SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2405 8297 "

Sökning: L773:2405 8297

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bi, Zenghui, et al. (författare)
  • Highly dispersed La−O/N−C sites anchored in hierarchically porous nitrogen-doped carbon as bifunctional catalysts for high-performance rechargeable Zn−air batteries
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 54, s. 313-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Inexpensive, high-activity bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are imperative for the development of energy storage and conversion systems. A nitrogen-doped carbon material with a micro−meso−macroporous structure doped with La (LaPNC) containing La−O/N−C active sites is prepared using SiO2 particle templating of carbon and a metal node exchange strategy. The coordination environment of La sites stabilized by two oxygen and four nitrogen atoms (LaO2N4), is further verified by X-ray absorption spectroscopy. The ORR half-wave potential reaches 0.852 V, and the OER overpotential reaches 263 mV at 10 mA cm−2. The Zn−air battery, with LaPNC as the air cathode, has a maximum power density of 202 mW cm−2 and achieves stable charge−discharge for at least 100 h without a significant increase or decrease in the charge or discharge voltages, respectively. Density functional theory calculations suggest that LaO2N4 sites exhibit the lowest activation free energy and the most easily desorbed oxygen capacity. This study provides new insights into the design of efficient, durable bifunctional catalysts as alternatives to precious-metal-based catalysts.
  •  
2.
  • Bitenc, Jan, et al. (författare)
  • Concept and electrochemical mechanism of an Al metal anode - organic cathode battery
  • 2020
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297 .- 2405-8289. ; 24, s. 379-383
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum (Al) batteries are fundamentally a promising future post-Li battery technology. The recently demonstrated concept of an Al-graphite battery represents some significant progress for the technology, but the cell energy density is still very modest and limited by the quantity of the AlCl3 based electrolyte, as it relies on AlCl4- intercalation. For further progress, cathode materials capable of an electrochemical reaction with Al positively charged species are needed. Here such a concept of an Al metal anode - organic cathode battery based on anthraquinone (AQ) electrochemistry with a discharge voltage of 1.1 V is demonstrated. Further improvement of both the cell capacity retention and rate capability is achieved by nano-structured and polymerized cathodes. The intricate electrochemical mechanism is proven to be that the anthraquinone groups undergo reduction of their carbonyl bonds during discharge and become coordinated by AlCl2+ species. Altogether the Al metal anode - AQ cathode cell has almost the double energy density of the state-of-the-art Al-graphite battery.
  •  
3.
  • Carvalho, Rodrigo P., et al. (författare)
  • An evolutionary-driven AI model discovering redox-stable organic electrode materials for alkali-ion batteries
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-driven approaches have been revolutionizing materials science and materials discovery in the past years. Especially when coupled with other computational physics methods, they can be applied in complex high-throughput schemes to discover novel materials, e.g. for batteries. In this direction, the present work provides a robust AI-driven framework, to accelerate the discovery of novel organic-based materials for Li-, Na- and K-ion batteries. This platform is able to predict the open-circuit voltage of the respective battery and provide an initial assessment of the materials redox stability. The model was employed to screen 45 million small molecules in the search for novel high-potential cathodes, resulting in a proposed shortlist of 3202, 689 and 702 novel compounds for Li-, Na- and K-ion batteries, respectively, considering only the redox stable candidates. 
  •  
4.
  • Chamoun, Mylad, et al. (författare)
  • Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions
  • 2018
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8289 .- 2405-8297. ; 15, s. 351-360
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zn/MnO2 battery is safe, low cost and comes with a high energy density comparable to Li-ion batteries. However, irreversible spinel phases formed at the MnO2 electrode limits its cyclability. A viable solution to overcome this inactive phase is to use an aqueous ZnSO4-based electrolyte, where pH is mildly acidic leading to a different reaction mechanism. Most importantly, the addition of MnSO4 achieves excellent cyclability. How accessible Mn2+ ions in the electrolyte enhances the reversibility is presented. With added Mn2+, the capacity retention is significantly improved over 100 cycles. Zn2+ insertion plays an important role on the reversibility and a hydrated layered Zn-buserite structure formed during charge is reported. Furthermore, Zn4SO4(OH)(6) center dot 5H(2)O precipitates during discharge but is not involved in the electrochemical reaction. This precipitate both buffers the pH and partly insulates the surface. Described in operando study show how the phase transformations and the failure mechanisms depend on the presence of Mn2+-ions in the electrolyte. These results give insight necessary to improve this battery further to make it a worthy contender to the Li-ion battery in large scale energy storage solutions.
  •  
5.
  • Chodankar, N. R., et al. (författare)
  • Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier B.V.. - 2405-8289 .- 2405-8297. ; 39, s. 194-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, a solution-free dry strategy for the growth of self-assembled ordered tricopper phosphide (Cu3P) nanorod arrays is developed and the product is employed as a high-energy, stable positive electrode for a solid-state hybrid supercapacitor (HSC). The ordered Cu3P nanorod arrays grown on the copper foam deliver an excellent specific capacity of 664 mA h/g with an energy efficiency of 88% at 6 A/g and an ultra-long cycling stability over 15,000 continuous charge–discharge cycles. These electrochemical features are attributed to the ordered growth of the Cu3P nanorod arrays, which offers a large number of accessible electroactive sites, a reduced number of ion transfer paths, and reversible redox activity. The potential of the Cu3P nanorod arrays is further explored by engineering solid-state HSCs in which the nanorods are paired with an activated carbon-based negative electrode. The constructed cell is shown to convey a specific energy of 76.85 Wh/kg at a specific power of 1,125 W/kg and an 88% capacitance retention over 15,000 cycles. Moreover, the superior energy storing and delivery capacity of the cell is demonstrated by an energy efficiency of around 65%. The versatile solution-free dry strategies developed here pave the way towards engineering a range of electrode materials for next-generation energy storage systems. © 2021 Elsevier B.V.
  •  
6.
  • El Ghazaly, Ahmed, et al. (författare)
  • Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 41, s. 203-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) Mo1.33C MXene renders great potential for energy storage applications and is mainly studied in the sulfuric acid (H2SO4) electrolyte. However, H2SO4 limits the electrode potential to 0.9 V for symmetric devices and 1.3 V for asymmetric devices. Herein, we explore the electrochemical behavior of Mo1.33C MXene in LiCl electrolyte. In comparison to H2SO4, LiCl electrolyte is a neutral salt with high solubility at room temperature and low hazardousness. The analysis shows a volumetric capacitance of 815 Fcm(-3) at a scan rate of 2 mVs(-1) with a large operating potential window of -1.2 to +0.3V (vs. Ag/AgCl). This is further exploited to construct MXene-based asymmetric supercapacitors Mo1.33C//MnxOn, and the electrochemical performance is evaluated in 5M LiCl electrolyte. Owing to the wide voltage widow of the Mo1.33C//MnxOn devices (2V) and high packing density of the electrodes, we have achieved a volumetric energy density of 58 mWh/cm(3), a maximum power density of 31 Wcm(-3) and retained 92% of the initial capacitance after 10,000 charge/discharge cycles at 10 A g(-1). One of the main value propositions of this work, aside from the high energy density, is the outstanding columbic efficiency (100%), which ensures excellent cyclic stability and is highly desirable for practical applications.
  •  
7.
  • Kim, Hee Jae, et al. (författare)
  • Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 46, s. 76-89
  • Tidskriftsartikel (refereegranskat)abstract
    • There is no doubt that lithium-metal batteries (LMBs) are considered as attractive power sources owing to their ex-traordinarily high energy density. However, the formation of lithium dendrites during repeated plating/stripping processes hinders their practical application. Herein, we introduce phosphorous pentoxide (P2O5) as an addi-tive to commercial carbonate-based electrolytes to effectively suppress the dendritic growth on the surface of a lithium-metal anode. Significant improvement of the lifespan and coulombic efficiency of the cell were observed with the addition of P2O5 to the electrolyte in Li || Li, Li || Type 316L SS, Li || Cu, and Li || graphite cells. According to surface analyses and microscopic studies, we found reduction mechanism of the P2O5-induced solid-electrolyte interphase (SEI) formation on Li metal. Namely, electrolytic decomposition product, LiF, reacts with P2O5 addi-tive in electrolyte, so that LiPO2F2 is produced by following reaction: 6LiF + 2P(2)O(5) ->& nbsp;3LiPO(2)F(2) + Li3PO4, of which those products suppress dendritic growth of lithium as visualized by operando Synchrotron tomography. The compatibility and outstanding rate performance of the additive-based electrolyte were also demonstrated in Li || NCM full cells. As a result, this finding confirms an effective way to stabilize SEI layers in LMBs via a facile and inexpensive route.
  •  
8.
  • Li, Changjiu, et al. (författare)
  • Multifunctional surfactants for synthesizing high-performance energy materials
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 43, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to a steady increase of electrical energy consumption, the demand for high-performance energy storage materials becomes more urgent than ever. Compared to other synthetic technologies, surfactant templating method offers the most efficient way to improve electrochemical performances of energy storage materials. In the synthesis of energy storage materials prepared, various surfactants are often used and play a crucial role in determining the properties of final products. Multifunctional surfactants can effectively tailor and control particle size, crystallinity, morphology, porosity, structure and composition of energy storage materials, achieving significant enhancement in rate capability and cycle stability. Herein, we summarize various surfactants, including classic alkyl-based surfactants, polymers, biological ligands and other surface active molecules. This review highlights the essential roles of surfactants, working as structure-directing agents, carbon sources, porogens and stabilizer agents, etc., in controlling nanostructure of energy storage materials and improving their properties. For different batteries (such as lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and alkaline batteries) and supercapacitors, similarities and differences in surfactant mechanism, functions, electrochemical performances of the synthesized materials, challenges and opportunities are discussed as well. To facilitate further development of surfactant template method, some future research trends and directions are finally put forward.
  •  
9.
  • Majumder, M., et al. (författare)
  • Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier B.V.. - 2405-8289 .- 2405-8297. ; 37, s. 396-416
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) conducting metal-organic frameworks (MOFs) is an emerging family of porous materials that have attracted a great attention due to their outstanding inherent properties such as hierarchical porosity, diverse architectures with high surface area and excellent electrical conductivity. These unique features make them ideal candidates for electrochemical energy storage technologies. This review highlights the key innovations on 2D conducting MOFs with emphasis on the design and synthesis strategies, and their potential applications in energy storage systems. Several recent breakthrough examples of 2D conducting MOFs with enhanced electrochemical performances are outlined. The review further extends the discussion on the significance of Nuclear Magnetic Resonance Spectroscopy (NMR) to understand the charge storage kinetics and their impact on structural implications of the materials. The elucidation of structure-property-performance relationship will further guide the development of new architectures of 2D conducting MOFs for the high-performance energy storage devices. © 2021
  •  
10.
  • Pan, Ruijun, et al. (författare)
  • Double-sided conductive separators for lithium-metal batteries
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 21, s. 464-473
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel double-sided conductive (DSC) separator consisting of two 5 μm-thick carbon nanotube (CNT)/cellulose nanofiber (CNF) composite layers coated on each side of a 20 μm-thick glass-fiber (GF)/CNF composite membrane is described. In a lithium-metal battery (LMB), the DSC separator exhibits a high ionic conductivity (i.e. 1.7 mS cm−1 using an LP40 electrolyte) due to the high porosity (i.e. 66%) of the GF/CNF membrane. More stable Li anodes can also be realized by depositing Li within the porous electronically conducting CNT/CNF matrix at the DSC separator anode side due to the decreased current density. The CNT/CNF layer of the DSC separator facing the cathode, which is in direct electric contact with the current collector, decreases the overpotential for the cathode and consequently improves its capacity and rate performance significantly. A Li/Li cell containing a DSC separator showed an improved cycling stability compared to an analogous cell equipped with a commercial Celgard separator at current densities up to 5 mA cm−2 for Li deposition and stripping capacities up to 5 mAh cm−2. A proof-of-concept LMB containing a lithium iron phosphate (LFP) composite cathode and a DSC separator showed a significantly improved rate capability, yielding capacities of about 110 mAh g−1 at 5 C and 80 mAh g−1 at 10 C. The LMB cell containing a DSC separator also exhibited a capacity retention of 80% after 200 cycles at a rate of 6 C indicating that the two-sided conductive separator design has significant potential in facilitating the development of well-functioning LMBs.
  •  
11.
  • Pereira de Carvalho, Rodrigo, et al. (författare)
  • Artificial intelligence driven in-silico discovery of novel organic lithium-ion battery cathodes
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 44, s. 313-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrode materials (OEMs) combine key sustainability and versatility properties with the potential to enable the realisation of the next generation of truly green battery technologies. However, for OEMs to become a competitive alternative, challenging issues related to energy density, rate capability and cycling stability need to be overcome. In this work, we have developed and applied an alternative yet systematic methodology to accelerate the discovery of suitable cathode-active OEMs by interplaying artificial intelligence (AI) and quantum mechanics. This AI-kernel has allowed a high-throughput screening of a huge library of organic molecules, leading to the discovery of 459 novel promising OEMs with candidates offering the potential to achieve theoretical energy densities superior to 1000 W h kg(1). Moreover, the machinery accurately identified common molecular functionalities that lead to such higher-voltage electrodes and pointed out an interesting donor-accepter-like effect that may drive the future design of cathode-active OEMs.
  •  
12.
  • Pham, H. D., et al. (författare)
  • Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier B.V.. - 2405-8289 .- 2405-8297. ; 34, s. 475-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Potassium-ion battery (KIB) is a promising technology for large-scale energy storage applications due to their low cost, theoretically high energy density and abundant resources. However, the development of KIBs is hindered by the sluggish K+ transport kinetics and the structural instability of the electrode materials during K+ intercalation/de-intercalation. In the present investigation, we have designed a potassium-ion capacitor (KIC) using layered potassium niobate (K4Nb6O17, KNO) nanosheet arrays as anode and orange-peel derived activated carbons (OPAC) as fast capacitive cathode materials. The systematic electrochemical analysis with the ex-situ characterizations demonstrates that KNO-anode exhibits highly stable layered structure with excellent reversibility during K+ insertion/de-insertion. After optimization, the fabricated KNO//OPAC delivers both a high energy density of 116 Wh/kg and high power density of 10,808 W/kg, which is significantly higher than other similar hybrid devices. The cell also displays long term cycling stability over 5000 cycles, with 87 % of capacity retention. This study highlights the utilization of layered nanosheet arrays of niobates to achieve superior K-storage for KICs, paving the way towards the development of high-performance anodes for post lithium-ion batteries. © 2020
  •  
13.
  • Ponrouch, A., et al. (författare)
  • Multivalent rechargeable batteries
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297 .- 2405-8289. ; 20, s. 253-262
  • Forskningsöversikt (refereegranskat)abstract
    • Rechargeable battery technologies based on the use of metal anodes coupled to multivalent charge carrier ions (such as Mg 2+ , Ca 2+ or Al 3+ ) have the potential to deliver breakthroughs in energy density radically leap-frogging the current state-of-the-art Li-ion battery technology. However, both the use of metal anodes and the migration of multivalent ions, within the electrolyte and the electrodes, are technological bottlenecks which make these technologies, all at different degrees of maturity, not yet ready for practical applications. Moreover, the know-how gained during the many years of development of the Li-ion battery is not always transferable. This perspective paper reviews the current status of these multivalent battery technologies, describing issues and discussing possible routes to overcome them. Finally, a brief section about future perspectives is given.
  •  
14.
  • Sångeland, Christofer, et al. (författare)
  • Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8289 .- 2405-8297. ; 19, s. 31-38
  • Tidskriftsartikel (refereegranskat)abstract
    • In an ambition to develop solid-state Na-ion batteries functional at ambient temperature, we here explore a novel electrolyte system. Polyester-polycarbonate (PCL-PTMC) copolymers were combined with sodium bis(fluorosulfonyl) imide salt (NaFSI) to form solid polymer electrolytes for Na-ion batteries. The PCL-PTMC:NaFSI system demonstrated glass transition temperatures ranging from -64 to -11 degrees C, increasing with increasing salt content from 0 to 35 wt%, and ionic conductivities ranging from 10(-8) to 10(-5) S cm(-1) at 25 degrees C. The optimal salt concentration was clearly dependent on the level of crystallinity, which was largely determined by the CL content. At 70 and 80 mol% CL, the PCL-PTMC:NaFSI system was fully amorphous and exhibited high conductivities at lower salt concentrations. When the CL content was increased to 100 mol%, high ionic conductivities were instead observed at high salt concentrations. A decent transference number of ca. 0.5 at 80 degrees C was obtained for a polymer film containing 20 mol% CL units and 25 wt% NaFSI. Finally, a HC vertical bar 80-20(25)vertical bar Na2-xFe(Fe(CN)(6)) all-solid-state polymer electrolyte full cell was assembled to demonstrate the practical application of the material and cycled for more than 120 cycles at similar to 22 degrees C.
  •  
15.
  • Wang, Huan, et al. (författare)
  • MnO2/Mn2+ chemistry: Charging protocol and electrolyte regulation
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8289 .- 2405-8297. ; 63
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous rechargeable Zn-MnO2 batteries based on the dissolution/deposition mechanism of MnO2/Mn2+are gaining increasing attention due to their high capacity and structural simplicity. One of the major concerns is the Mn2+/Mn3+side reaction, which hampers the coulombic efficiency (CE) due to Mn3+(aq) disproportionation. However, factors affecting Mn3+ formation have not been systematically investigated. In this study, we utilized in situ optical microscopy and Scanning Electron Microscopy (SEM) to evaluate the formation of Mn3+ by observing its disproportionation product: the randomly deposited MnO2. We found that an excessively high charging voltage and a low electrolyte pH (pH<4.2) were shown to adversely accelerate Mn3+ formation. Most reports on the Mn2+/MnO2 cathode indicate a coulombic efficiency of only 80 % on carbon felt (thickness: 2.5 mm) at 2 mAh/cm2 due to the inherently low electrical conductivity of MnO2. Here with the optimized charging protocol and the utilization of the anode-friendly, methanesulfonic acid (MSA)-containing electrolyte, we achieved a CE of nearly 100 % for up to 200 cycles at 2 mAh/cm2. This work gives guidelines on the electrolyte design and charging protocol optimization towards high-performance MnO2/Mn2+cathodes.
  •  
16.
  • Wang, Shangjie, et al. (författare)
  • In situ polymerization design of a quasi-solid electrolyte enhanced by NMP additive for lithium metal batteries
  • 2024
  • Ingår i: Energy Storage Materials. - : Elsevier B.V.. - 2405-8289 .- 2405-8297. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid polymer electrolytes (SPEs) are considered one promising candidate for lithium metal batteries due to their high flexibility, low cost, and roll-to-roll scalability. However, conventional SPEs prepared via ex situ methods are confronted with challenges such as poor contact and high resistance at the electrode|SPE interface, as well as low ionic conductivity at room temperature. In this study, we developed a quasi-solid electrolyte (QSE) using an in situ polymerization approach, employing butyl acrylate as the monomer and incorporating NMP as an additive. Spectroscopic investigations and DFT calculations revealed that NMP tends to form an overleaf-structured [Li(NMP)3][TFSI] complex with LiTFSI, promoting lithium salt dissociation. Owing to this advantage, the QSE exhibits high room-temperature ionic conductivity (6.94 × 10−4 S cm−1) and an extensive electrochemical stability window (5.01 V vs. Li+/Li). Furthermore, the in situ polymerization method facilitates full contact at the interface, enhancing the interfacial stability and reducing the interface resistance, thus resulting in stable cycling of Li|Built-in QSE|Li symmetric cell for 1100 h at 0.1 mA cm−2. The assembled LiFePO4|Built-in QSE|Li cell also demonstrates excellent rate and long-term cycling performance. Our findings offer valuable insights into the interaction between organic additives and lithium salts and present a novel strategy for the development of polymer electrolytes.
  •  
17.
  • Wang, Zhaohui, et al. (författare)
  • Conducting polymer paper-derived separators for lithium metal batteries
  • 2018
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8289 .- 2405-8297. ; 13, s. 283-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Overoxidised polypyrrole (PPy) paper has been employed as a mesoporous separator for lithium metal batteries (LMBs) based on its narrow pore size distribution, good thermal stability, high ionic conductivity (1.1 mS cm−1 with a LP40 electrolyte) and high electrolyte wettability. The overoxidised PPy paper was produced from a PPy/cellulose composite using a combined base and heat-treatment process, yielding a highly interrupted pyrrole molecular structure including N-containing polar groups maintaining the readily adaptable mesoporous structure of the pristine PPy paper. This well-defined pore structure gave rise to a homogeneous current distribution which significantly increased the performance of a LiFePO4|Li cell. With the overoxidised PPy separator, a symmetric Li|Li cell could be cycled reversibly for more than 600 h without any short-circuits in a LP40 electrolyte. This approach facilitates the manufacturing of well-defined separators for fundamental investigations of the influence of the separator structure on the performance of LMBs.
  •  
18.
  • Xiong, R., et al. (författare)
  • A data-driven method for extracting aging features to accurately predict the battery health
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier B.V.. - 2405-8289 .- 2405-8297. ; 57, s. 460-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-driven methods have been widely used for estimating the state of health (SOH) of lithium-ion batteries (LiBs). The aging process can be characterized by degrading features. To achieve high accuracy, a novel method combining four algorithms, i.e. the correlation coefficient, least absolute shrinkage and selection operator regression, neighborhood component analysis, and ReliefF algorithm, is proposed to select the most important features, which are derived from the measured and calculated parameters. To demonstrate the effectiveness of the proposed method, it is adopted to estimate the SOH of two types of LiBs: i.e. NCA and LFP batteries. Compared to the case using all features, using the selected features can improve the accuracy of SOH estimation by 63.5% and 71.1% for the NCA and LFP batteries, respectively. The method can also enable the use of data obtained in partial voltage ranges, based on which the minimum root mean square errors on SOH estimation are 1.2% and 1.6% for the studied NCA and LFP batteries, respectively. It demonstrates the capability for onboard applications. 
  •  
19.
  • Zhang, Chengji, et al. (författare)
  • Lithium superoxide-based high rate Li-Air batteries enabled by Di-iridium sulfur bridge active sites
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8289 .- 2405-8297. ; 60
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-oxygen (Li-O2) batteries can potentially provide much higher energy density than Li-ion batteries; however, the practical application of these batteries is hindered due to several drawbacks such as low current rates and high overpotential for the charging process. In this paper, we report a novel Li-Air battery system that operates under high current rates (up to 1mAcm  2) with LiO2 as the primary discharge product instead of the commonly reported Li2O2. This LiO2 based battery at high rates is through a combination of an as-synthesized new onedimensional (1D) transition metal trichalcogenide mid-entropy alloy of SnIrS3.6 as a cathode catalyst and an electrolyte blend with a SnI2 bi-functional additive. It is revealed that SnIrS3.6 has a microporous structure composed of six- and five-coordinated metal atoms, forming octahedral and triangular bipyramids which has not been observed in other layered chalcogeide materials. DFT calculations reveal that the SnIrS3.6 structure can result in LiO2 formation through di-iridium sulfur bridge active sites that results in strong binding of O2 and LiO2 preventing disproportionation to Li2O2 and enabling high rates. This finding will open a new perspective in designing advanced LiO2-based Li-O2 batteries for real practices.
  •  
20.
  • Zhang, Leiting, et al. (författare)
  • Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 42, s. 12-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of gaseous decomposition products from irreversible side-reactions enables understanding of inner working of rechargeable batteries. Unlike for Li-ion batteries, the knowledge of the gas-evolution processes in Na-ion batteries is limited. Therefore, in this study, we have performed online electrochemical mass spectrometry to understand gassing behavior of model electrodes and electrolytes in Na-ion cells. Our results show that a less stable solid-electrolyte interphase (SEI) layer is developed in Na-ion cells as compared with that in Li-ion cells, which is mainly caused by higher solubility of SEI constituents in Na-electrolytes. Electrolyte reduction on the anode has much larger contribution to the gassing in the Na-ion cells, as gas evolution comes not only from direct electrolyte reduction but also from the soluble species, which migrate to the cathode and are decomposed there. During cell cycling, linear carbonates do not form an SEI layer on the anode, resulting in continuous electrolyte reduction, similar to Li-ion system but with much higher severity, while cyclic carbonates form a more stable SEI, preventing further decomposition of the electrolyte. Besides the standard electrolyte solvents, we have also assessed effects of several common electrolyte additives in their ability to stabilize the interphases. The results of this study provide understanding and guidelines for developing more durable electrode-electrolyte interphase, enabling higher specific energy and improved cycling stability for Na-ion batteries.
  •  
21.
  • Zhang, Miao, et al. (författare)
  • From wood to thin porous carbon membrane : Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8289 .- 2405-8297. ; 35, s. 327-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast electrochemical capacitors with alternating current line filtering function have attracted growing attention owing to their potential to replace the state-of-the-art bulky aluminum electrolyte capacitors. In spite of rapid advance recently involving nanomaterials as electrode building units, it remains largely unexplored how to structurally and chemically engineer electrodes out of renewable resource with competitive or better rate performance. Herein, wood as a renewable resource was used to fabricate highly conductive, robust, porous thin carbon membranes as free-standing electrodes for ultrafast electrochemical capacitors. Transformation of wood slice to carbon membrane proceeds via wet-chemical treatment of wood slices and subsequent morphology maintaining carbonization by spark plasma sintering. Judiciously combining high conductivity, characteristic porous architecture with low tortuosity and high continuity, and the ultrathin thickness down to 20 ism, the carbon membrane-based electrochemical capacitor exhibits excellent frequency response with efficient 120 Hz filtering (phase angle = - 83.5 degrees). Compared to the latest electrodes for line filtering application that are fabricated from carbon nanotubes, graphene, and MXene, the wood-derived carbon membranes possess a competitive specific areal capacitance of up to 509.7 mu F cm(-2), and extremely low resistance-capacitance constant of 164.7 mu s, plus the inexpensive scalable fabrication strategy.
  •  
22.
  • Zhao, Yun, et al. (författare)
  • Precise separation of spent lithium-ion cells in water without discharging for recycling
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 45, s. 1092-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • New methods for recycling lithium-ion batteries (LIBs) are needed because traditional recycling methods are based on battery pulverization, which requires pre-treatment of tedious and non-eco-friendly discharging and results in low efficiency and high waste generation in post-treatment. Separating the components of recycled LIB cells followed by reuse or conversion of individual components could minimize material cross-contamination while avoiding excessive consumption of energy and chemicals. However, disposing of charged LIB cells is hazardous due to the high reactivity of lithiated graphite towards cathode materials and air, and the toxicity and flammability of the electrolytes. Here we demonstrate that the disassembly of charged jellyroll LIB cells in water with a single main step reveals no emissions from the cells and near perfect recycling efficiencies that exceed the targets of the US Department of Energy and Batteries Europe. The precise non-destructive mechanical method separates the components from jellyroll cell in water, avoiding both uncontrollable reactions from the anode and burning of the electrolyte, while allowing only a limited fraction of the anode lithium to react with water. Recycling in this way allows the recovery of materials with a value of ∼7.14 $ kg−1 cell, which is higher than that of physical separation (∼5.40 $ kg−1 cell) and much greater than the overall revenue achieved using element extraction methods (<1.00 $ kg−1 cell). The precise separation method could thus facilitate the establishment of a circular economy within the LIB industry and build a strong bridge between academia and the battery recycling industry.
  •  
23.
  • Zhao, Yun, et al. (författare)
  • Rational design of functional binder systems for high-energy lithium-based rechargeable batteries
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 35, s. 353-377
  • Tidskriftsartikel (refereegranskat)abstract
    • Binders, which maintain the structural integrity of electrodes, are critical components of lithium-based rechargeable batteries (LBRBs) that significantly affect battery performances, despite accounting for 2 to 5 wt% (up to 5 wt% but usually 2 wt%) of the entire electrode. Traditional polyvinylidene fluoride (PVDF) binders that interact with electrode components via weak van der Waals forces are effective in conventional LBRB systems (graphite/LiCoO2, etc.). However, its stable fluorinated structures limit the potential for further functionalization and inhibit strong interactions towards external substances. Consequently, they are unsuitable for next-generation battery systems with high energy density. There is thus a need for new functional binders with facile features compatible with novel electrode materials and chemistries. Here in this review we consider the strategies for rationally designing these functional binders. On the basis of fundamental understandings of the issues for high-energy electrode materials, we have summarized seven desired functions that binders should possess depending on the target electrodes where the binders will be applied. Then a variety of leading-edge functional binders are reviewed to show how their chemical structures realize these above functions and how the employment of these binders affects the cell's electrochemical performances. Finally the corresponding design strategies are therefore proposed, and future research opportunities as well as challenges relating to LBRB binders are outlined.
  •  
24.
  • Zheng, Wei, et al. (författare)
  • Mass loading and self-discharge challenges for MXene-based aqueous supercapacitors
  • 2023
  • Ingår i: Energy Storage Materials. - : ELSEVIER. - 2405-8289 .- 2405-8297. ; 63
  • Tidskriftsartikel (refereegranskat)abstract
    • MXene-based aqueous supercapacitors (SCs) have rapidly developed during the last decade because of their excellent cycling stability, fast charging capabilities, and environmental benignity. However, despite the prac-tical importance of mass loadings (MLs) and self-discharge (SD) rates, these two issues have, for the most part, been neglected by the MXene community. MXene-based devices with MLs > 10 mg cm(-2) are vital for the development of the next generation of SC devices. However, poor electrolyte accessibility to active materials and high electrical resistances at high MLs can reduce the specific capacitances significantly, leading to low energy/ power density devices. Most MXene SC papers do not report the SD, despite its great importance in terms of applications. SCs with high SD rates will have many fewer applications. In this review, we are focusing on the ML and SD challenges in MXene-based aqueous SCs. The strategies for constructing high-performance MXene-based aqueous SCs with high MLs and/or slow SD rates are summarized with key challenges and perspectives outlined. Moreover, this review also attempts to raise awareness in the MXene SC community of the importance of ML and SD for a large host of applications.
  •  
25.
  • Zheng, Wei, et al. (författare)
  • MXene-manganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 38, s. 438-446
  • Tidskriftsartikel (refereegranskat)abstract
    • How to achieve high mass loadings while maintaining high energy and power densities together with slow self-discharge rates for aqueous asymmetric supercapacitors (AASCs) remains a great challenge. Herein, we tested an AASC using Ti3C2Tz MXene as the negative electrode, a mixture of manganese oxides, Mn3O4 and MnOOH, as the positive electrode with a saturated lithium chloride (14 M LiCl) electrolyte. This device, with electrode thicknesses of > 100 mu m, and a mass loading of similar to 10 mg cm(-2), resulted in an energy density of approximate to 30 Wh kg(-1) at 0.5 A g(-1), a power density of approximate to 23 kW kg(-1) at 20 A g(-1), an open cell voltage of 2.3 V, excellent rate capability and cycling stability. When allowed to self-discharge for 54 h at room temperature, similar to 66% of the voltage was retained. Crucially, after that time the cell voltage was > 1.5 V. This work opens a new opportunity for high performance, environmentally friendly AASCs, where high energy and power densities are combined with slow self-discharge rates at commercial mass loadings.
  •  
26.
  • Barros Neves de Araújo, Rafael, 1985, et al. (författare)
  • Towards novel calcium battery electrolytes by efficient computational screening
  • 2021
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 39, s. 89-95
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of Ca conducting electrolytes is key to enable functional rechargeable Ca batteries. The here presented screening strategy is initially based on a combined density functional theory (DFT) and conductor-like screening model for real solvents (COSMO-RS) approach, which allows for a rational selection of electrolyte solvent based on a set of physico-chemical and electrochemical properties: solvation power, electrochemical stability window, viscosity, and flash and boiling points. Starting from 81 solvents, N,N-dimethylformamide (DMF) was chosen as solvent for further studies of cation-solvent interactions and subsequent comparisons vs. cation-anion interactions possibly present in electrolytes, based on a limited set of Ca-salts. A Ca first solvation shell of [Ca(DMF) ] was found to be energetically preferred, even as compared to ion-pairs and aggregates, especially for PF and TFSI as the anions. Overall, this points to Ca(TFSI) and Ca(PF ) dissolved in DMF to be a promising base electrolyte for Ca batteries from a physico-chemical point-of-view. While electrochemical assessments certainly are needed to verify this promise, the screening strategy presented is efficient and a useful stepping-stone to reduce the overall R&D effort.
  •  
27.
  • Brown, John, et al. (författare)
  • Exploring the electrochemistry of PTCDI for aqueous lithium-ion batteries
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 66:103218
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous lithium-ion batteries (ALIBs) hold promise of providing cost-effective and safe energy storage in the context of an increasingly environmentally aware narrative. Moreover, mitigating concerns surrounding the critical raw materials present in traditional LIBs reinforces the alignment with such ideals. Herein, we delve into the electrochemistry of perylene-3,4,9,10-tetracarboxylic acid diimide (PTCDI) and evaluate its potential as an organic anode active material for ALIBs. We find the all-organic anode to reversibly (de)intercalate Li+ with moderately concentrated aqueous electrolytes, although in a slightly different manner compared with organic solvents. Furthermore, the half-cell electrochemical performance in terms of capacity, capacity retention, rate performance, Coulombic efficiency, and self-discharge, is all indeed satisfactory, where proof-of-concept ALIBs using the high voltage lithium manganese oxide (LMO) exhibit >70 Wh kg−1(PTCDI+LMO) and an average voltage of ca. 1.5 V. These findings have the intention to further encourage organic redox-active material R&D with more dilute aqueous electrolytes, potentially paving the way towards a greener and more sustainable energy landscape.
  •  
28.
  • Ishfaq, Hafiz Ahmad, et al. (författare)
  • Enhanced performance of lithium metal batteries via cyclic fluorinated ether based electrolytes
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • To address the challenges associated with applying high-voltage cathodes in lithium metal batteries (LMBs) there is a need for new electrolytes enabling stable interphases at both electrodes. Here we attack this by using a dioxolane-derived cyclic fluorinated ether, 2,2-bis(trifluoromethyl)-1,3-dioxolane (BTFD), as a fluorinated diluent to a 1,2-dimethoxyethane (DME) based electrolyte. The cells using the resulting BTFD-based electrolytes exhibit higher Coulombic efficiencies for lithium stripping and plating as compared to those using the non-fluorinated ether-based electrolyte. This originates from the reduced formation of ‘dead Li’ at the anode, as shown by using electrochemical impedance spectroscopy (EIS). In practice, the BTFD-based electrolytes are shown to improve the performance of Li||NMC cells, which is due to the formation of a predominantly inorganic cathode electrolyte interphase (CEI) that suppresses the cathode degradation during cycling. We used X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) to characterize the CEIs’ overall composition and structure. To obtain more details on the CEI speciation, Raman and nuclear magnetic resonance (NMR) spectroscopies were employed, assisted by molecular level computations. Overall, we demonstrate how the very design of the electrolyte composition influences the performance of LMBs.
  •  
29.
  • Jankowski, Piotr, 1990, et al. (författare)
  • Functional ionic liquids: Cationic SEI-formers for lithium batteries
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 20, s. 108-117
  • Tidskriftsartikel (refereegranskat)abstract
    • More stable electrolytes for lithium-ion batteries are urgently needed, and apart from general improvements in thermal and electrochemical stabilities, both stability, safety and performance are connected with the formation of the solid electrolyte interphase (SEI) layer at the negative electrode. A high performant SEI-layer; thin, uniform, highly ion conducting, etc., is difficult to achieve and proper control of its formation process is therefore highly desirable. The idea presented here is based on computational screening of a wide range of modifications of wellknown ionic liquid (IL) cations towards better ability to form SEI-layers - i.e. acting as SEI-formers. Different cation chemistries and kinds of structural modifications were tested, with introduction of nitrile groups and/or double bonds resulting to be the most promising. The latter is outlined as especially beneficial, as apart from enabling an easier initiation reaction it provides a site for polymerization, resulting in polymeric SEI-products poly (IL) s (PILs), which can be expected to provide both protection of the electrode surface and fast Li thorn transport.
  •  
30.
  • Jiao, Xingxing, et al. (författare)
  • Grain size and grain boundary strength: Dominative role in electro-chemo-mechanical failure of polycrystalline solid-state electrolytes
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state batteries with lithium metal anode have been accepted extensively as the competitive option to fulfill the upping requirement for safe and efficient energy devices. Nevertheless, its wide-ranging application has been impeded by the failure of solid-state electrolyte (SSE) induced by development of lithium (Li) filament. Based on the nature of polycrystalline ceramic SSE with varying grain size and boundary strength, the constitutive equation coupled with electrochemical kinetics was applied to picture the propagation of damage and corresponding disintegration caused by the development of Li filament. Based on the results, we found that the stress generated along with the growth of Li filament spreads away via the opening and sliding of grain boundary. Thus, damage occurs along grain boundaries, of which propagation behavior and damage level are controlled by grain size. Especially, over-refinement and under-refinement of grains of SSE can cause flocculent damage with inordinate damage degree and accelerate the failure time of SSE, respectively. On the other hand, the failure time is powerfully prolongated through strengthening the grain boundary of SSE. Eventually, grain size of 0.2 μm and tensile strength of grain boundary of 0.8-time-of-grain are posted as the threshold to realize the postponed failure of NASICON-based SSE. Inspiringly, electro-chemo-mechanical model in this contribution is generally applicable to other type of ceramic SSE to reveal the failure process and provide the design guideline, fostering the improvement of solid-state batteries.
  •  
31.
  • Jiao, Xingxing, et al. (författare)
  • Insight of electro-chemo-mechanical process inside integrated configuration of composite cathode for solid-state batteries
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • The complicated electro-chemo-mechanical process that occurs inside the composite cathode for solid-state batteries (SSBs), is of first importance to be insighted for the development of SSBs to seek higher energy density. Herein, exampled with layered transition-metal oxide of LiNixCoyMn1-x-yO2 (NCM), an electro-chemo-mechanical model containing electrochemical kinetics, finite-strain constitutive model and cohesive zone model was built to uncover the impact of ionic conductivity and Young's modulus (E) of solid-state electrolyte (SE) on the electro-chemo-mechanical process inside composite cathode and the intergranular failure of single cathode particle. The intergranular failure of NCM particles is powerfully determined by the Young's modulus of SE and the primary particle size, which is postponed by the coarse-primary NCM with soft SE of E=∼2 GPa. Compared with Young's modulus, increasing the ionic conductivity can uniform the distribution of both Li-ion and stress in the whole composite NCM cathode, realizing improved electrochemical performance with larger normalized capacity and lower the interfacial impendence. Hence, high-adequate ionic conductivity of 5 × 10−4 S cm−1 and soft mechanical property of E=∼2 GPa can be proposed as the guideline of SE for great electrochemical performance with prolongated lifespan of composite NCM cathode, paving an avenue to foster the application of SSBs.
  •  
32.
  • Jiao, Xingxing, et al. (författare)
  • Morphology evolution of electrodeposited lithium on metal substrates
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium (Li) metal is deemed to be the high-energy-density anode material for next generation batteries, but its practical application is impeded by the uneven electrodeposition during charge of battery, which leads to the low Coulombic efficiency and potential safety issue. Here, multiscale modeling is fabricated to understand the morphology evolution of Li during electrodeposition process, from the self-diffusion of Li adatoms on electrode surface, to the nucleation process, and to the formation of Li microstructures, revealing the correlation between final morphology and deposition substrates. Energy batteries and self-diffusion of Li adatom on various substrates (lithium, copper, nickel, magnesium, and silver) result in the different nucleation size, which is calculated by kinetic Monte Carlo simulation based on classical nucleation theory. Formation of Li substructures that are grown from Li nuclei, is revealed by phase field modeling coupled with cellular automaton method. Our results show that larger Li nuclei is obtained under faster self-diffusion of Li adatom, leading to the low aspect ratio of Li substructures and the subsequent morphology evolution of electrodeposited Li. Furthermore, the electrodeposition of Li is strongly regulated by the selection of substrates, giving the practical guideline of anode design in rechargeable Li metal batteries. It is worthy to mention that this method to investigate the electro-crystallization process involving nucleation and growth can be transplanted to the other metallic anode, such as sodium, potassium, zinc, magnesium, calcium and the like.
  •  
33.
  • Jonsson, Erlendur, 1983 (författare)
  • Ionic liquids as electrolytes for energy storage applications – A modelling perspective
  • 2020
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 25, s. 827-835
  • Forskningsöversikt (refereegranskat)abstract
    • Ionic liquids as electrolytes for energy storage devices is a promising field. Here, the various approaches of how ionic liquids can be modelled are discussed along with how the modelling connects to experimental results. Recent theoretical developments are highlighted along with extended discussion of what molecular dynamics simulation options are now available and what key results can be extracted. Ab initio work is also discussed, this includes some of the spectral properties, both of ionic liquids and their electrolyte formulations.
  •  
34.
  • Kumar, Sonal, et al. (författare)
  • A Bi-based artificial interphase to achieve ultra-long cycling life of Al-metal anode in non-aqueous electrolyte
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Rechargeable aluminum-ion batteries (RAB) with Al-metal anode are regarded as cost-effective and environmentally sustainable energy storage systems. However, tapping the high volumetric capacity of the Al-anode has been a challenge because of the spontaneous and irreversible formation of the oxide layer on its surface that renders it electrochemically inactive. Though recently reported AlCl3-based electrolytes overcome this problem by breaking down this oxide layer, their highly corrosive nature hampers commercialization. Here, we investigate a novel approach to protect the Al-anode from severe oxidation by engineering an artificial protective interphase. A unique and less corrosive combination of Al(CF3SO3)3 salt and BiCl3 additive reacts with the Al-anode intrinsically to form an inorganic-rich protective bilayer. This layer is electronically insulating and significantly reduces the charge transfer resistance and surface activation energy at the anode, enabling plating/stripping at extremely low overpotential of <0.1 V that can be sustained for record-long cycling times of >4000 h.
  •  
35.
  • Le Pham, Phuong Nam, et al. (författare)
  • Potassium-ion batteries using KFSI/DME electrolytes: Implications of cation solvation on the K + -graphite (co-)intercalation mechanism
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 45, s. 291-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently potassium-ion batteries have been proposed as a promising next generation battery technology owing to cost effectiveness and a wide range of electrode materials as well as electrolytes available. Potassium bis(fluorosulfonyl)imide (KFSI) in monoglyme (DME) is one potential electrolyte, wherein the K+ solvation heavily depends on the salt concentration and strongly affects the electrochemistry. Pure K+ intercalation occurs for highly concentrated electrolytes (HCEs), while co-intercalation is dominant for less concentrated electrolytes. The mechanisms are easily distinguished by their galvanostatic curves as well as by operando XRD. Here Raman spectroscopy coupled with computational chemistry is used to provide in-depth knowledge about the cation solvation for a wide concentration range, all the way up to 5 M KFSI in DME. Starting from pure DME experimental and computed Raman spectra provides a detailed conformational assignment enabling us to calculate the solvation number (SN) of K+ by DME as a function of salt concentration for all the electrolytes. For low to medium KFSI concentrations, the SN is approximately constant, ca. 2.7, and/as there is a surplus of DME solvent available, while for HCEs, with much less DME available, the SN is <2. This reduced SN results in a thermodynamically more favored desolvation at the graphite surface, leading to intercalation, as compared to the higher SN of conventional electrolytes leading to co-intercalation, as observed also by electrochemical cycling.
  •  
36.
  •  
37.
  • Liu, Qiao, et al. (författare)
  • Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 23, s. 105-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to conventional organic liquid electrolyte, solid-state polymer electrolytes are extensively considered as an alternative candidate for next generation high-energy batteries because of their high safety, non-leakage and electrochemical stability with the metallic lithium (Li) anode. However, solid-state polymer electrolytes generally show low ionic conductivity and high interfacial impedance to electrodes. Here we report a hybrid solid-state electrolyte, presenting an ultra-high ionic conductivity of 3.27 mS cm −1 at room temperature, a wide electrochemical stability window of 4.9 V, and non-flammability. This electrolyte consists of a polymer blend matrix (polyethylene oxide and poly (vinylidene fluoride-co-hexafluoropropylene)), Li + conductive ceramic filler (Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ) and a solvate ionic liquid (LiFSI in tetra ethylene glycol dimethyl ether, 1:1 in molar ratio) as plasticizer. The introduction of the solvate ionic liquid to the solid-state electrolyte not only improves its ionic conductivity but also remarkably enhances the stability of the interface with Li anode. When applied in Li metal batteries, a Li|Li symmetric cell can operate stably over 800 h with a minimal polarization of 25 mV and a full Li|LiFePO 4 cell delivers a high specific capacity of 158 mAh g −1 after 100 cycles at room temperature.
  •  
38.
  • Liu, Yangyang, et al. (författare)
  • Promoted rate and cycling capability of Li–S batteries enabled by targeted selection of co-solvent for the electrolyte
  • 2020
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 25, s. 131-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium sulfur (Li–S) batteries are considered as promising candidates for high-energy-density battery systems owing to the high theoretical capacity of sulfur (1675 mAh g−1) and low cost of raw materials. However, their practical application is hampered by low rate capability and rapid degradation of capacity, arising from the passivation of the cathode by lithium sulfides (Li2S2/Li2S) deposited during discharge and low interfacial stability of the Li anode. Herein, we report on a comprehensive strategy to select co-solvent to the electrolyte to regulate the deposition of lithium sulfides during charge-discharge process. We show that addition of a co-solvent with high solubility, and strong interaction with Li2S to a conventional electrolyte effectively mitigates the formation of a passivating layer on the sulfur cathode and dramatically improves the interfacial stability of the Li anode. We demonstrate that Sulfolane (SL) has these properties and that a Li–S cell with an electrolyte containing 6 vol% SL exhibits outstanding cyclic performance (0.083% decay per cycle) and rate capability (capacity density of 765 mAh g−1 at rate of 1.0C). Thus, we provide a facile strategy for the selection of co-solvent for improved performance of Li–S batteries, realizing their practical application for high-energy-density battery systems.
  •  
39.
  • Maggiolo, Dario, 1985, et al. (författare)
  • Particle based method and X-ray computed tomography for pore-scale flow characterization in VRFB electrodes
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 16, s. 91-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous electrodes are pivotal components of Vanadium Redox Flow Batteries, which influence the power density, pressure drop losses, activation overpotentials, limit current density, bulk and contact resistance, and ohmic losses. The quantification of the fluid-mechanic efficiency of porous electrodes based on their real geometry is a useful measure, as it primarily affects the mass transport losses and the overall battery performances. Although several studies, both numerical and experimental, have been devoted to the electrode enhancement, most analyses are carried out under the simplifying assumption of linear, macrohomogeneous and isotropic behavior of the fluid mechanics in the porous material. We present an original approach built on the Lattice-Boltzmann Method and Lagrange Particle Tracking that makes use of pore-scale accurate geometrical data provided by X-ray computed tomography with the aim of studying the dispersion and reaction rates of liquid electrolyte reactants in the flow battery porous electrode. Following this methodology, we compare the fluid-dynamic performances provided by a commonly used carbon felt and an unconventional material, that is, a carbon vitrified foam. Surprisingly, results unveil the possibility of achieving higher fluid-mechanic efficiencies with the foam electrode, whose intrinsic microstructure promotes higher reaction rate.
  •  
40.
  • Ortiz-Vitoriano, N., et al. (författare)
  • Unlocking the role of electrolyte concentration for Na-O 2 batteries
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 70
  • Tidskriftsartikel (refereegranskat)abstract
    • Na-O2 batteries have attracted great interest in recent years mainly due to their high energy density, in theory having prospects to outperform the commercialized lithium-ion batteries. In the quest for optimization, a recently explored approach is to use highly concentrated electrolytes (HCEs). The knowledge of molecular level of solvation as function of electrolyte concentration and its impact on Na-O2 battery performance is, however, still very limited. In this work, experimental and computational methods are used to characterize the cation solvation and when the emergence of anions into the cation first solvation shell occurs, which affects the de-solvation process and formation of discharge products. Furthermore, the solid electrolyte interphase (SEI) formed using HCEs demonstrates presence of anion fragments, with poorer protection of the Na metal anode. Moreover, the use of HCEs is also linked to lowered capacity, possibly due to a decrease in the size of the cubic-shaped discharge products as the electrolyte concentration increases, causing clogging of the pores of the air cathode. Thus, increasing the electrolyte salt concentration seems to have a detrimental effect on the cyclability of Na-O2 batteries. Instead, electrolytes with a lower than conventional salt concentration show the best performance, which highlights the importance of carefully tuning the cation solvation alongside overall physico-chemical properties to enhance battery performance.
  •  
41.
  • Park, Jimin, et al. (författare)
  • Introduction of a nitrate anion with solubility mediator in a carbonate-based electrolyte for a stable potassium metal anode
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, sodium nitrate (NaNO3) dissolves in a carbonate electrolyte for K-metal batteries (KMBs) using a dimethylacetamide (DMA) solvent with a higher Gutmann donor number than that of NO3−. The K-metal anode in 0.02 M NaNO3 electrolyte exhibits enhanced stability due to the modified solid-electrolyte interphase (SEI) layer resulting from the preferential reduction of NaNO3. Reduced NaNO3 forms ionically conductive and mechanically robust compounds in the SEI layer. This compound plays a critical role in altering the morphology of electrodeposited K-metal from dendritic to spherical, reducing the barrier energy of nucleation potential for K-ions. These unique features make K-metal highly resistant to dendrite formation and aggressive electrolyte chemistry. Therefore, the K-metal anode in the proposed electrolyte containing 0.02 M NaNO3 additive ensures excellent cycle life with stable Coulombic efficiency in both symmetrical K/K half cells and full-cells coupled with a Prussian green FeFe(CN)6 cathode.
  •  
42.
  • Wang, Kai, et al. (författare)
  • Zinc anode based alkaline energy storage system: Recent progress and future perspectives of zinc–silver battery
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 69
  • Forskningsöversikt (refereegranskat)abstract
    • Rechargeable zinc-based batteries have come to the forefront of energy storage field with a surprising pace during last decade due to the advantageous safety, abundance and relatively low cost, making them important supplements of lithium-ion batteries. As a significant role in zinc-based batteries, zinc-silver battery owns the advantages of high specific energy density, stable working voltage, high charging efficiency, safety and environmental friendliness, and it has been widely used in military such as in aerospace, deep water manned and civil field such as energy supply for watch and hearing aid. However, it is still suffering from a few drawbacks such as unsatisfactory cycle life, low utilization of the cathode. This review introduces the basic principles of zinc-silver batteries and elaborates the battery configurations aiming to understand its working mechanisms as well as the related issues. Most importantly, the very recent research updates and the concerns have arisen in the development are summarized from conventional cell to flexible device and hybrid device. Finally, the challenges and perspectives of zinc-silver batteries are further prospected to give a broad idea to readers new in the area and trigger inspirations for motivated researchers to further widen the utilization of silver-zinc batteries.
  •  
43.
  • Wei, Zhongbao, et al. (författare)
  • Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 56, s. 62-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast charging of the lithium-ion battery (LIB) is an enabling technology for the popularity of electric vehicles. However, high-rate charging regardless of the physical limits can induce irreversible degradation or even hazardous safety issues to the LIB system. Motivated by this, this paper proposes a machine learning-based fast charging strategy with multi-physical awareness within a battery-to-cloud framework. In particular, a reduced-order electrochemical-thermal model is built in the cloud to perceive the microscopic states of LIB, leveraging which the soft actor-critic (SAC) deep reinforcement learning (DRL) algorithm is exploited for the first time to train a fast charging strategy. Hardware-in-Loop tests and experiments with practical LIBs are carried out for validation. Results suggest that the battery-to-cloud architecture can mitigate the risk of a heavy computing burden in the real-time controller. The proposed strategy can effectively mitigate the unfavorable over-temperature and lithium deposition, which benefits the safety and longevity during fast charging. Given a similar charging speed, the proposed machine learning approach extends the LIB cycle life by about 75% compared to the commonly-used empirical protocol. Meanwhile, the proposed strategy is proven superior to the state-of-the-art rule-based and the model-based strategies in terms of charging rapidity, charging safety and computational complexity. Moreover, the trained low-complexity strategy is highly adaptive to the ambient temperature and initial charging state, which promises robust performance in practical applications.
  •  
44.
  • Zhao, Peiyu, et al. (författare)
  • Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate
  • 2020
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 33, s. 158-163
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of lithium dendrites severely restricts the development of lithium metal batteries. In order to achieve the goal of dendrites-free lithium in principle, it is crucial and urgent to control nucleation and growth of lithium. Here, a functional organic layer of perylene-3, 4, 9, 10-tetracarboxydiimide-lithium (PTCDI-Li) is built on the lithium anode surface by in-situ chemical reaction of PTCDI and Li metal. PTCDI-Li, with high surface energy (-10.19 eV) and low diffusion barrier (0.89 eV), efficiently promotes disk-shaped high-dimensional nucleation by regulation of lithium ion flux upon lithium plating, leading to a dendrites-free morphology. When operating under a relatively high current density of 10 mA cm−2, the Li | Li symmetrical cells with PTCDI-Li exhibit outstanding cyclic stability for 300 hours with ultralow overpotential of 400 mV, superior to the most of the reported lithium anode. The corresponding PTCDI-Li batteries show high specific capacity and enhanced cycle life. We anticipate that this strategy of regulation of lithium deposition from one-dimensional to high-dimensional opens a new horizon in the development of dendrites-free Li anodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44
Typ av publikation
tidskriftsartikel (41)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (44)
Författare/redaktör
Johansson, Patrik, 1 ... (8)
Xiong, Shizhao, 1985 (6)
Matic, Aleksandar, 1 ... (4)
Dubal, D. P. (3)
Zheng, Wei (3)
Rosén, Johanna (3)
visa fler...
Brandell, Daniel, 19 ... (3)
Lindahl, Niklas, 198 ... (2)
Edström, Kristina, P ... (2)
Halim, Joseph (2)
Tavajohi Hassan Kiad ... (2)
Nyholm, Leif, 1961- (2)
Wang, Xianshu (2)
Chen, X. (1)
Wang, C. (1)
Zhang, Q. (1)
Abbas, Zareen, 1962 (1)
Wang, Kai (1)
Abdelhamid, Muhammad ... (1)
Sun, Y (1)
Wågberg, Thomas, 197 ... (1)
Marchiori, Cleber (1)
Zhang, Hua (1)
Tai, Cheuk-Wai (1)
Strømme, Maria, 1970 ... (1)
Agostini, Marco, 198 ... (1)
Sadd, Matthew, 1994 (1)
Hwang, Jang Yeon (1)
Xiong, Shizhao (1)
Liu, Wei (1)
Younesi, Reza (1)
Ahmed, Bilal (1)
El Ghazaly, Ahmed (1)
Yuan, Jiayin (1)
Zhu, Jiefang (1)
Tian, J (1)
Wang, Wei (1)
Strömme, Maria (1)
Brant, William (1)
Persson, Per O. Å. (1)
Eriksson, Mirva (1)
Singh, Sachin Kumar (1)
Wang, Li (1)
Dominko, Robert (1)
Grimaud, Alexis (1)
Tarascon, Jean-Marie (1)
Sångeland, Christofe ... (1)
Mindemark, Jonas (1)
Zhao, Xue (1)
Nanjundan, A. K. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (19)
Uppsala universitet (10)
Umeå universitet (3)
Stockholms universitet (3)
Linköpings universitet (3)
Mittuniversitetet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
RISE (2)
Karlstads universitet (2)
Göteborgs universitet (1)
Mälardalens universitet (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Teknik (24)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy