SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2468 6069 "

Sökning: L773:2468 6069

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anikina, E. V., et al. (författare)
  • Influence of Kubas-type interaction of B–Ni codoped graphdiyne with hydrogen molecules on desorption temperature and storage efficiency
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated functionalized 2D carbon allotrope, graphdiyne (GDY), as a promising hydrogen storage media. Density functional theory with a range of vdW corrections was employed to study Ni decoration of pristine and boron-doped GDY and the interaction of resulting structures with molecular hydrogen. We showed that boron-doped GDY is thermally stable at 300 K, though, its synthesis requires an endothermic reaction. Also, boron doping enhances Ni binding with the graphdiyne by increasing the charge transfer from Ni to GDY. Ni doping drastically influenced hydrogen adsorption energies: they rise from ~70 meV per H2 molecule on pristine GDY to a maximum of 1.29 eV per H2 becoming too high in value for room temperature reversible applications. Boron doping improves the situations: in this case, after Ni decoration desorption temperature estimation is ~300–500 K. Overall, each Ni adatom on B-doped GDY can bind only one H2 molecule within the needed energy range, which gives low hydrogen uptake (~1.2 wt%). However, doping with boron led to the decrease in the value of hydrogen adsorption energy and good desorption temperature estimations, therefore, codoping of metal atoms and boron could be an effective strategy for other transition metals.
  •  
2.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (författare)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
3.
  • Calcagno, Giulio, 1990, et al. (författare)
  • Fast charging negative electrodes based on anatase titanium dioxide beads for highly stable Li-ion capacitors
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid energy storage systems aim to achieve both high power and energy densities by combining supercapacitor-type and battery-type electrodes in tandem. The challenge is to find sustainable materials as fast charging negative electrodes, which are characterized by high capacity retention. In this study, mesoporous anatase beads are synthetized with tailored morphology to exploit fast surface redox reactions. The TiO2-based electrodes are properly paired with a commercial activated carbon cathode to form a Li-ion capacitor. The titania electrode exhibits high capacity and rate performance. The device shows extremely stable performance with an energy density of 27 mWh g-1 at a specific current of 2.5 A g−1 for 10,000 cycles. The remarkable stability is associated with a gradual shift of the potential during cycling as result of the formation of cubic LiTiO2 on the surface of the beads. This phenomenon renews the interest in using TiO2 as negative electrode for Li-ion capacitors.
  •  
4.
  • Camut, J., et al. (författare)
  • Aluminum as promising electrode for Mg-2(Si,Sn)-based thermoelectric devices
  • 2021
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • The solid solutions of magnesium silicide and magnesium stannide Mg-2(Si,Sn) are high-performance thermoelectric (TE) materials with the advantage of being composed of light, cheap, and abundant elements. Therefore, they are especially attractive for the conversion of remnant heat into electricity in fields like the automotive sector or the aerospace industry. The optimization of Mg-2(Si,Sn)-based thermoelectric generators requires establishing a suitable electrode to ensure unhindered conduction of the electrical current through the module. We have tested aluminum for such applications and developed a technological process for joining. The obtained functionalized TE legs showed electrical contact resistances below 10 mu Omega cm(2) for both p-and n-type materials and the values are preserved or even lowered with annealing. The p-type material is found to be stable and in the n-type, there is no indication for a charge carrier compensation due to the electrode, as was previously reported e.g. for Cu and Ag. Comparison with other reported electrodes shows that aluminum is so far the most suitable electrode for an Mg-2(Si,Sn)-based module.
  •  
5.
  • Castin, N., et al. (författare)
  • The dominant mechanisms for the formation of solute-rich clusters in low-Cu steels under irradiation
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of nano-sized, coherent, solute-rich clusters (NSRC) is known to be an important factor causing the degradation of the macroscopic properties of steels under irradiation. The mechanisms driving their formation are still debated. This work focuses on low-Cu reactor pressure vessel (RPV) steels, where solute species are generally not expected to precipitate. We rationalize the processes that take place at the nanometer scale under irradiation, relying on the latest theoretical and experimental evidence on atomic-level diffusion and transport processes. These are compiled in a new model, based on the object kinetic Monte Carlo (OKMC) technique. We evaluate the relevance of the underlying physical assumptions by applying the model to a large variety of irradiation experiments. Our model predictions are compared with new experimental data obtained with atom probe tomography and small angle neutron scattering, complemented with information from the literature. The results of this study reveal that the role of immobilized self-interstitial atoms (SIA) loops dominates the nucleation process of NSRC.
  •  
6.
  • Chen, C., et al. (författare)
  • Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells
  • 2018
  • Ingår i: Materials Today Energy. - : Elsevier Ltd. - 2468-6069. ; 9, s. 264-270
  • Tidskriftsartikel (refereegranskat)abstract
    • The main of this work is to overcome the drawbacks of the traditional fullerene derivatives used as electron transport materials (ETMs) for perovskite solar cells (PSCs). Herein, a new strategy to design non-fullerene ETMs is presented by molecular engineering to include charged moieties in the ETM. The designed ETM FA2+-PDI2 is intrinsically ionic and the incorporated counter ions in FA2+-PDI2 significantly increase the electron conductivity and improve the film formation properties. Through careful device optimization, PSCs based on the ionic ETM FA2+-PDI2 exhibit an impressive average power conversion efficiency (PCE) of 17.0%, which is comparable to the PSC based on PC61BM (17.5%). The superior photovoltaic performance can be attributed to efficient electron extraction and effective electron transfer in the PSCs. This work provides important insights regarding the future design of new and efficient non-fullerene ETMs for PSCs. 
  •  
7.
  • Eiler, Konrad, et al. (författare)
  • Oxygen reduction reaction and proton exchange membrane fuel cell performance of pulse electrodeposited Pt–Ni and Pt–Ni–Mo(O) nanoparticles
  • 2022
  • Ingår i: Materials Today Energy. - : Elsevier Ltd. - 2468-6069. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton exchange membrane fuel cells (PEMFCs) are an important alternative to fossil fuels and a complement to batteries for the electrification of vehicles. However, their high cost obstructs commercialization, and the catalyst material, including its synthesis, constitutes one of the major cost components. In this work, Pt–Ni and Pt–Ni–Mo(O) nanoparticles (NPs) of varying composition have been synthesized in a single step by pulse electrodeposition onto a PEMFC's gas diffusion layer. The proposed synthesis route combines NP synthesis and their fixation onto the microporous carbon layer in a single step. Both Pt–Ni and Pt–Ni–Mo(O) catalysts exhibit extremely high mass activities at oxygen reduction reaction (ORR) with very low Pt loadings of around 4 μg/cm2 due to the favorable distribution of NPs in contact with the proton exchange membrane. Particle sizes of 40–50 nm and 40–80 nm were obtained for Pt–Ni and Pt–Ni–Mo(O) systems, respectively. The highest ORR mass activities were found for Pt67Ni33 and Pt66Ni32–MoOx NPs. The feasibility of a single-step electrodeposition of Pt–Ni–Mo(O) NPs was successfully demonstrated; however, the ternary NPs are of more amorphous nature in contrast to the crystalline, binary Pt–Ni particles, due to the oxidized state of Mo. Nevertheless, despite their heterogeneous nature, the ternary NPs show homogeneous behavior even on a microscopic scale. © 2022 The Author(s)
  •  
8.
  • Etman, Ahmed S., 1986-, et al. (författare)
  • Mo1.33CTz-Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors
  • 2021
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • The high demand on fast rechargeable batteries and supercapacitors combined with the limited resources of their active materials (e.g. Li and Co) motivate the exploration of sustainable energy storage systems such as Zn-ion hybrid supercapacitors. MXenes are two-dimensional materials with outstanding properties such as high conductivity and capacitance which enhance their performance in energy storage devices. Herein, we report on the use of freestanding Mo1.33CTz–Ti3C2Tz mixed MXene films in Zn-ion hybrid supercapacitors. The mixed MXene films are prepared from pristine MXene suspensions using a one-step vacuum filtration approach. The mixed MXene delivers capacities of about 159 and 59 mAh/g at scan rates of 0.5 and 100 mV/s, respectively. These capacity values are higher than the pristine MXene films and previously reported values for MXene electrodes in Zn-ion supercapacitors. Furthermore, the electrodes offer a promising capacity retention of about 90% after 8,000 cycles. In addition, the mixed MXene features energy densities of about 103 and 38 Wh/kg at power densities of 0.143 and 10.6 kW/kg, respectively. Insights into the effect of electrode thickness on rate performance and the mechanism of charge storage are also discussed. This study opens a venue for the use of Mo1.33CTz–Ti3C2Tz mixed MXene electrodes in sustainable energy storage systems with high energy density and power density.
  •  
9.
  • Grieco, Rebecca, et al. (författare)
  • A significantly improved polymer||Ni(OH) 2 alkaline rechargeable battery using anthraquinone-based conjugated microporous polymer anode
  • 2022
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkaline rechargeable batteries (ARBs) are predicted to be an attractive solution for large-scale electrochemical energy storage applications. However, their advancement is greatly hindered by the lack of high-performance and sustainable anode that can stably operate in less-corroding, low electrolyte concentration. Herein, we report the first example of polymer ARB able to operate in low concentrate electrolyte (1м potassium hydroxide [KOH]) due to the employment of a robust anthraquinone-based conjugated microporous polymer (IEP-11) as anode. The assembled IEP-11||Ni(OH)2 achieves high cell voltage (0.98 V), high gravimetric/areal capacities (150 mAh/g/7.2 mAh/cm2 at 3.5 and 65 mg/cm2, respectively), long cycle life (22,730 cycles, 960 h, 75% capacity retention at 20C), excellent rate performance (75 mAh/g at 50C) and low temperature operativity (75 mAh/g at −10 °C). Furthermore, rate capability, low-temperature performance and ability to prepare high mass loading anodes, along with low self-discharge is improved compared to conventional linear poly (anthraquinone sulfide) (PAQS) in commonly used 10 м KOH. This overall performance for IEP-11||Ni(OH)2 is not only far superior to that of PAQS||Ni(OH)2 owing to porous polymer's high specific surface area, combined micro-/mesoporosity and robust and mechanically stable three-dimensional (3D) architecture compared to the linear PAQS, but also surpass most of the reported organic||nickel [Ni]/cobalt [Co]/manganese [Mn] alkaline rechargeable batteries (ARBs).
  •  
10.
  • Hernández, Guiomar, et al. (författare)
  • Polyimide-polyether bindersediminishing the carbon content in lithium-sulfur batteries
  • 2017
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 6, s. 264-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-sulfur batteries are on the run to become the next generation energy storage technology. First of all due to its high theoretical energy density but also for its sustainability and low cost. However, there are still several challenges to take into account such as reducing the shuttle effect, decreasing the amount of conductive carbon to increase the energy density or enhancing the sulfur utilization. Herein, redox-active binders based on polyimide-polyether copolymers have been proposed as a solution to those drawbacks. These multiblock copolymers combine the ability of poly (ethylene oxide) to act as polysulfide trap and the properties of the imide groups to redox mediate the charge-discharge of sulfur. Thus, poly (ethylene oxide) block helps with the shuttle effect and mass transport in the electrode whereas the polyimide part enhances the charge transfer promoting the sulfur utilization. Sulfur cathodes containing pyromellitic, naphthalene or perylene polyimide-polyether binders featured improved cell performance in comparison with pure PEO binder. Among them, the electrode with naphthalene polyimide-PEO binder showed the best results with an initial capacity of 1300 mA h g(-1) at C/5, low polarization and 70% capacity retention after 30 cycles. Reducing the amount of carbon black in the cathode to 5 wt%, the cell with the redox-active binder was able to deliver 500 mA h g(-1) at C/5 with 78% capacity retention after 20 cycles. Our results demonstrate the possibility to reduce the amount of carbon by introducing polyimide-polyether copolymers as redox-active binders, increasing the sulfur utilization, redox kinetics and stability of the cell. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
11.
  • Hrachowina, Lukas, et al. (författare)
  • Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells
  • 2022
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • III-V semiconductor-based planar multi-junction solar cells synthesized to match the solar spectrum, increase absorption, and reduce thermalization loss are today's world-record efficiency solar cells. Realizing similarly performing multi-junction III-V nanowire (NW) solar cells would require significantly less material and is more sustainable at lower cost than planar solar cells. The NW geometry allows expanding the range of compatible material combinations along the NW axis far beyond current multi-junction solar cells and enables promising applications in, for example, space power technology and smart windows. However, multi-junction NW photovoltaics have been hampered by the inability to electrically connect different materials in an axial geometry. We report the design and proof-of-principle demonstration of axially defined GaInP/InP/InAsP triple-junction photovoltaic NWs optimized for light absorption exhibiting an open-circuit voltage of up to 2.37 V. The open-circuit voltage is twice as large as previously reported for tandem-junction photovoltaic NWs and amounts to 94% of the sum of the respective single-junction NWs. Our findings pave the way for realizing the next generation of scalable, high-performance, and ultra-high power-to-weight ratio multi-junction, NW-based solar cells.
  •  
12.
  • Huseynova, Gunel, et al. (författare)
  • Charge generation efficiency of electrically doped organic semiconductors
  • 2021
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic semiconductors (OSCs) have been a significant focus of research for electronic devices over the years exclusively due to their superior mechanical and optical properties as opposed to conventional inorganic semiconductors (ISCs) such as silicon or germanium. These unique materials have smoothened the path for developing extremely light-weight and ultrathin electronic devices with built-in flexibility and transparency for a considerably low cost. However, the commercial application of these organic materials is limited by their inferior electrical conductivity and charge carrier mobility compared with inorganic counterparts. This review article presents an overview of the works published on how to control and adjust the electrical conductivity of OSCs, focusing on electrical doping. The main point of this review is related to the principles and fundamental mechanisms of charge generation efficiency (CGE) in OSCs, which are significantly different from those of ISCs. The reported CGE of OSCs, defined as the ratio of the generated charge carriers to the dopants, is found to be in the range of a few percent and is significantly small compared with the ISCs. The origin of this lies in the lower dissociation rate of the charge transfer complexes (CTCs) formed between the tightly bound ionized dopants and generated charges. The CTCs induce localized electron-hole pairs, and the dissociation of such CTCs into free charge carriers requires large activation energies to overcome the strong Coulombic forces exerted on the generated charges by the dopant ions. Therefore, high doping concentrations are required to generate a large number of free charge carriers in doped OSC films. In this review, the CGE of OSCs is discussed in detail from the point of view of CTC formation and charge separation efficiencies.
  •  
13.
  • Liu, Jianhua, et al. (författare)
  • Metal nanowire networks : Recent advances and challenges for new generation photovoltaics
  • 2019
  • Ingår i: Materials Today Energy. - : ELSEVIER SCI LTD. - 2468-6069. ; 13, s. 152-185
  • Forskningsöversikt (refereegranskat)abstract
    • Transparent conducting electrodes which allow photons passing through and simultaneously transfers the charge carriers are critical for the construction of high-performance photovoltaic cells. Electrodes based on metal oxides, such as indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO), may have limited application in new generation flexible solar cells, which employ solution-processed roll-to-roll or ink-printing techniques toward large-area-fabrication approach, due to their brittleness and poor mechanical properties. Metal nanowire network (MNWN) emerges as a highly potential alternative candidate instead of ITO or FTO due to the high transparency, low sheet resistance, low cost, solution processable and compatibility with a flexible substrate for high throughput production. This feature article systematically summarizes the recent advances of the MNWNs, including new concepts and emerging strategies for the synthesis of metal nanowires (MNWs), various approaches for the preparation of MNWNs and comprehensively discusses the novel MNWN electrodes prepared on different substrates. The state-of-the-art new generation solar cell devices, such as transparent, flexible and light-weight solar cells, with MNWN as a transparent conductive electrode are emphasized. Finally, the opportunities and challenges for the development of MNWN electrodes toward application in the new generations of photovoltaic devices are discussed.
  •  
14.
  • Mathayan, Vairavel, et al. (författare)
  • Sensitive in-operando observation of Li and O transport in thin-film Li-ion batteries
  • 2021
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin-film batteries often contain oxides in the anode, cathode, and electrolyte materials. In-operando methods capable of Li and O depth profiling are relevant for battery research to study, e.g. diffusion and trapping of constituents. Here, we demonstrate ion beam-based analytical methods with high depth resolution and sensitivity for depth profiling Li and O in thin-film batteries using 10 MeV Li and He ions. Simultaneous depth profiling of Li and O was performed using combined coincidence elastic recoil detection analysis and Rutherford backscattering spectrometry measurements in the battery with 8 MeV He ions, and the Li and O transport was measured in operando. Reversible Li transport was observed from the LMO anode to the NbO cathode on charging and vice versa during discharging. O transport was observed from the LMO anode to the NbO cathode on first charging with 3.5 V but was not observed on further charging and discharging of the battery. Our in-operando measurements allow direct and quantitative observation of Li and O transport during charge-discharge cycles for thin-film batteries. 
  •  
15.
  • Mishra, Pushkar, et al. (författare)
  • Bifunctional catalytic activity of 2D boron monochalcogenides BX (X = S, Se, Te)
  • 2022
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • Photocatalysis and electrocatalysis are two sustainable and renewable technologies that can meet global energy demands in environmentally friendly ways. According to recent research, 2D boron monochalcogenides in the 1 T and 2 H phases are stable, strong, and broad bandgap semiconductors. Our calculations show a strong UV absorption ability and suitable band edge positions for water splitting oxidation and reduction, making it a good choice for an efficient photocatalyst. The development of bifunctional electrocatalysts has piqued the interest of researchers working in the field of electrocatalysts for fuel cells. The electrocatalytic properties of 2D boron monochalcogenides are also investigated for catalyzing both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The calculated overpotentials for OER/ORR mechanism are found to be 0.92/1.09 for BS (1 T), 1.00/0.59 for BS (2 H), 0.96/1.05 for BSe (1 T), 0.92/0.85 for BSe (2 H), and 1.10/0.92 for BTe (1 T), which are close to benchmark catalysts. The ORR overpotential of BS (2H) is 0.59 V, near well-known catalyst Pt (0.45 V). Therefore, our investigations indicate that the family of 2D materials, boron monochalcogenides, are promising photocatalyst and electrocatalyst candidates for OER and ORR.
  •  
16.
  • Oliveira, Filipa M., et al. (författare)
  • Alkaline water electrolysis performance of mixed cation metal phosphorous trichalcogenides
  • 2024
  • Ingår i: Materials Today Energy. - 2468-6069. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • A variety of mixed-cation metal phosphorus trichalcogenides (MnNiP2S6, FeCoP2S6, FeNiP2S6, CoNiP2S6, FeCoNiP2S6, and the high-entropy CrMnFeNiCoZnP2S6) are synthesized using chemical vapor transport and tested for water splitting under alkaline conditions. Among the materials synthesized, FeCoP2S6 demonstrates the most promising performance, acting as a catalyst with an overpotential of 409 mV and 325 mV for the hydrogen evolution reaction and oxygen evolution reaction (OER), respectively. To further enhance its catalytic activity, a combination of liquid-phase exfoliation techniques assisted by microwave and sonication is employed to FeCoP2S6 (exf-FeCoP2S6), thereby increasing the surface area and exposing more active sites. Promising results are obtained for the OER, with exf-FeCoP2S6 displaying an overpotential of 271 mV, a value very closely matching the best performances reported in the literature under alkaline conditions. Long-term stability tests show a stable profile over time, corroborated by the XPS analysis and computer modeling, which confirms minimal degradation of the catalyst.
  •  
17.
  • Rafei, Mouna, et al. (författare)
  • Hydrogen evolution mediated by sulfur vacancies and substitutional Mn in few-layered molybdenum disulfide
  • 2024
  • Ingår i: Materials Today Energy. - : Elsevier. - 2468-6069. ; 41
  • Tidskriftsartikel (refereegranskat)abstract
    • MoS2 is widely praised as a promising replacement for Pt as an electrocatalyst for the hydrogen evolution reaction (HER), but even today, it still suffers from low performance. This issue is tackled by using Mn3+ as a surface modifier to trigger sulfur vacancy formation and enhance electron transport in few-layered 2H MoS2. Only 10% of Mn is sufficient to transform the semiconductive MoS2 into an active HER electrocatalyst. The insertion of Mn reduces both HER onset potential and Tafel slope which allows reaching 100 mA/cm2 at an overpotential of 206 mV, ten times larger of what undoped MoS2 can achieve. The enhanced activity arises because Mn3+ introduces electronic states near the conduction band, promotes sulfur vacancies, and increases the hydrogen adsorption. In addition to its facile production and extended shelf-life, Mn–MoS2 exhibits an efficiency of 73% at 800 mA/cm2 and 2.0 V when used in proton exchange membrane water electrolyzers.
  •  
18.
  • Raza, Rizwan, 1980, et al. (författare)
  • Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 15
  • Forskningsöversikt (refereegranskat)abstract
    • There is world tendency to develop SOFC to lower temperatures and two technical routes and approaches are going in parallel. One is to use thin film technology, focussing on reducing the electrolyte thickness on conventional electrolyte, e.g. YSZ (yttria-stabilized zirconia) and SDC (samaria-doped ceria) to reduce the cell resistance i.e. to lower the operational temperatures. Another technique is to develop new materials, e.g. functional nanocomposites. This paper presents a state-of-the-art of nanocomposite electrolytes-based advanced fuel cell technology, i.e. low-temperature (300–600 °C) ceria-based fuel cells, a new scenario for fuel cell R&D with an overview of important aspects and frontier subjects. A typical nanocomposite has a core–shell type structure in nano-scale, in which ceria forms a core and a salt, e.g. carbonate or another oxide develops a shell layer covering the core. The functionality of nanocomposites is determined by the interfaces between the constituent phases, which can lead to super or fast ions transport (H+ and O2−) at interfaces. Ionic conductivities >0.1 S cm−1 already at ~300 °C have been reported. Five major characteristics of nanocomposites have been identified as important to their properties and applications in fuel cells: i) advanced materials design based on non-structure or interfacial properties/mechanisms; ii) dual or hybrid H+ and O2− conduction; iii) interfacial super-ionic conduction; iv) transition from non-functional to functional materials; v) use of interfacial and surface redox agents and reactions. In the fuel cell context, it is refer to these functional nano-composites as NANOCOFC (Nanocomposites for Advanced Fuel Cells) to distinguish them from the traditional SOFCs and to be oriented to a new fuel cell R&D strategy.
  •  
19.
  • Xiong, Shizhao, 1985, et al. (författare)
  • Lithium electrodeposition for energy storage: filling the gap between theory and experiment
  • 2022
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 28
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium (Li) metal has been considered a promising anode material for high-energy-density rechargeable batteries, but its utilization is impeded by the nonuniform electrodeposition during the charging process which leads to poor cycling life and safety concerns. Thus, understanding the electrodeposition mechanism of Li-metal anode is of great importance to develop practical engineering strategies for rechargeable Li-metal batteries. The electrodeposition of Li is controlled by both thermodynamic and kinetic factors, such as the solvation free energy of Li-ions, the Li nucleation, the surface diffusion of Li atom, and the strength of the interaction between Li-ion and the electrolyte anion. The scale of the whole process from the Li-ion reduction to the growth of a Li nucleus goes from sub-nanometer up to a few micrometers, which poses an outstanding challenge to both experiments and simulation. In this perspective, we discuss the top-down, the bottom-up, and the middle-way approaches to this challenge and the possible synergies between them.
  •  
20.
  • Yang, Xianzhong, et al. (författare)
  • Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction
  • 2017
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 5, s. 72-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The optical properties of monolayer molybdenum disulfide (MoS2)/Ag nanoparticle (NP) hybrids and their application to surface catalytic reactions were studied by transmission, photoluminescence (PL) and Raman spectroscopies. The local surface plasmon resonance (LSPR) of Ag nanoparticles was tuned to better match the exciton energy of monolayer MoS2. The PL of the hybrids was enhanced by more than 50 times when the local surface plasmon resonance (LSPR) peak was tuned systematically from 438 nm to 532 nm, indicating a stronger coupling and higher energy transfer rate between the plasmon of the Ag NPs and the excitons of the MoS2. Additionally, photocatalytic reactions of 4-nitrobenzenethiol (4NBT) were performed on the MoS2, the Ag nanoparticles, and the hybrid MoS2 with Ag nanoparticles. On the MoS2 substrate alone, there is no photocatalytic reaction. With a low laser intensity, the probability of a chemical reaction occurring for molecules directly adsorbed onto the Ag NPs is much lower than the probability of a reaction involving those molecules adsorbed onto the MoS2/Ag substrate. At a higher power, although the electric field was reduced by approximately 30% by the MoS2 layer, there is better efficiency for the plasmon-exciton co-driven surface catalytic reactions on the MoS2/Ag substrate compared to the Ag substrate alone. Our findings illustrate the potential to control hot carriers for better surface catalytic reactions by tuning the exciton-plasmon coupling between the 2D transition metal dichalcogenides (TMDCs) and Ag NPs.
  •  
21.
  • Younus, H. A., et al. (författare)
  • Engineering of a highly stable metal-organic Co-film for efficient electrocatalytic water oxidation in acidic media
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Elsevier Ltd Water oxidation is traditionally performed over IrO2 and RuO2 owing to their high stability at low pH compared to molecular O2 evolution catalysts. The low stability of molecular complexes in acids limits their industrial exploitation as anodes in water-splitting devices, where high current densities and proton conductivity are required. Herein, an existing Co(1,10-phenanthroline)2 complex film is engineered to improve its pH-stability via extra OH substituents on the ligand, i.e. 1,10-phenanthroline-4,7-diol. This novel Co(1,10-phenanthroline-4,7-diol)2 complex film is active for water oxidation at low overpotentials and stable at low pH. Since the calculated water oxidation overpotentials of both complexes are similar, the difference in water oxidation activity is attributed to a smaller charge transfer resistance, which originates from a different anchoring style to the electrode via the OH groups of the ligand. This result is supported by electrochemical impedance measurements. The high pH-stability of the Co(1,10-phenanthroline-4,7-diol)2 film is computationally rationalized by a high crystal formation energy observed in DFT calculations. In summary, an acid-stable and active cobalt-based metal-organic film is reported that competes well with most reported earth-abundant catalysts for water oxidation under similar conditions.
  •  
22.
  • Zahra, M., et al. (författare)
  • Tailoring the ions and bandgaps in a novel semi-ionic energy conversion device for electrochemical performance
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • The new semi-ionic energy conversion (SIEC) device has attracted remarkable attention owing to its clean and environmentally friendly applications. In this device, novel materials and mechanisms have been explored using electronic and ionic conductor materials. The tuning effect of the ions and bandgap has been studied to investigate the structural, optical, and electrochemical performance of the material. Composite materials, gadolinium-doped ceria-cadmium-doped ZnO (GDC-ZnCdO), based on ionic gadolinium-doped ceria (GDC) and semiconductor (ZnCdO) in molar ratios of 1:4, 2:3, 3:2, and 4:1 have been prepared by a wet chemical route. The crystalline structure of the GDC-ZnCdO was studied and found to have cubic and hexagonal wurtzite phases with an average crystallite size of 30–40 nm. The morphology of the prepared composite materials is a homogenous and porous structure. It was found that the addition of GDC increases the transmittance and shows a red shift in the bandgap from 2.70 eV to 2.46 eV. The maximum conductivity of 2.0 S/cm1 was achieved for the sample 4GDC-1ZnCdO at 700°C. Electrochemical impedance spectra and X-ray photoelectron spectroscopy analysis were performed to investigate the electrochemical properties of the prepared semi-ionic composite materials. The SIEC device showed a much better performance than a conventional solid oxide fuel cell. The maximum open-circuit voltage (OCV) of about 1.013 Vand power density of 0.65 W/cm2 were obtained using hydrogen fuel at 600°C, as compared with a conventional fuel cell with 0.72 V and 0.27 W/cm2, respectively. Hence, the results reveal that the ions and bandgap tuning play a crucial role in fuel cell functions. Therefore, it has been determined that the bandgap can be tuned to obtain a better and more stable performance of the SIEC device. This study presents a novel approach to enhance the electrochemical performance with the tailoring of the new semi-ionic materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22
Typ av publikation
tidskriftsartikel (20)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ahuja, Rajeev, 1965- (2)
Matic, Aleksandar, 1 ... (2)
Chen, C. (1)
Li, H. (1)
Johansson, Erik (1)
Ahmad, N. (1)
visa fler...
Abbas, Q. (1)
Naqvi, Muhammad, 198 ... (1)
Ahlberg, Elisabet, 1 ... (1)
Kloo, Lars (1)
Pullerits, Tõnu (1)
Chen, Yang (1)
Lee, J. (1)
Ali, A. (1)
Primetzhofer, Daniel (1)
Busch, M. (1)
Zhu, B. (1)
Wågberg, Thomas, 197 ... (1)
Hrachowina, Lukas (1)
Wallenberg, Reine (1)
Borgström, Magnus (1)
Tai, Cheuk-Wai (1)
Banerjee, Amitava (1)
Lund, P. D. (1)
Xiong, Shizhao, 1985 (1)
Cavallo, Carmen, 198 ... (1)
Hernández, Guiomar (1)
Sun, Licheng, 1962- (1)
Younesi, Reza (1)
Leisner, Peter (1)
Ahmad, M. A. (1)
Shakir, I. (1)
Halim, Joseph (1)
Rosén, Johanna (1)
Olsson, Eva, 1960 (1)
Liu, Peng (1)
Mecerreyes, David (1)
Patil, Nagaraj (1)
Marcilla, Rebeca (1)
Mushtaq, N. (1)
Akbar, Muhammad (1)
Rafique, Asia (1)
Valvo, Mario (1)
Fast, Lars (1)
Nyholm, Leif, 1961- (1)
Zhang, Chao (1)
Palmqvist, Anders, 1 ... (1)
Zhang, Xiaoliang (1)
Anikina, E. V. (1)
Beskachko, V. P. (1)
visa färre...
Lärosäte
Uppsala universitet (9)
Chalmers tekniska högskola (6)
Kungliga Tekniska Högskolan (4)
Umeå universitet (2)
Lunds universitet (2)
Göteborgs universitet (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Jönköping University (1)
RISE (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Teknik (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy