SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9781665418768 "

Sökning: L773:9781665418768

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnold, Cord L., et al. (författare)
  • A high-repetition rate attosecond pulse source for coincidence spectroscopy
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • The power of attosecond pump-probe spectroscopy combined with advanced detection schemes, such as photoelectron/ion coincidence spectrometers and time-resolved photoelectron emission microscopy (PEEM), can be unleashed by properly accounting for the repetition rate of the source. In this work, we present a high-repetition rate (200 kHz) attosecond pulse source that opens up for exploring phenomena, previously inaccessible to the community using attosecond interferometric and spectroscopy pump-probe techniques [1].
  •  
2.
  • Escoto, Esmerando, et al. (författare)
  • Role of dispersion and compression ratio on the temporal contrast of SPM-broadened post-compressed pulses
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • Nonlinear pulse post-compression, mainly enabled by self-phase modulation (SPM), opens new avenues towards high peak power laser pulses at high average power while bypassing the need for a gain medium with large bandwidth. However, SPM-induced spectral broadening typically introduces spectral amplitude modulations as well as a chirp of third and higher orders, limiting the temporal contrast of the compressed pulse. While some recent works address this issue and discuss mitigation strategies [1] , [2] , not much attention has been devoted to the physical processes and limitations that determine the temporal contrast of post-compressed pulses. As novel compression techniques expand the achievable compression ratio [3] , it is increasingly important to fully understand the underlying pulse quality limitations. Here, we outline the role of two important characteristics - dispersion and compression ratio - on the temporal quality of post-compressed pulses. Using both numerical simulations as well as experimental tests employing a gas-filled multi-pass cell (MPC), we study the temporal contrast of post-compressed pulses over large compression-ratio and dispersion range. Using a 730 fs input pulse we were able to generate a 55 fs post-compressed pulse with up to 78% energy contained in the main compressed pulse (defined via the first local minima near the highest peak) against its picosecond background.
  •  
3.
  • Fischer, Peter, et al. (författare)
  • Optimization of Optical Parametric Chirped-pulse Amplification
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - : IEEE Lasers and Electro-Optics Society. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • Optical parametric chirped-pulse amplification (OPCPA) [1] is an established light amplification technique with many beneficial properties, like high single pass gain, scalability, large spectral bandwidth, tunability and good conversion efficiency. Different methods have been proposed for optimization of conversion [2] - [4] mainly altering the pump or the crystal properties. However, seed manipulation to increase the OPCPA conversion efficiency has been only described in a general spatiotemporal field optimization theory so far [5]. Here, we show numerical and experimental results of a novel method to improve the gain saturation in an ultra-broadband OPCPA, hence conversion efficiency, by applying an adaptive spectral filter function to the seed pulses.
  •  
4.
  •  
5.
  • Helgason, Òskar Bjarki, 1989, et al. (författare)
  • Bidirectional initiation of dissipative solitons in photonic molecules
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - 9781665418768 ; June 2021
  • Konferensbidrag (refereegranskat)abstract
    • Dissipative solitons (DSs) can be generated in microresonators featuring Kerr nonlinearities via continuous wave (CW) pumping, forming a frequency comb in the spectral domain. While single cavity DSs have been thoroughly investigated in the last years, recent efforts have moved towards photonic molecules (linearly coupled cavities). These arrangements give rise to exotic physical phenomena and practical improvements in terms of conversion efficiency and tuneable comb dynamics. In a recent study of normal dispersion photonic molecules, we found that DSs can be generated in absence of intracavity CW bistability. Here, we show that this feature enables the CW initiation of DSs, tuning the laser into resonance either from the blue side or the red side. While DS initation from the red side has been demonstrated with the photorefractive effect, this is the first demonstration of bidirectional initiation that only requires a Kerr nonlinear medium.
  •  
6.
  • Hjältén, Adrian, et al. (författare)
  • High-Resolution Measurements of Halogenated Volatile Organic Compounds Using Frequency Comb Fourier Transform Spectroscopy
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - : IEEE Lasers and Electro-Optics Society. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • Halogenated volatile organic compounds (HVOCs) play an important role in the photo-chemistry of the atmosphere, for example in ozone depletion [1]. They are produced naturally in the oceans but are also used in industrial and agricultural applications where they may pose a health-hazard due to their biological effects. Optical detection of these compounds would hence be of great value in, for example, atmospheric monitoring and leak detection in workplaces. Crucial for such detection schemes is access to accurate spectroscopic models, which in turn require high-precision laboratory measurements. Due to the combination of broad spectral coverage and high resolution, optical frequency comb Fourier transform spectroscopy is an excellent tool for providing the necessary spectroscopic data. We use a mid-infrared frequency comb and a Fourier transform spectrometer (FTS) to measure and assign high-resolution spectra of multiple absorption bands of two HVOCs: methyl iodide, CH 3 I [2] , and dibromomethane, CH 2 Br 2 , around 3.3m.
  •  
7.
  • Lu, Chuang, et al. (författare)
  • Robust and High-Speed Cavity-Enhanced Vernier Spectrometer
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - : IEEE Lasers and Electro-Optics Society. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • Sensitive in situ detection of multiple atmospheric species at fast acquisition rates is needed for environmental monitoring. For field applications, robust and compact design is also demanded. Continuous-filtering Vernier spectroscopy (CF-VS) [1] is a cavity-enhanced frequency-comb-based technique that provides broad spectral bandwidth and high absorption sensitivity in short acquisition times. In CF-VS, groups of comb lines (Vernier orders, VOs) are transmitted through the cavity when its free spectral range (FSR) is slightly detuned from the comb repetition rate ( f rep ) and continuously swept across the broadband laser spectrum (by scanning the FSR). In previous implementations [1] - [3] , a diffraction grating rotating on a galvo scanner was used to image one VO on the detector during the spectral scan, limiting the acquisition rates to 20 Hz. Moreover, high-bandwidth stabilization was needed to synchronize the scans of the galvo and the cavity FSR. Here we present an improved design of CF-VS based on a compact Er:fiber laser and a moving aperture that follows and selects one VO. This removes the requirement of tight active stabilization and enables faster acquisition rates.
  •  
8.
  • Silva de Oliveira, Vinicius, et al. (författare)
  • Double-Resonance Spectroscopy of Methane Using a Comb Probe
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - : IEEE Lasers and Electro-Optics Society. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • Optical-optical double resonance (OODR) spectroscopy is a powerful tool for the experimental assignment of highly-excited molecular states, which in turn is needed for verification of the accuracy of theoretical predictions of high-temperature spectra observed in exoplanets and in combustion environments. Previous implementations of OODR used either continuous wave (cw) lasers, which limit the number of transitions that can be detected, or pulsed lasers, which limit the spectral resolution. Recently, we demonstrated OODR with a cw pump and a frequency comb probe and applied it to the detection and assignment of methane transitions in the 3ν 3 ← ν 3 range with sub-Doppler resolution over 200 cm -1 of bandwidth [1]. The pump [see Fig. 1(a) ] was a 1 W 3.3m idler of a cw optical parametric oscillator (cw-OPO), stabilized to the Lamb dip in a selected CH 4 transition in the ν 3 band using a signal from a reference cell. The probe was an amplified fully-stabilized Er:fiber comb ( f rep = 250 MHz), whose center wavelength was shifted to 1.67m using a soliton self-frequency shift fiber (SSSF). The sample of pure CH 4 was contained in an 80-cm-long single-pass cell cooled by liquid nitrogen. The probe spectra were detected using a Fourier transform spectrometer (FTS) with comb-mode-limited resolution [2] , and the final interleaved spectra had 2 MHz sampling point spacing. Figure 1(b) shows the 3ν 3 ← ν 3 R(1) transition at 6046.36008(5) cm -1 , detected with the pump on the ν 3 R(0) line. We measured, fit and assigned 36 probe transitions with the pump tuned to 9 different transitions. Figure 1(d) shows a comparison of the probe transition wavenumbers to predictions from the TheoReTS database [3] , demonstrating agreement within 1 cm -1.
  •  
9.
  • Viotti, Anne Lise, et al. (författare)
  • Intra-Burst Pulse Characterization of a High-Power Post-Compressed Yb:YAG Laser at 100 kHz Repetition Rate
  • 2021
  • Ingår i: 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021. - 9781665418768
  • Konferensbidrag (refereegranskat)abstract
    • High-average power Ytterbium (Yb) laser systems are playing an increasingly important role in ultrafast science e.g. as pump lasers for optical parametric amplifiers or directly as ultrafast sources. The gain bandwidth of Yb limits the pulse duration to a few 100 fs up to about 1 ps. However, many applications, such as attosecond physics or X-ray Free Electron Laser (FEL) science, would greatly benefit from the combination of high average powers with much shorter pulses, achievable via post-compression. Nonlinear pulse post-compression of high-average power Yb lasers employing multi-pass cell (MPC) -based spectral broadening [1], [2] was recently implemented for two burst-mode pump-probe lasers at the FEL facility FLASH in Hamburg [3], [4]. For such lasers, precise characterization and control of intra-burst pulse dynamics is crucial as the post-compression process couples input pulse energy instabilities with important output pulse parameters such as spectrum, pulse length and temporal contrast. Here, we demonstrate 100 kHz intra-burst spectrum, phase and temporal contrast characterization of a Yb:YAG Innoslab burst-mode amplifier post-compressed in a gas-filled MPC. Our measurements reveal a stable broadened spectrum and compressed pulse duration within the flat part of the burst, yielding a relative energy content of about 80% in the main compressed fs pulse (250 fs window versus 4 ps background pedestal).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy