SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2397 4648 "

Search: L773:2397 4648

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chakraborty, Debmalya, et al. (author)
  • Disorder-robust phase crystal in high-temperature superconductors stabilized by strong correlations
  • 2022
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The simultaneous interplay of strong electron–electron correlations, topological zero-energy states, and disorder is yet an unexplored territory but of immense interest due to their inevitable presence in many materials. Copper oxide high-temperature superconductors (cuprates) with pair breaking edges host a flat band of topological zero-energy states, making them an ideal playground where strong correlations, topology, and disorder are strongly intertwined. Here we show that this interplay in cuprates generates a fully gapped ‘phase crystal’ state that breaks both translational and time-reversal invariance, characterized by a modulation of the d-wave superconducting phase co-existing with a modulating extended s-wave superconducting order. In contrast to conventional wisdom, we find that this phase crystal state is remarkably robust to omnipresent disorder, but only in the presence of strong correlations, thus giving a clear route to its experimental realization.
  •  
2.
  • Danilov, Michael, et al. (author)
  • Degenerate plaquette physics as key ingredient of high-temperature superconductivity in cuprates
  • 2022
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 7:1
  • Journal article (peer-reviewed)abstract
    • We study the physics of high-temperature cuprate superconductors starting from the highly degenerate four-site plaquette of the t− t′− U Hubbard model as a reference system. The degeneracy causes strong fluctuations when a lattice of plaquettes is constructed. We show that there is a large binding energy between holes when a set of four plaquettes is considered. The next-nearest-neighbour hopping t′ plays a crucial role in the formation of these strongly bound electronic bipolarons whose coherence at lower temperature could be the explanation for superconductivity. A complementary approach is cluster dual fermion starting from a single degenerate plaquette, which contains the relevant short-ranged fluctuations from the beginning. It gives d-wave superconductivity as the leading instability under a reasonably broad range of parameters. The origin of the pseudogap is also discussed in terms of the coupling of degenerate plaquettes. Thus, some of the essential elements of cuprate superconductivity appear from the local plaquette physics.
  •  
3.
  • Escribano, Samuel D., et al. (author)
  • Semiconductor-ferromagnet-superconductor planar heterostructures for 1D topological superconductivity
  • 2022
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Hybrid structures of semiconducting (SM) nanowires, epitaxially grown superconductors (SC), and ferromagnetic-insulator (FI) layers have been explored experimentally and theoretically as alternative platforms for topological superconductivity at zero magnetic field. Here, we analyze a tripartite SM/FI/SC heterostructure but realized in a planar stacking geometry, where the thin FI layer acts as a spin-polarized barrier between the SM and the SC. We optimize the system’s geometrical parameters using microscopic simulations, finding the range of FI thicknesses for which the hybrid system can be tuned into the topological regime. Within this range, and thanks to the vertical confinement provided by the stacking geometry, trivial and topological phases alternate regularly as the external gate is varied, displaying a hard topological gap that can reach half of the SC one. This is a significant improvement compared to setups using hexagonal nanowires, which show erratic topological regions with typically smaller and softer gaps. Our proposal provides a magnetic field-free planar design for quasi-one-dimensional topological superconductivity with attractive properties for experimental control and scalability.
  •  
4.
  • Galler, Anna, et al. (author)
  • Intrinsically weak magnetic anisotropy of cerium in potential hard-magnetic intermetallics
  • 2021
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Cerium-based intermetallics are currently attracting much interest as a possible alternative to existing high-performance magnets containing scarce heavy rare-earth elements. However, the intrinsic magnetic properties of Ce in these systems are poorly understood due to the difficulty of a quantitative description of the Kondo effect, a many-body phenomenon where conduction electrons screen out the Ce-4f moment. Here, we show that the Ce-4f shell in Ce–Fe intermetallics is partially Kondo screened. The Kondo scale is dramatically enhanced by nitrogen interstitials suppressing the Ce-4f contribution to the magnetic anisotropy, in striking contrast to the effect of nitrogenation in isostructural intermetallics containing other rare-earth elements. We determine the full temperature dependence of the Ce-4f single-ion anisotropy and show that even unscreened Ce-4f moments contribute little to the room-temperature intrinsic magnetic hardness. Our study thus establishes fundamental constraints on the potential of cerium-based permanent magnet intermetallics.
  •  
5.
  • Goerzen, Moritz A., et al. (author)
  • Lifetime of coexisting sub-10 nm zero-field skyrmions and antiskyrmions
  • 2023
  • In: npj Quantum Materials. - : Nature Publishing Group. - 2397-4648. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Magnetic skyrmions have raised high hopes for future spintronic devices. For many applications, it would be of great advantage to have more than one metastable particle-like texture available. The coexistence of skyrmions and antiskyrmions has been proposed in inversion-symmetric magnets with exchange frustration. However, so far only model systems have been studied and the lifetime of coexisting metastable topological spin structures has not been obtained. Here, we predict that skyrmions and antiskyrmions with diameters below 10 nm can coexist at zero magnetic field in a Rh/Co bilayer on the Ir(111) surface—an experimentally feasible system. We show that the lifetimes of metastable skyrmions and antiskyrmions in the ferromagnetic ground state are above one hour for temperatures up to 75 and 48 K, respectively. The entropic contribution to the nucleation and annihilation rates differs for skyrmions and antiskyrmions. This opens the route to the thermally activated creation of coexisting skyrmions and antiskyrmions in frustrated magnets with Dzyaloshinskii–Moriya interaction.
  •  
6.
  • Grytsiuk, Sergii, et al. (author)
  • Nb3Cl8 : a prototypical layered Mott-Hubbard insulator
  • 2024
  • In: npj Quantum Materials. - 2397-4648. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Despite its simplicity and relevance for the description of electronic correlations in solids, the Hubbard model is seldom inarguably realized in real materials. Here, we show that monolayer Nb3Cl8 is an ideal candidate to be described within a single-orbital Hubbard model, constructed within a “molecular” rather than atomic basis set using ab initio constrained random phase approximation calculations. We provide the necessary ingredients to connect experimental reality with ab initio material descriptions and correlated electron theory, which clarifies that monolayer Nb3Cl8 is a Mott insulator with a gap of about 1.4 to 2.0 eV depending on its dielectric environment. Comparisons to an atomistic three-orbital model show that the single-molecular-orbital description is adequate and reliable. We further comment on the electronic and magnetic structure of the compound and show that the Mott insulating state survives in the low-temperature bulk phases of the material featuring distinct experimentally verifiable characteristics.
  •  
7.
  •  
8.
  • Heiler, Jonah, et al. (author)
  • Spectral stability of V2 centres in sub-micron 4H-SiC membranes
  • 2024
  • In: NPJ QUANTUM MATERIALS. - : NATURE PORTFOLIO. - 2397-4648. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Colour centres in silicon carbide emerge as a promising semiconductor quantum technology platform with excellent spin-optical coherences. However, recent efforts towards maximising the photonic efficiency via integration into nanophotonic structures proved to be challenging due to reduced spectral stabilities. Here, we provide a large-scale systematic investigation on silicon vacancy centres in thin silicon carbide membranes with thicknesses down to 0.25 mu m. Our membrane fabrication process involves a combination of chemical mechanical polishing, reactive ion etching, and subsequent annealing. This leads to highly reproducible membranes with roughness values of 3-4 A, as well as negligible surface fluorescence. We find that silicon vacancy centres show close-to lifetime limited optical linewidths with almost no signs of spectral wandering down to membrane thicknesses of similar to 0.7 mu m. For silicon vacancy centres in thinner membranes down to 0.25 mu m, we observe spectral wandering, however, optical linewidths remain below 200 MHz, which is compatible with spin-selective excitation schemes. Our work clearly shows that silicon vacancy centres can be integrated into sub-micron silicon carbide membranes, which opens the avenue towards obtaining the necessary improvements in photon extraction efficiency based on nanophotonic structuring.
  •  
9.
  • Horio, M., et al. (author)
  • Electronic reconstruction forming a C-2-symmetric Dirac semimetal in Ca3Ru2O7
  • 2021
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or electronic order. In the stoichiometric ruthenate Ca3Ru2O7, numerous Fermi surface-sensitive probes indicate a low-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca3Ru2O7 a C-2-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure-incompatible with translational-symmetry-breaking density waves-serves as an important test for band structure calculations of correlated electron systems.
  •  
10.
  • Kim, Soyeun, et al. (author)
  • Orbital-selective Mott and Peierls transition in H xVO2
  • 2022
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Materials displaying metal-insulator transitions (MITs) as a function of external parameters such as temperature, pressure, or composition are most intriguing from the fundamental point of view and also hold high promise for applications. Vanadium dioxide (VO2) is one of the most prominent examples of MIT having prospective applications ranging from intelligent coatings, infrared sensing, or imaging, to Mott memory and neuromorphic devices. The key aspects conditioning possible applications are the controllability and reversibility of the transition. Here we present an intriguing MIT in hydrogenated vanadium dioxide, HxVO2. The transition relies on an increase of the electron occupancy through hydrogenation on the transition metal vanadium, driving the system insulating by a hybrid of two distinct MIT mechanisms. The insulating phase observed in HVO2 with a nominal d2 electronic configuration contrasts with other rutile d2 systems, most of which are metallic. Using spectroscopic tools and state-of-the-art many-body electronic structure calculations, our investigation reveals a correlation-enhanced Peierls and a Mott transition taking place in an orbital-selective manner cooperate to stabilize an insulating phase. The identification of the hybrid mechanism for MIT controlled by hydrogenation opens the way to radically design strategies for future correlated oxide devices by controlling phase reversibly while maintaining high crystallinity.
  •  
11.
  • Marques, Carolina A., et al. (author)
  • Spin-orbit coupling induced Van Hove singularity in proximity to a Lifshitz transition in Sr4Ru3O10
  • 2024
  • In: npj Quantum Materials. - 2397-4648. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Van Hove singularities (VHss) in the vicinity of the Fermi energy often play a dramatic role in the physics of strongly correlated electron materials. The divergence of the density of states generated by VHss can trigger the emergence of phases such as superconductivity, ferromagnetism, metamagnetism, and density wave orders. A detailed understanding of the electronic structure of these VHss is therefore essential for an accurate description of such instabilities. Here, we study the low-energy electronic structure of the trilayer strontium ruthenate Sr4Ru3O10, identifying a rich hierarchy of VHss using angle-resolved photoemission spectroscopy and millikelvin scanning tunneling microscopy. Comparison of k-resolved electron spectroscopy and quasiparticle interference allows us to determine the structure of the VHss and demonstrate the crucial role of spin-orbit coupling in shaping them. We use this to develop a minimal model from which we identify a mechanism for driving a field-induced Lifshitz transition in ferromagnetic metals.
  •  
12.
  • Mazzola, Federico, et al. (author)
  • The sub-band structure of atomically sharp dopant profiles in silicon
  • 2020
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 5:1
  • Journal article (peer-reviewed)abstract
    • The downscaling of silicon-based structures and proto-devices has now reached the single-atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic-scale device fabrication is the so-called Si:P δ-layer, consisting of an ultra-dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, it is on the Si:P platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the Si:P δ-layer platform. In this work, we use high-resolution angle-resolved photoemission spectroscopy to reveal the structure of the electronic states which exist because of the high dopant density of the Si:P δ-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight-binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the band structure has important implications for quantum proto-devices which are built on the Si:P δ-layer platform.
  •  
13.
  • Parhizgar, Fariborz, et al. (author)
  • Large Josephson current in Weyl nodal loop semimetals due to odd-frequency superconductivity
  • 2020
  • In: NPJ QUANTUM MATERIALS. - : NATURE PUBLISHING GROUP. - 2397-4648. ; 5:1
  • Journal article (peer-reviewed)abstract
    • Weyl nodal loop semimetals (WNLs) host a closed nodal line loop Fermi surface in the bulk, protected zero-energy flat band, or drumhead, surface states, and strong spin-polarization. The large density of states of the drumhead states makes WNL semimetals exceedingly prone to electronic ordering. At the same time, the spin-polarization naively prevents conventional superconductivity due to its spin-singlet nature. Here we show the complete opposite: WNLs are extremely promising materials for superconducting Josephson junctions, entirely due to odd-frequency superconductivity. By sandwiching a WNL between two conventional superconductors we theoretically demonstrate the presence of very large Josephson currents, even up to orders of magnitude larger than for normal metals. The large currents are generated both by an efficient transformation of spin-singlet pairs into odd-frequency spin-triplet pairing by the Weyl dispersion and the drumhead states ensuring exceptionally proximity effect. As a result, WNL Josephson junctions offer unique possibilities for detecting and exploring odd-frequency superconductivity.
  •  
14.
  • Poelchen, Georg, et al. (author)
  • Unexpected differences between surface and bulk spectroscopic and implied Kondo properties of heavy fermion CeRh2Si2
  • 2020
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 5:1
  • Journal article (peer-reviewed)abstract
    • Ultra-violet angle-resolved photoemission spectroscopy (UV-ARPES) was used to explore the temperature dependence of the Ce-4f spectral responses for surface and bulk in the antiferromagnetic Kondo lattice CeRh2Si2. Spectra were taken from Ce- and Si-terminated surfaces in a wide temperature range, and reveal characteristic 4f patterns for weakly (surface) and strongly (bulk) hybridized Ce, respectively. The temperature dependence of the Fermi level peak differs strongly for both cases implying that the effective Kondo temperature at the surface and bulk can be rather distinct. The greatly reduced crystal–electric-field (CEF) splitting at the surface gives reason to believe that the surface may exhibit a larger effective Kondo temperature because of a higher local-moment effective degeneracy. Further, the hybridization processes could strongly affect the 4f peak intensity at the Fermi level. We derived the k-resolved dispersion of the Kondo peak which is also found to be distinct due to different sets of itinerant bands to which the 4f states of surface and bulk Ce are coupled. Overall our study brings into reach the ultimate goal of quantitatively testing many-body theories that link spectroscopy and transport properties, for both the bulk and the surface, separately. It also allows for a direct insight into the broader problem of Kondo lattices with two different local-moment sublattices, providing some understanding of why the cross-talking between the two Kondo effects is weak.
  •  
15.
  • Schulz, Susanne, et al. (author)
  • Emerging 2D-ferromagnetism and strong spin-orbit coupling at the surface of valence-fluctuating EuIr2Si2
  • 2019
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 4:1
  • Journal article (peer-reviewed)abstract
    • The development of materials that are non-magnetic in the bulk but exhibit two-dimensional (2D) magnetism at the surface is at the core of spintronics applications. Here, we present the valence-fluctuating material EuIr2Si2, where in contrast to its non-magnetic bulk, the Si-terminated surface reveals controllable 2D ferromagnetism. Close to the surface the Eu ions prefer a magnetic divalent configuration and their large 4f moments order below 48 K. The emerging exchange interaction modifies the spin polarization of the 2D surface electrons originally induced by the strong Rashba effect. The temperature-dependent mixed valence of the bulk allows to tune the energy and momentum size of the projected band gaps to which the 2D electrons are confined. This gives an additional degree of freedom to handle spin-polarized electrons at the surface. Our findings disclose valence-fluctuating rare-earth based materials as a very promising basis for the development of systems with controllable 2D magnetic properties which is of interest both for fundamental science and applications.
  •  
16.
  • Siemann, Gesa R., et al. (author)
  • Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2
  • 2023
  • In: npj Quantum Materials. - 2397-4648. ; 8:1
  • Journal article (peer-reviewed)abstract
    • In half-metallic systems, electronic conduction is mediated by a single spin species, offering enormous potential for spintronic devices. Here, using microscopic-area angle-resolved photoemission, we show that a spin-polarised two-dimensional hole gas is naturally realised in the polar magnetic semiconductor AgCrSe2 by an intrinsic self-doping at its CrSe2-terminated surface. Through comparison with first-principles calculations, we unveil a striking role of spin-orbit coupling for the surface hole gas, unlocked by both bulk and surface inversion symmetry breaking, suggesting routes for stabilising complex magnetic textures in the surface layer of AgCrSe2.
  •  
17.
  • Singh, Gyanendra, 1983, et al. (author)
  • Gate-tunable pairing channels in superconducting non-centrosymmetric oxides nanowires
  • 2022
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Two-dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate-tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigures various forms of non-standard superconductivity. By employing superconducting transport measurements in nano-devices we present strong experimental indications of unconventional superconductivity in the LaAlO3/SrTiO3 interface. The central observations are the substantial anomalous enhancement of the critical current by small magnetic fields applied perpendicularly to the plane of electron motion, and the asymmetric response with respect to the magnetic field direction. These features cannot be accommodated within a scenario of canonical spin-singlet superconductivity. We demonstrate that the experimental observations can be described by a theoretical model based on the coexistence of Josephson channels with intrinsic phase shifts. Our results exclude a time-reversal symmetry breaking scenario and suggest the presence of anomalous pairing components that are compatible with inversion symmetry breaking and multi-orbital physics.
  •  
18.
  • Vandelli, M., et al. (author)
  • Doping-dependent charge- and spin-density wave orderings in a monolayer of Pb adatoms on Si(111)
  • 2024
  • In: npj Quantum Materials. - 2397-4648. ; 9:1
  • Journal article (peer-reviewed)abstract
    • In this work we computed the phase diagram as a function of temperature and doping for a system of lead adatoms allocated periodically on a silicon (111) surface. This Si(111):Pb material is characterized by a strong and long-ranged Coulomb interaction, a relatively large value of the spin-orbit coupling, and a structural phase transition that occurs at low temperature. In order to describe the collective electronic behavior in the system, we perform many-body calculations consistently taking all these important features into account. We find that charge- and spin-density wave orderings coexist with each other in several regions of the phase diagram. This result is in agreement with the recent experimental observation of a chiral spin texture in the charge density wave phase in this material. We also find that the geometries of the charge and spin textures strongly depend on the doping level. The formation of such a rich phase diagram in the Si(111):Pb material can be explained by a combined effect of the lattice distortion and electronic correlations.
  •  
19.
  • von Arx, Karin, 1993, et al. (author)
  • Fate of charge order in overdoped La-based cuprates
  • 2023
  • In: NPJ QUANTUM MATERIALS. - : Springer Nature. - 2397-4648. ; 8:1
  • Journal article (peer-reviewed)abstract
    • In high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in La2-xSrxCuO4 and La1.8-xEu0.2SrxCuO4. Ultra high energy resolution experiments demonstrate the importance of the separation of inelastic and elastic scattering processes. Long-range temperature-dependent stripe order is only found below optimal doping. At higher doping, short-range temperature-independent correlations are present up to the highest doping measured. This transformation is distinct from and preempts the pseudogap critical doping. We argue that the doping and temperature-independent short-range correlations originate from unresolved electron-phonon coupling that broadly peaks at the stripe ordering vector. In La2-xSrxCuO4, long-range static stripe order vanishes around optimal doping and we discuss both quantum critical and crossover scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view