning approaches to advance our understanding of the links between community composition and functioning in microbial systems.IMPORTANCEThe increase in data availability of bacterial communities highlights the need for conceptual frameworks to advance our understanding of these complex and diverse communities alongside the production of such data. To understand the dynamics of these tremendously diverse communities, we need tools to identify overarching strategies and describe their role and function in the ecosystem in a comprehensive way. Here, we show that a manifold learning approach can coarse grain bacterial communities in terms of their metabolic strategies and that we can thereby quantitatively organize genomic information in terms of potentially occupied niches over time. This approach therefore advances our understanding of how fluctuations in bacterial abundances and species composition can relate to ecosystem functions and it can facilitate the analysis, monitoring and future predictions of the development of microbial communities.
  •  
34.
  • Mondav, Rhiannon, 1972-, et al. (författare)
  • Streamlined and Abundant Bacterioplankton Thrive in Functional Cohorts
  • 2020
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • While fastidious microbes can be abundant and ubiquitous in their natural communities, many fail to grow axenically in laboratories due to auxotrophies or other dependencies. To overcome auxotrophies, these microbes rely on their surrounding cohort. A cohort may consist of kin (ecotypes) or more distantly related organisms (community) with the cooperation being reciprocal or nonreciprocal and expensive (Black Queen hypothesis) or costless (by-product). These metabolic partnerships (whether at single species population or community level) enable dominance by and coexistence of these lineages in nature. Here we examine the relevance of these cooperation models to explain the abundance and ubiquity of the dominant fastidious bacterioplankton of a dimictic mesotrophic freshwater lake. Using both culture-dependent (dilution mixed cultures) and culture-independent (small subunit [SSU] rRNA gene time series and environmental metagenomics) methods, we independently identified the primary cohorts of actinobacterial genera "Candidatus Planktophila" (acI-A) and "Candidatus Nanopelagicus" (acI-B) and the proteobacterial genus "Candidatus Fonsibacter" (LD12). While "Ca Planktophila" and "Ca. Fonsibacter" had no correlation in their natural habitat, they have the potential to be complementary in laboratory settings. We also investigated the bifunctional catalase-peroxidase enzyme KatG (a common good which "Ca Planktophila" is dependent upon) and its most likely providers in the lake. Further, we found that while ecotype and community cooperation combined may explain "Ca Planktophila" population abundance, the success of "Ca. Nanopelagicus" and "Ca. Fonsibacter" is better explained as a community by-product. Ecotype differentiation of "Ca. Fonsibacter" as a means of escaping predation was supported but not for overcoming auxotrophies.IMPORTANCE This study examines evolutionary and ecological relationships of three of the most ubiquitous and abundant freshwater bacterial genera: "Ca Planktophila" (acI-A), "Ca. Nanopelagicus" (acI-B), and "Ca. Fonsibacter" (LD12). Due to high abundance, these genera might have a significant influence on nutrient cycling in freshwaters worldwide, and this study adds a layer of understanding to how seemingly competing clades of bacteria can coexist by having different cooperation strategies. Our synthesis ties together network and ecological theory with empirical evidence and lays out a framework for how the functioning of populations within complex microbial communities can be studied.
  •  
35.
  • Mukherjee, Vaskar, 1986, et al. (författare)
  • A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of .9,000 strains, where .98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress.
  •  
36.
  • Muratore, D., et al. (författare)
  • Microbial and Viral Genome and Proteome Nitrogen Demand Varies across Multiple Spatial Scales within a Marine Oxygen Minimum Zone
  • 2023
  • Ingår i: Msystems. - : American Society for Microbiology. - 2379-5077. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers.IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles.
  •  
37.
  • Pontiller, Benjamin, MSc, 1985-, et al. (författare)
  • Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll a and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by Flavobacteriales, Cellvibrionales, and Synechococcales at 2 to 25 m and a dominance of peptidase transcription by Alteromonadales and Rhodobacterales from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by Thaumarchaeota at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO2 fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles.IMPORTANCE It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.
  •  
38.
  • Rando, Halie M., et al. (författare)
  • Identification and development of therapeutics for COVID-19
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:6
  • Forskningsöversikt (refereegranskat)abstract
    • After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid- 2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
  •  
39.
  • Rando, Halie M, et al. (författare)
  • Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:5
  • Forskningsöversikt (refereegranskat)abstract
    • The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).
  •  
40.
  • Rocca, Jennifer D., et al. (författare)
  • Guided by Microbes : Applying Community Coalescence Principles for Predictive Microbiome Engineering
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Every seed germinating in soils, wastewater treatment, and stream confluence exemplify microbial community coalescence—the blending of previously isolated communities. Here, we present theoretical and experimental knowledge on how separated microbial communities mix, with particular focus on managed ecosystems. We adopt the community coalescence framework, which integrates metacommunity theory and meta-ecosystem dynamics, and highlight the prevalence of these coalescence events within microbial systems. Specifically, we (i) describe fundamental types of community coalescences using naturally occurring and managed examples, (ii) offer ways forward to leverage community coalescence in managed systems, and (iii) emphasize the importance of microbial ecological theory to achieving desired coalescence outcomes. Further, considering the massive dispersal events of microbiomes and their coalescences is pivotal to better predict microbial community dynamics and responses to disturbances. We conclude our piece by highlighting some challenges and unanswered question yet to be tackled.
  •  
41.
  • Schneider, Andreas N., et al. (författare)
  • Comparative fungal community analyses using metatranscriptomics and internal transcribed spacer amplicon sequencing from Norway spruce
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius. IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities.
  •  
42.
  • Schneider, Andreas N., et al. (författare)
  • Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius.IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities.
  •  
43.
  • Shao, Zhanru, et al. (författare)
  • Characterization of a Marine Diatom Chitin Synthase Using a Combination of Meta-Omics, Genomics, and Heterologous Expression Approaches
  • 2023
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • b-Chitin has important ecological and physiological roles and potential for widespread applications, but the characterization of chitin-related enzymes from b-chitin producers was rarely reported. Querying against the Tara Oceans Gene Atlas, 4,939 chitin-related unique sequences from 12 Pfam accessions were found in Bacillariophyta metatranscriptomes. Putative chitin synthase (CHS) sequences are decreasingly present in Crustacea (39%), Stramenopiles (16%) and Insecta (14%) from the Marine Atlas of Tara Oceans Unigenes version 1 Metatranscriptomes (MATOUv11T) database. A CHS gene from the model diatom Thalassiosira pseudonana (Thaps3_J4413, designated TpCHS1) was identified. Homology analysis of TpCHS1 in Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP), PhycoCosm, and the PLAZA diatom omics data set showed that Mediophyceae and Thalassionemales species were potential new b-chitin producers besides Thalassiosirales. TpCHS1 was overexpressed in Saccharomyces cerevisiae and Phaeodactylum tricornutum. In transgenic P. tricornutum lines, TpCHS1-eGFP localizes to the Golgi apparatus and plasma membrane and predominantly accumulates in the cleavage furrow during cell division. Enhanced TpCHS1 expression could induce abnormal cell morphology and reduce growth rates in P. tricornutum, which might be ascribed to the inhibition of the G2/M phase. S. cerevisiae was proved to be a better system for expressing large amounts of active TpCHS1, which effectively incorporates UDP-N-acetylglucosamine in radiometric in vitro assays. Our study expands the knowledge on chitin synthase taxonomic distribution in marine eukaryotic microbes, and is the first to collectively characterize an active marine diatom CHS which may play an important role during cell division.
  •  
44.
  • Sharma, Atin, et al. (författare)
  • CRISPR-cas-guided mutagenesis of chromosome and virulence plasmid in Shigella flexneri by cytosine base editing
  • 2023
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Shigella is a Gram-negative bacterium that invades the human gut epithelium. The resulting infection, shigellosis, is the deadliest bacterial diarrheal disease. Much of the information about the genes dictating the pathophysiology of Shigella, both on the chromosome and the virulence plasmid, was obtained by classical reverse genetics. However, technical limitations of the prevalent mutagenesis techniques restrict the generation of mutants in a single reaction to a small number, preventing large-scale targeted mutagenesis of Shigella and the subsequent assessment of phenotype. We adopted a CRISPR-Cas-dependent approach, where a nickase Cas9 and cytidine deaminase fusion is guided by single guide RNA (sgRNA) to introduce targeted C→T transitions, resulting in internal stop codons and premature termination of translation. In proof-of-principle experiments using an mCherry fluorescent reporter, we were able to generate loss-of-function mutants in both Escherichia coli and Shigella flexneri with up to 100% efficacy. Using a modified fluctuation assay, we determined that under optimized conditions, the frequency of untargeted mutations introduced by the Cas9-deaminase fusion was in the same range as spontaneous mutations, making our method a safe choice for bacterial mutagenesis. Furthermore, we programmed the method to mutate well-characterized chromosomal and plasmid-borne Shigella flexneri genes and found the mutant phenotype to be similar to those of the reported gene deletion mutants, with no apparent polar effects at the phenotype level. This method can be used in a 96-well-plate format to increase the throughput and generate an array of targeted loss-of-function mutants in a few days.
  •  
45.
  • Sorrentino, James T, et al. (författare)
  • Vascular Proteome Responses Precede Organ Dysfunction in a Murine Model of Staphylococcus aureus Bacteremia
  • 2022
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular dysfunction and organ failure are two distinct, albeit highly interconnected, clinical outcomes linked to morbidity and mortality in human sepsis. The mechanisms driving vascular and parenchymal damage are dynamic and display significant molecular cross talk between organs and tissues. Therefore, assessing their individual contribution to disease progression is technically challenging. Here, we hypothesize that dysregulated vascular responses predispose the organism to organ failure. To address this hypothesis, we have evaluated four major organs in a murine model of Staphylococcus aureus sepsis by combining in vivo labeling of the endothelial cell surface proteome, data-independent acquisition (DIA) mass spectrometry, and an integrative computational pipeline. The data reveal, with unprecedented depth and throughput, that a septic insult evokes organ-specific proteome responses that are highly compartmentalized, synchronously coordinated, and significantly correlated with the progression of the disease. These responses include abundant vascular shedding, dysregulation of the intrinsic pathway of coagulation, compartmentalization of the acute phase response, and abundant upregulation of glycocalyx components. Vascular cell surface proteome changes were also found to precede bacterial invasion and leukocyte infiltration into the organs, as well as to precede changes in various well-established cellular and biochemical correlates of systemic coagulopathy and tissue dysfunction. Importantly, our data suggest a potential role for the vascular proteome as a determinant of the susceptibility of the organs to undergo failure during sepsis. IMPORTANCE Sepsis is a life-threatening response to infection that results in immune dysregulation, vascular dysfunction, and organ failure. New methods are needed for the identification of diagnostic and therapeutic targets. Here, we took a systems-wide approach using data-independent acquisition (DIA) mass spectrometry to track the progression of bacterial sepsis in the vasculature leading to organ failure. Using a murine model of S. aureus sepsis, we were able to quantify thousands of proteins across the plasma and parenchymal and vascular compartments of multiple organs in a time-resolved fashion. We showcase the profound proteome remodeling triggered by sepsis over time and across these compartments. Importantly, many vascular proteome alterations precede changes in traditional correlates of organ dysfunction, opening a molecular window for the discovery of early markers of sepsis progression.
  •  
46.
  • Sun, Li, et al. (författare)
  • Novel syntrophic populations dominate an ammonia-tolerant methanogenic microbiome
  • 2016
  • Ingår i: mSystems. - 2379-5077. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H-2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1's metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations.IMPORTANCE The microbial production of methane or "biogas" is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.
  •  
47.
  • Taillefer, Marcel, 1987, et al. (författare)
  • Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling Bacteroidetes
  • 2018
  • Ingår i: mSystems. - 2379-5077. ; 3:6, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT Bacteria of the phylum  Bacteroidetes  are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. The soil  Bacteroidetes  species Cytophaga hutchinsonii and Sporocytophaga myxococcoides have long been known as efficient cellulose metabolizers, but neither species conforms to known cellulolytic mechanisms. Both species require contact with their substrate but do not encode cellulosomal systems of cell surface-attached enzyme complexes or the polysaccharide utilization loci found in many other  Bacteroidetes  species. Here, we have fractionated the cellular compartments of each species from cultures growing on crystalline cellulose and pectin, respectively, and analyzed them using label-free quantitative proteomics as well as enzymatic activity assays. The combined results enabled us to highlight enzymes likely to be important for cellulose conversion and to infer their cellular localization. The combined proteomes represent a wide array of putative cellulolytic enzymes and indicate specific and yet highly redundant mechanisms for cellulose degradation. Of the putative endoglucanases, especially enzymes of hitherto-unstudied glycoside hydrolase family, 8 were abundant, indicating an overlooked important role during cellulose metabolism. Furthermore, both species generated a large number of abundant hypothetical proteins during cellulose conversion, providing a treasure trove of targets for future enzymology studies.  IMPORTANCE Cellulose is the most abundant renewable polymer on earth, but its recalcitrance limits highly efficient conversion methods for energy-related and material applications. Though microbial cellulose conversion has been studied for decades, recent advances showcased that large knowledge gaps still exist. Bacteria of the phylum  Bacteroidetes  are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. A few species, including the soil bacteria C. hutchinsonii and S. myxococcoides , are regarded as cellulose specialists, but their cellulolytic mechanisms are not understood, as they do not conform to the current models for enzymatic cellulose turnover. By unraveling the proteome setups of these two bacteria during growth on both crystalline cellulose and pectin, we have taken a significant step forward in understanding their idiosyncratic mode of cellulose conversion. This report provides a plethora of new enzyme targets for improved biomass conversion.
  •  
48.
  • Toledo, Carla Calderon, et al. (författare)
  • Circulation of enterotoxigenic Escherichia coli (ETEC) isolates expressing CS23 from the environment to clinical settings
  • 2023
  • Ingår i: mSystems. - 2379-5077. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of infant diarrhea in low- and middle-income countries (LMICs). Diarrheal pathogens are transmitted through environmental reservoirs; however, the bacterial clones that spread across the human-environment interface remain unexplored. We aimed to determine the relationship and clonal dissemination of ETEC between children with diarrhea and polluted water samples from a local river in La Paz, Bolivia. By using WGS and the PhenePlates phenotypic system to analyze ETEC strains, we showed that ST218 and ST410 LT+STh ETEC expressing the colonization factor (CF) CS23 were found with high frequency in both samples. The CS23 ETEC isolates were found within several STs, E. coli phylogroups, and across ETEC lineages. Comparative genomic evaluation and PhenePlate screening of globally distributed clinical ETEC strains suggest that the CS23 gene is likely carried on plasmids acquired independently of the bacterial chromosomal background. Clinical strains were more often multidrug-resistant (MDR) than environmental isolates and harbored the class 1 integron-integrase gene intI1 next to the MDR cassettes. Retrospective analysis of antibiotic resistance in ETEC revealed a high frequency of MDR in clinical isolates. The LT+STh CS23 environmental ETEC isolates, showed an increased biofilmability at environmental temperature, equal cytotoxicity, and significantlylower adherence to human epithelial cells compared to ETEC expressing other CFs. Together, we suggest that CS23 is more prevalent in ETEC than previously estimated, and the Choqueyapu River is a reservoir for LT+STh CS23 ETEC containing strains capable of causing diarrheal cases in children.
  •  
49.
  • Torrens, Gabriel, et al. (författare)
  • Regulation of AmpC-Driven beta-Lactam Resistance in Pseudomonas aeruginosa : Different Pathways, Different Signaling
  • 2019
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The hyperproduction of the chromosomal AmpC β-lactamase is the main mechanism driving β-lactam resistance in Pseudomonas aeruginosa, one of the leading opportunistic pathogens causing nosocomial acute and chronic infections in patients with underlying respiratory diseases. In the current scenario of the shortage of effective antipseudomonal drugs, understanding the molecular mechanisms mediating AmpC hyperproduction in order to develop new therapeutics against this fearsome pathogen is of great importance. It has been accepted for decades that certain cell wall-derived soluble fragments (muropeptides) modulate AmpC production by complexing with the transcriptional regulator AmpR and acquiring different conformations that activate/repress ampC expression. However, these peptidoglycan-derived signals have never been characterized in the highly prevalent P. aeruginosa stable AmpC hyperproducer mutants. Here, we demonstrate that the previously described fragments enabling the transient ampC hyperexpression during cefoxitin induction (1,6-anhydro-N-acetylmuramyl-pentapeptides) also underlie the dacB (penicillin binding protein 4 [PBP4]) mutation-driven stable hyperproduction but differ from the 1,6-anhydro-N-acetylmuramyl-tripeptides notably overaccumulated in the ampD knockout mutant. In addition, a simultaneous greater accumulation of both activators appears linked to higher levels of AmpC hyperproduction, although our results suggest a much stronger AmpC-activating potency for the 1,6-anhydro-N-acetylmuramyl-pentapeptide. Collectively, our results propose a model of AmpC control where the activator fragments, with qualitative and quantitative particularities depending on the pathways and levels of β-lactamase production, dominate over the repressor (UDP-N-acetylmuramyl-pentapeptide). This study represents a major step in understanding the foundations of AmpC-dependent β-lactam resistance in P. aeruginosa, potentially useful to open new therapeutic conceptions intended to interfere with the abovementioned cell wall-derived signaling.IMPORTANCE: The extensive use of β-lactam antibiotics and the bacterial adaptive capacity have led to the apparently unstoppable increase of antimicrobial resistance, one of the current major global health challenges. In the leading nosocomial pathogen Pseudomonas aeruginosa, the mutation-driven AmpC β-lactamase hyperproduction stands out as the main resistance mechanism, but the molecular cues enabling this system have remained elusive until now. Here, we provide for the first time direct and quantitative information about the soluble cell wall-derived fragments accounting for the different levels and pathways of AmpC hyperproduction. Based on these results, we propose a hierarchical model of signals which ultimately govern ampC hyperexpression and resistance.
  •  
50.
  • Vaenni, Petri, et al. (författare)
  • Machine-learning analysis of cross-study samples according to the gut microbiome in 12 infant cohorts
  • 2023
  • Ingår i: mSystems. - : AMER SOC MICROBIOLOGY. - 2379-5077. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Combining and comparing microbiome data from distinct infant cohorts has been challenging because such data are inherently multidimensional and complex. Here, we used an ensemble of machine-learning (ML) models and studied 16S rRNA amplicon sequencing data from 4,099 gut microbiome samples representing 12 prospectively collected infant cohorts. We chose the childbirth delivery mode as a starting point for such analysis because it has previously been associated with alterations in the gut microbiome in infants. In cross-study ensemble models, Bacteroides was the most important feature in all machine-learning models. The predictive capacity by taxonomy varied with age. At the age of 1-2 months, gut microbiome data were able to predict delivery mode with an area under the curve of 0.72 to 0.83. In contrast, ML models trained on taxa were not able to differentiate between the modes of delivery, in any of the cohorts, when the infants were between 3 and 12 months of age. Moreover, no ML model, alternately trained on the functional pathways of the infant gut microbiome, could consistently predict mode of delivery at any infant age. This study shows that infant gut microbiome data sets can be effectively combined with the application of ML analysis across different study populations.IMPORTANCEThere are challenges in merging microbiome data from diverse research groups due to the intricate and multifaceted nature of such data. To address this, we utilized a combination of machine-learning (ML) models to analyze 16S sequencing data from a substantial set of gut microbiome samples, sourced from 12 distinct infant cohorts that were gathered prospectively. Our initial focus was on the mode of delivery due to its prior association with changes in infant gut microbiomes. Through ML analysis, we demonstrated the effective merging and comparison of various gut microbiome data sets, facilitating the identification of robust microbiome biomarkers applicable across varied study populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 54
Typ av publikation
tidskriftsartikel (51)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (54)
Författare/redaktör
Bertilsson, Stefan (5)
Nielsen, Jens B, 196 ... (3)
Zhang, Z. (2)
Mardinoglu, Adil (2)
Farewell, Anne, 1961 (2)
Ji, Boyang, 1983 (2)
visa fler...
Engstrand, Lars (2)
Sunnerhagen, Per, 19 ... (2)
Bunse, Carina (2)
Pinhassi, Jarone (2)
Warringer, Jonas, 19 ... (2)
Grabherr, Manfred (2)
Zhang, F. (1)
Zhou, Y. (1)
Engstrand, L (1)
Zeng, Y. (1)
Kamal, A. (1)
Wang, Y. (1)
Luo, J. (1)
Olovsson, Matts, 195 ... (1)
Tellgren-Roth, Chris ... (1)
Zhang, B. (1)
Liao, J. (1)
Abdel-Haleem, Alyaa ... (1)
Ravikumar, Vaishnavi (1)
Mineta, Katsuhiko (1)
Gao, Xin (1)
Gojobori, Takashi (1)
Mijakovic, Ivan, 197 ... (1)
King, Ross, 1962 (1)
Li, YC (1)
Seifert, M (1)
Wang, W. (1)
Cava, Felipe (1)
Blomberg, Anders, 19 ... (1)
Lind, Ulrika (1)
Adami, HO (1)
Björn, Erik (1)
Norbäck, Dan (1)
Nilsson, Kristina (1)
Esko, Jeffrey D. (1)
Lundin, Daniel, 1965 ... (1)
Schnürer, Anna (1)
Römling, Ute (1)
Zhong, Y (1)
Hu, R (1)
Grøtli, Morten, 1966 (1)
Ludvigsson, Johnny (1)
Hu, YOO (1)
Du, J (1)
visa färre...
Lärosäte
Uppsala universitet (12)
Göteborgs universitet (8)
Umeå universitet (8)
Lunds universitet (8)
Chalmers tekniska högskola (8)
Stockholms universitet (7)
visa fler...
Karolinska Institutet (7)
Sveriges Lantbruksuniversitet (5)
Kungliga Tekniska Högskolan (4)
Linnéuniversitetet (3)
Linköpings universitet (1)
Sophiahemmet Högskola (1)
visa färre...
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (38)
Medicin och hälsovetenskap (18)
Teknik (4)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy