SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9780323901628 "

Sökning: L773:9780323901628

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bryukhovetskiy, Igor, et al. (författare)
  • Glioblastoma : What can we do for these patients today and what will we be able to do in the future?
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 99-118
  • Bokkapitel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is an extremely aggressive primary human brain tumor. The median survival of GBM patients is 15 months in case of completing the modern complex treatment protocol. Chemotherapy can help to extend the life expectancy of patients. GBM treatment resistance is associated with cancer stem cells (CSCs). The present paper analyses the main reasons for ineffectiveness of the existing GBM treatment methods and suggests treating CSCs as a complex phenomenon, resulting from the coordinated interaction of normal stem cells and cancer cells (CCs) in immunosuppressive microsurroundings. The GBM treatment strategy is suggested not for only suppressing strategically important signaling pathways in CCs, but also for regulating interaction between normal stem cells and cancer cells. The paper considers the issue of controlling penetrability of the blood-brain barrier that is one of the main challenges in neuro-oncology. Also, the paper suggests the ways of extending life expectancy of GBM patients today and prospects for the near future.
  •  
2.
  • Chen, Huijing, et al. (författare)
  • Multimodal imaging in the differential diagnosis of glioma recurrence from treatment-related effects : A protocol for systematic review and network meta-analysis
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 377-383
  • Bokkapitel (refereegranskat)abstract
    • Background: Glioma is the most common malignant primary brain tumor and it will always recur. To date, various multimodal imaging including magnetic resonance imaging (MRI) and positron emission tomography computed tomography (PET/CT) was used to differentiate the diagnosis of true tumor recurrent (TuR) and treatment-related effects (TrE) in glioma patient but with no overall conclusion. In this study, SROC curve and Bayesian network meta-analysis will be used to conduct a comprehensive analysis of the results of different clinical reports, and assess the efficacy of multimodal imaging in difference TuR and TrE. Methods: To find more comprehensive information about the application of multimodal imaging in glioma patients, we searched the EMBASE, Pubmed, and Cochrane Central Register of Controlled Trials for relevant clinical trials. We also reviewed their reference lists to avoid omissions. QUADAS-2, RevMan software, Stata, and R software will be used. Results: This study will provide reliable evidence for the efficacy of multimodal imaging in the differential diagnosis of TuR and TrE in glioma patients. Conclusion: We will evaluate the effectiveness of different and rank each imaging method in glioma patients to provide a decision-making reference on which method to choose for clinicians.
  •  
3.
  • Huang, Hongyun, et al. (författare)
  • Clinical neurorestorative cell therapies for stroke
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 231-247
  • Bokkapitel (refereegranskat)abstract
    • Clinical neurorestorative cell therapies for stroke have been explored for over 20 years. Majority cell therapies have shown neurorestorative effects for stroke on non-double-blind studies. In this review, we summarize types of cell transplantation, transplanted routes, therapeutic time windows, dosage, results of exploring trials or clinical studies, results of multicenter, double-blind or observing-blind, randomized, placebo-controlled clinical trials. The clinical application prospects of majority cell therapies for stroke need to prove their neurorestorative effects through trials with higher-level evidence-based medical evidence. Currently olfactory ensheathing cell is only one kind of cell to show neurorestorative effects through multicenter, double-blind, randomized, placebo-controlled clinical trials, which should be explored to optimize themselves effects and combination with others.
  •  
4.
  • Li, Cong, et al. (författare)
  • Network pharmacological mechanism of Cinobufotalin against glioma
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 119-137
  • Bokkapitel (refereegranskat)abstract
    • Objective: Cinobufotalin was extracted from the skin of Chinese giant salamander or black sable with good clinical effect against tumor. This study aims to explore the mechanism of Cinobufotalin components and predict the target of action of Cinobufotalin on glioma. Methods: The active components of Cinobufotalin were screened by the Chinese medicine pharmacology database and analysis platform (TCMSP), PubChem database, etc. The potential molecular components and targets were identified and enrichment analysis was conducted through the construction of related networks and analysis of their characteristics. Relevant targets of glioma were searched through TTD, DRUGBANK, and other databases, and the intersection was found and the key targets were found too. Results: A total of 21 active components and 184 target genes of Cinobufotalin were found. According to the enrichment analysis results, the pharmacological mechanism of Cinobufotalin mainly includes inhibition of the cell cycle, promotion of cell apoptosis, and regulation of immunity. On this basis, RAC1, FOS, and NOS3 can be preliminarily predicted as potential targets of Cinobufotalin in the treatment of glioma. Conclusions: The screening of active ingredients and target prediction based on network pharmacology can provide a new research idea for the multi-target treatment of glioma with Cinobufotalin.
  •  
5.
  • Li, Cong, et al. (författare)
  • Targeted therapy with anlotinib for a leptomeningeal spread recurrent glioblastoma patient
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 407-414
  • Bokkapitel (refereegranskat)abstract
    • Glioblastoma (GBM) is the most common and the most aggressive primary malignant brain tumor in adults. Although tumor recurrence is inevitable, leptomeningeal spread is relatively rare. We describe a case of leptomeningeal spread recurrent GBM treated with anlotinib in this report. When the recurrent GBM patient had leptomeningeal spread was administered anlotinib 10mg p.o. once every day and added oral temozolomide chemotherapy 100mg/m(2) (days 1-7, days 15-21, 28-day cycle) after 3 months. The patient's overall survival time was more than 5 months and developed oral ulcer and acute cerebral infarction during his oral administration of anlotinib. This patient showed a favorable clinic outcome for treatment of leptomeningeal spread recurrent GBM with anlotinib and didn't show serious side effects.
  •  
6.
  • Niu, Feng, et al. (författare)
  • Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury
  • 2021
  • Ingår i: Progress in Brain Research. - Amsterdam : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 139-230, s. 139-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims.Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224 N results in profound progressive functional deficit, memory impairment and brain pathology from 5 h after trauma that continued over several weeks of injury.In this investigation we report that TiO2 nanowired delivery of oxiracetam (50 mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100 mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
  •  
7.
  • Sahib, Seaab, et al. (författare)
  • Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke
  • 2021
  • Ingår i: Progress in Brain Research. - : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 249-315, s. 249-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
  •  
8.
  • Sharma, Aruna, et al. (författare)
  • Manganese nanoparticles induce blood-brain barrier disruption, cerebral blood flow reduction, edema formation and brain pathology associated with cognitive and motor dysfunctions
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 385-406
  • Bokkapitel (refereegranskat)abstract
    • Nanoparticles affect blood-brain barrier (BBB) and brain edema formation resulting in sensory-motor dysfunction. Exposure of Mn nanoparticles from industrial sources in humans could target basal ganglia resulting in Parkinson's disease. In present investigation, Mn exposure on brain pathology in a rat model was examined. Rats received Mn nanoparticles (30-40nm size) in a dose of 10 or 20mg/kg, i.p. once daily for 7 days and behavioral dysfunctions on Rota Rod performance, inclined plane angle and grid-walking tests as well as gait performances were examined. In addition, BBB breakdown to Evans blue and radioiodine, brain edema formation and neural injuries were also evaluated. Mn nanoparticles treated rats exhibited cognitive and motor dysfunction on the 8th day. At this time, BBB disruption, reduction in cerebral blood flow (CBF), brain edema formation and brain pathology were most marked in the sensory-motor cortex, hippocampus, caudate putamen, cerebellum and thalamus followed by hypothalamus, pons, medulla and spinal cord. In these brain areas, neuronal injuries using Nissl staining was clearly seen. These effects of Mn nanoparticle are dose dependent. These results are the first to demonstrate that Mn nanoparticles induce selective brain pathology resulting in cognitive and motor dysfunction, not reported earlier.
  •  
9.
  • Sharma, Hari Shanker, et al. (författare)
  • Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide
  • 2021
  • Ingår i: Progress in Brain Research. - : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 1-97, s. 1-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin—a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
  •  
10.
  •  
11.
  • Wiklund, Lars, et al. (författare)
  • Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation : Neuroprotective effects of methylene blue
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 317-375
  • Bokkapitel (refereegranskat)abstract
    • Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology andmethylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy