SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Öhrfelt Annika 1973) "

Sökning: WFRF:(Öhrfelt Annika 1973)

  • Resultat 1-40 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Olsson, Bob, 1969, et al. (författare)
  • CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis.
  • 2016
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 15:7, s. 673-684
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease biomarkers are important for early diagnosis in routine clinical practice and research. Three core CSF biomarkers for the diagnosis of Alzheimer's disease (Aβ42, T-tau, and P-tau) have been assessed in numerous studies, and several other Alzheimer's disease markers are emerging in the literature. However, there have been no comprehensive meta-analyses of their diagnostic performance. We systematically reviewed the literature for 15 biomarkers in both CSF and blood to assess which of these were most altered in Alzheimer's disease.
  •  
2.
  • Bhattacharjee, Payel, 1984, et al. (författare)
  • Mass Spectrometric Analysis of Lewy Body-Enriched alpha-Synuclein in Parkinson's Disease
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:5, s. 2109-2120
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is characterized by intraneuronal inclusions of aggregated alpha-synuclein protein (so-called Lewy bodies) in distinct brain regions. Multiple posttranslational modifications may affect the structure and function of alpha-synuclein. Mass spectrometry-based analysis may be useful for the characterization and quantitation of alpha-synuclein forms, but has proven challenging, mainly due to the insolubility of Lewy bodies in aqueous buffer. In the present study, we developed a novel method by combining differential solubilization with immunoprecipitation and targeted proteomics using liquid chromatography and tandem mass spectrometry. Brain tissue homogenization and sample preparation were modified to facilitate analysis of soluble, detergent-soluble, and detergent-insoluble protein fractions (Lewy body-enriched). The method was used to compare alpha-synuclein forms from cingulate cortex (affected) and occipital cortex (unaffected) in two study sets of PD patients and controls. We identified similar to 20 modified alpha-synuclein variants, including species with N-terminal acetylation and C-terminal truncations at amino acids 103 and 119. The levels of alpha-synuclein forms Ac-alpha-syn(1-6), alpha-syn(13-21), alpha-syn(35-43), alpha-syn(46-58), alpha-syn(61-80), and alpha-syn(81-96) except alpha-syn(103-119) were significantly increased in PD cingulate region compared to controls in the Lewy body-enriched alpha-synuclein fraction. In the soluble fraction, only Ac-alpha-syn(1-6) was significantly increased in PD compared to controls. None of the detected alpha-synuclein variants were Lewy body-specific, but acetylated forms should be examined further as potential biomarkers for abnormal alpha-synuclein accumulation.
  •  
3.
  • Brinkmalm, Ann, et al. (författare)
  • Detection of α-Synuclein in Biological Samples Using Mass Spectrometry
  • 2019
  • Ingår i: Methods in molecular biology (Clifton, N.J.). - New York, NY : Springer. - 1940-6029. ; , s. 209-220
  • Bokkapitel (refereegranskat)abstract
    • Here we describe a method using mass spectrometry to characterize and quantify immuno-enriched α-synuclein forms from biochemically fractionated brain tissue.
  •  
4.
  • Brinkmalm, Gunnar, et al. (författare)
  • An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid.
  • 2012
  • Ingår i: Journal of mass spectrometry : JMS. - : Wiley. - 1096-9888 .- 1076-5174. ; 47:5, s. 591-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.
  •  
5.
  • Brinkmalm, Gunnar, et al. (författare)
  • Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease.
  • 2013
  • Ingår i: Brain research. - : Elsevier BV. - 1872-6240 .- 0006-8993. ; 1513, s. 117-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral accumulation of amyloid β (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Proteolytic processing of amyloid precursor protein (APP) by α- or β-secretase results in two soluble metabolites, sAPPα and sAPPβ, respectively. However, previous data have shown that both α- and β-secretase have multiple cleavage sites. The aim of this study was to characterize the C-termini of sAPPα and sAPPβ in cerebrospinal fluid (CSF) by mass spectrometry (MS) and to evaluate whether different combinations of these fragments better separate between AD patients and controls by comparing two different sAPP immunoassays. Methods: Using immunoprecipitation and high resolution MS, the APP species present in CSF were investigated. CSF levels of sAPPα and sAPPβ from patients with AD (n=43) and from non-demented controls (n=44) were measured using AlphaLISA and MSD immunoassays that employ different antibodies for C-terminal recognition of sAPPα. Results: Four different C-terminal forms of sAPP were identified, sAPPβ-M671, sAPPβ-Y681, sAPPα-Q686, and sAPPα-K687 (APP770 numbering). Neither immunoassay for the sAPP species could separate the two patient groups. The correlation (R(2)) between the two immunoassays was 0.41 for sAPPα and 0.45 for sAPPβ. Conclusion: Using high resolution MS, we show here for the first time that sAPPα in CSF ends at Q686 and K687. The findings also support the conclusion from several previous studies that sAPPα and sAPPβ levels are unaltered in AD.
  •  
6.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Explorative and targeted neuroproteomics in Alzheimer's disease.
  • 2015
  • Ingår i: Biochimica et biophysica acta. - : Elsevier BV. - 0006-3002. ; 1854:7, s. 769-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other higher brain functions. Neuropathologically, the disease is characterized by accumulation of a 42 amino acid peptide called amyloid β (Aβ42) in extracellular senile plaques, intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Biomarker assays capturing these pathologies have been developed for use on cerebrospinal fluid samples but there are additional molecular pathways that most likely contribute to the neurodegeneration and full clinical expression of AD. One way of learning more about AD pathogenesis is to identify novel biomarkers for these pathways and examine them in longitudinal studies of patients in different stages of the disease. Here, we discuss targeted proteomic approaches to study AD and AD-related pathologies in closer detail and explorative approaches to discover novel pathways that may contribute to the disease. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
  •  
7.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease
  • 2014
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is an early pathogenic event in Alzheimer's disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. Results: We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer's disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer's disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer's disease from controls with area under the curve of 0.901 (P < 0.0001). Conclusions: We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
  •  
8.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • Targeting synaptic pathology with a novel affinity mass spectrometry approach.
  • 2014
  • Ingår i: Molecular & cellular proteomics : MCP. - 1535-9484. ; 13:10, s. 2584-92
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice.
  •  
9.
  • Bäckström, David C, et al. (författare)
  • Cerebrospinal Fluid Patterns and the Risk of Future Dementia in Early, Incident Parkinson Disease
  • 2015
  • Ingår i: JAMA Neurology. - : American Medical Association. - 2168-6149 .- 2168-6157. ; 72:10, s. 1175-1182
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: Alterations in cerebrospinal fluid (CSF) have been found in Parkinson disease (PD) and in PD dementia (PDD), but the prognostic importance of such changes is not well known. In vivo biomarkers for disease processes in PD are important for future development of disease-modifying therapies. OBJECTIVE: To assess the diagnostic and prognostic value of a panel of CSF biomarkers in patients with early PD and related disorders. DESIGN, SETTING, AND PARTICIPANTS: Regional population-based, prospective cohort study of idiopathic parkinsonism that included patients diagnosed between January 1, 2004, and April 30, 2009, by amovement disorder team at a university hospital that represented the only neurology clinic in the region. Participants were 128 nondemented patients with new-onset parkinsonism (104 with PD, 11 with multiple system atrophy, and 13 with progressive supranuclear palsy) who were followed up for 5 to 9 years. At baseline, CSF from 30 healthy control participants was obtained for comparison. MAIN OUTCOMES AND MEASURES: Cerebrospinal fluid concentrations of neurofilament light chain protein, Aβ1-42, total tau, phosphorylated tau, α-synuclein, and heart fatty acid-binding protein were quantified by 2 blinded measurements (at baseline and after 1 year). Follow-up included an extensive neuropsychological assessment. As PD outcome variables, mild cognitive impairment and incident PDD were diagnosed based on published criteria. RESULTS: Among the 128 study participants, the 104 patients with early PD had a different CSF pattern compared with the 13 patients with progressive supranuclear palsy (baseline area under the receiver operating characteristic curve, 0.87; P < .0001) and the 30 control participants (baseline area under the receiver operating characteristic curve, 0.69; P = .0021). A CSF biomarker pattern associated with the development of PDD was observed. In PD, high neurofilament light chain protein, low Aβ1-42, and high heart fatty acid-binding protein at baseline were related to future PDD as analyzed by Cox proportional hazards regression models. Combined, these early biomarkers predicted PDD with high accuracy (hazard ratio, 11.8; 95% CI, 3.3-42.1; P = .0001) after adjusting for possible confounders. CONCLUSIONS AND RELEVANCE: The analyzed CSF biomarkers have potential usefulness as a diagnostic tool in patients with parkinsonism. In PD, high neurofilament light chain protein, low Aβ1-42, and high heart fatty acid-binding protein were related to future PDD, providing new insights into the etiology of PDD.
  •  
10.
  • Førland, Marthe Gurine, et al. (författare)
  • Evolution of cerebrospinal fluid total α-synuclein in Parkinson's disease.
  • 2018
  • Ingår i: Parkinsonism & related disorders. - : Elsevier BV. - 1873-5126 .- 1353-8020. ; 49, s. 4-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) total α-synuclein is considered a potential biomarker for Parkinson's disease (PD), but little is known about the evolution of this marker during the course of the disease. Our objective was to investigate whether CSF total α-synuclein concentrations change over time and are associated with motor and cognitive function in PD.CSF total α-synuclein concentrations were quantified in 56 longitudinally followed PD patients, 27 of whom provided CSF repeatedly 2 and/or 4 years later. Another 18 subjects were included as controls. The samples were analyzed using two independent, validated ELISA methods: our recently developed and validated in-house ELISA and a commercial kit from BioLegend.CSF total α-synuclein levels did not distinguish PD patients from controls, displayed no substantial changes during a period of up to 4 years, and did not predict subsequent motor or cognitive decline. These findings were consistent for both analytical methods.Our findings do not support the clinical utility of total α-synuclein as a single diagnostic or prognostic biomarker in PD.
  •  
11.
  • Førland, Marthe Gurine, et al. (författare)
  • Validation of a new assay for α-synuclein detection in cerebrospinal fluid.
  • 2017
  • Ingår i: Clinical chemistry and laboratory medicine. - : Walter de Gruyter GmbH. - 1437-4331 .- 1434-6621. ; 55:2, s. 254-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Abnormal α-synuclein aggregation and deposition is the pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), but is also found in Alzheimer disease (AD). Therefore, there is a gaining interest in α-synuclein in cerebrospinal fluid (CSF) as potential biomarker for these neurodegenerative diseases. To broaden the available choices of α-synuclein measurement in CSF, we developed and validated a new assay for detecting total α-synuclein.
  •  
12.
  •  
13.
  • Hall, Sara, et al. (författare)
  • CSF biomarkers and clinical progression of Parkinson disease.
  • 2015
  • Ingår i: Neurology. - 1526-632X. ; 84:1, s. 57-63
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate whether certain CSF biomarkers at baseline can predict future progression of motor symptoms and cognitive decline in patients with Parkinson disease (PD).
  •  
14.
  • Hall, Sara, et al. (författare)
  • Longitudinal Measurements of Cerebrospinal Fluid Biomarkers in Parkinson's Disease.
  • 2016
  • Ingår i: Movement disorders : official journal of the Movement Disorder Society. - : Wiley. - 1531-8257 .- 0885-3185. ; 31:6, s. 898-905
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate whether cerebrospinal fluid (CSF) levels of tau, phosphorylated tau, β-amyloid42 , α-synuclein, neurofilament light, and YKL-40 change over time and if changes correlate with motor progression and/or cognitive decline in patients with PD and controls.
  •  
15.
  •  
16.
  • Heslegrave, Amanda, et al. (författare)
  • Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease.
  • 2016
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery that heterozygous missense mutations in the gene encoding triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for Alzheimer's disease (AD), with only the apolipoprotein E (APOE) ε4 gene allele conferring a higher risk, has led to increased interest in immune biology in the brain. TREM2 is expressed on microglia, the resident immune cells of the brain and has been linked to phagocytotic clearance of amyloid β (Aβ) plaques. Soluble TREM2 (sTREM2) has previously been measured in cerebrospinal fluid (CSF) by ELISA but in our hands commercial kits have proved unreliable, suggesting that other methods may be required. We developed a mass spectrometry method using selected reaction monitoring for the presence of a TREM2 peptide, which can be used to quantify levels of sTREM2 in CSF.
  •  
17.
  •  
18.
  • Nazir, Faisal Hayat, et al. (författare)
  • Expression and secretion of synaptic proteins during stem cell differentiation to cortical neurons.
  • 2018
  • Ingår i: Neurochemistry international. - : Elsevier BV. - 1872-9754 .- 0197-0186. ; 121, s. 38-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic function and neurotransmitter release are regulated by specific proteins. Cortical neuronal differentiation of human induced pluripotent stem cells (hiPSC) provides an experimental model to obtain more information about synaptic development and physiology in vitro. In this study, expression and secretion of the synaptic proteins, neurogranin (NRGN), growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 (SYT-1) were analyzed during cortical neuronal differentiation. Protein levels were measured in cells, modeling fetal cortical development and in cell-conditioned media which was used as a model of cerebrospinal fluid (CSF), respectively. Human iPSC-derived cortical neurons were maintained over a period of at least 150 days, which encompasses the different stages of neuronal development. The differentiation was divided into the following stages: hiPSC, neuro-progenitors, immature and mature cortical neurons. We show that NRGN was first expressed and secreted by neuro-progenitors while the maximum was reached in mature cortical neurons. GAP-43 was expressed and secreted first by neuro-progenitors and its expression increased markedly in immature cortical neurons. SYT-1 was expressed and secreted already by hiPSC but its expression and secretion peaked in mature neurons. SNAP-25 was first detected in neuro-progenitors and the expression and secretion increased gradually during neuronal stages reaching a maximum in mature neurons. The sensitive analytical techniques used to monitor the secretion of these synaptic proteins during cortical development make these data unique, since the secretion of these synaptic proteins has not been investigated before in such experimental models. The secretory profile of synaptic proteins, together with low release of intracellular content, implies that mature neurons actively secrete these synaptic proteins that previously have been associated with neurodegenerative disorders, including Alzheimer's disease. These data support further studies of human neuronal and synaptic development in vitro, and would potentially shed light on the mechanisms underlying altered concentrations of the proteins in bio-fluids in neurodegenerative diseases.
  •  
19.
  • Nutu, Magdalena, 1967, et al. (författare)
  • Evaluation of the Cerebrospinal Fluid Amyloid-β1-42/Amyloid-β1-40 Ratio Measured by Alpha-LISA to Distinguish Alzheimer's Disease from Other Dementia Disorders.
  • 2013
  • Ingår i: Dementia and geriatric cognitive disorders. - : S. Karger AG. - 1421-9824 .- 1420-8008. ; 36:1-2, s. 99-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The well-established core biomarkers used to identify Alzheimer's disease (AD) overlap with other dementia disorders such as dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). This study aimed to evaluate whether the cerebrospinal fluid (CSF) amyloid-β (Aβ)1-42/Aβ1-40 ratio, measured by a novel method, could improve the differential diagnosis of AD, DLB and PDD. Method: CSF levels of Aβ1-40 and Aβ1-42 in patients with PDD, DLB, AD, Parkinson's disease and controls were analyzed using an amplified luminescent proximity homogenous immunoassay along with conventional immunoassays. Results: The CSF Aβ1-42/Aβ1-40 ratio increased discrimination of AD from PDD and DLB compared with either of the two Aβ biomarkers individually. Conclusion: The use of the Aβ1-42/Aβ1-40 ratio could improve the differentiation of AD from PDD and DLB. © 2013 S. Karger AG, Basel.
  •  
20.
  • Portelius, Erik, 1977, et al. (författare)
  • Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid.
  • 2010
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 223:2, s. 351-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system. Two pathological hallmarks in the brain of AD patients are neurofibrillary tangles and senile plaques. The plaques consist mainly of beta-amyloid (Abeta) peptides that are produced from the amyloid precursor protein (APP), by sequential cleavage by beta- and gamma-secretase. Most previous studies have been focused on the C-terminal fragments of APP, where the Abeta sequence is localized. The purpose of this study was to search for N-terminal fragments of APP in cerebrospinal fluid (CSF) using mass spectrometry (MS). By using immunoprecipitation (IP) combined with matrix-assisted laser desorption/ionization time-of-flight MS as well as nanoflow liquid chromatography coupled to high resolution tandem MS we were able to detect and identify six novel N-terminal APP fragments [APP((18-119)), APP((18-121)), APP((18-122)), APP((18-123)), APP((18-124)) and APP((18-126))], having molecular masses of approximately 12 kDa. The presence of these APP derivatives in CSF was also verified by Western blot analysis. Two pilot studies using either IP-MS or Western blot analysis indicated slightly elevated levels of N-terminal APP fragments in CSF from AD patients compared with controls, which are in need of replications in independent and larger patient materials.
  •  
21.
  • Sjödin, Simon, et al. (författare)
  • Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer's and Parkinson's disease
  • 2019
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Increasing evidence implicates dysfunctional proteostasis and the involvement of the autophagic and endo-lysosomal system and the ubiquitin-proteasome system in neurodegenerative diseases. In Alzheimer's disease (AD), there is an accumulation of autophagic vacuoles within the neurons. In Parkinson's disease (PD), susceptibility has been linked to genes encoding proteins involved in autophagy and lysosomal function, as well as mutations causing lysosomal disorders. Furthermore, both diseases are characterized by the accumulation of protein aggregates. Methods Proteins associated with endocytosis, lysosomal function, and the ubiquitin-proteasome system were identified in the cerebrospinal fluid (CSF) and targeted by combining solid-phase extraction and parallel reaction monitoring mass spectrometry. In total, 50 peptides from 18 proteins were quantified in three cross-sectional cohorts including AD (N = 61), PD (N = 21), prodromal AD (N = 10), stable mild cognitive impairment (N = 15), and controls (N = 68). Results A pilot study, including subjects selected based on their AD CSF core biomarker concentrations, showed increased concentrations of several targeted proteins in subjects with core biomarker levels indicating AD pathology compared to controls. Next, in a clinically characterized cohort, lower concentrations in CSF of proteins in PD were found compared to subjects with prodromal AD. Further investigation in an additional clinical study again revealed lower concentrations in CSF of proteins in PD compared to controls and AD. Conclusion In summary, significantly different peptide CSF concentrations were identified from proteins AP2B1, C9, CTSB, CTSF, GM2A, LAMP1, LAMP2, TCN2, and ubiquitin. Proteins found to have altered concentrations in more than one study were AP2B1, CTSB, CTSF, GM2A, LAMP2, and ubiquitin. Interestingly, given the genetic implication of lysosomal function in PD, we did identify the CSF concentrations of CTSB, CTSF, GM2A, and LAMP2 to be altered. However, we also found differences in proteins associated with endocytosis (AP2B1) and the ubiquitin-proteasome system (ubiquitin). No difference in any peptide CSF concentration was found in clinically characterized subjects with AD compared to controls. In conclusion, CSF analyses of subjects with PD suggest a general lysosomal dysfunction, which resonates well with recent genetic findings, while such changes are minor or absent in AD.
  •  
22.
  •  
23.
  • Trupp, Miles, et al. (författare)
  • Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson's disease
  • 2014
  • Ingår i: Journal of Parkinson's Disease. - : Taylor & Francis. - 1877-7171 .- 1877-718X. ; 4:3, s. 549-560
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Parkinson's disease (PD) is a progressive, multi-focal neurodegenerative disease for which there is no effective disease modifying treatment. A critical requirement for designing successful clinical trials is the development of robust and reproducible biomarkers identifying PD in preclinical stages. Objective: To investigate the potential for a cluster of biomarkers visualized with multiple analytical platforms to provide a clinically useful tool. Methods: Gas Chromatography-Mass Spectrometry (GC-TOFMS) based metabolomics and immunoassay-based protein/peptide analyses on samples from patients with PD diagnosed in Northern Sweden. Low molecular weight compounds from both plasma and cerebrospinal fluid (CSF) from 20 healthy subjects (controls) and 20 PD patients at the time of diagnosis (baseline) were analyzed. Results: In plasma, we found a significant increase in several amino acids and a decrease in C16-C18 saturated and unsaturated fatty acids in patients as compared to control subjects. We also observed an increase in plasma levels of pyroglutamate and 2-oxoisocaproate (ketoleucine) that may be indicative of increased metabolic stress in patients. In CSF, there was a generally lower level of metabolites in PD as compared to controls, with a specific decrease in 3-hydroxyisovaleric acid, tryptophan and creatinine. Multivariate analysis and modeling of metabolites indicates that while the PD samples can be separated from control samples, the list of detected compounds will need to be expanded in order to define a robust predictive model. CSF biomarker immunoassays of candidate peptide/protein biomarkers revealed a significant decrease in the levels of A beta-38 and A beta-42, and an increase in soluble APP alpha in CSF of patients. Furthermore, these peptides showed significant correlations to each other, and positive correlations to the CSF levels of several 5- and 6-carbon sugars. However, combining these metabolites and proteins/peptides into a single model did not significantly improve the statistical analysis. Conclusions: Together, this metabolomics study has detected significant alterations in plasma and CSF levels of a cluster of amino acids, fatty acids and sugars based on clinical diagnosis and levels of known protein and peptide biomarkers.
  •  
24.
  • Wallin, Anders, 1950, et al. (författare)
  • Alzheimer's disease-subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies.
  • 2016
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 36:1, s. 95-113
  • Forskningsöversikt (refereegranskat)abstract
    • The ability to discriminate between Alzheimer's disease (AD), subcortical vascular disease, and other cognitive disorders is crucial for diagnostic purposes and clinical trial outcomes. Patients with primarily subcortical vascular disease are unlikely to benefit from treatments targeting the AD pathogenic mechanisms and vice versa. The Gothenburg mild cognitive impairment (MCI) and dementia studies are prospective, observational, single-center cohort studies suitable for both cross-sectional and longitudinal analysis that outline the cognitive profiles and biomarker characteristics of patients with AD, subcortical vascular disease, and other cognitive disorders. The studies, the first of which started in 1987, comprise inpatients with manifest dementia and patients seeking care for cognitive disorders at an outpatient memory clinic. This article gives an overview of the major published papers (neuropsychological, imaging/physiology, and neurochemical) of the studies including the ongoing Gothenburg MCI study. The main findings suggest that subcortical vascular disease with or without dementia exhibit a characteristic neuropsychological pattern of mental slowness and executive dysfunction and neurochemical deviations typical of white matter changes and disturbed blood-brain barrier function. Our findings may contribute to better healthcare for this underrecognized group of patients. The Gothenburg MCI study has also published papers on multimodal prediction of dementia, and cognitive reserve.Journal of Cerebral Blood Flow & Metabolism advance online publication, 29 July 2015; doi:10.1038/jcbfm.2015.148.
  •  
25.
  • Wallin, Anders, 1950, et al. (författare)
  • The Gothenburg MCI study: design and distribution of Alzheimer's disease and subcortical vascular disease diagnoses from baseline to 6-year follow-up.
  • 2016
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 36:1, s. 114-131
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for increased nosological knowledge to enable rational trials in Alzheimer's disease (AD) and related disorders. The ongoing Gothenburg mild cognitive impairment (MCI) study is an attempt to conduct longitudinal in-depth phenotyping of patients with different forms and degrees of cognitive impairment using neuropsychological, neuroimaging, and neurochemical tools. Particular attention is paid to the interplay between AD and subcortical vascular disease, the latter representing a disease entity that may cause or contribute to cognitive impairment with an effect size that may be comparable to AD. Of 664 patients enrolled between 1999 and 2013, 195 were diagnosed with subjective cognitive impairment (SCI), 274 with mild cognitive impairment (MCI), and 195 with dementia, at baseline. Of the 195 (29%) patients with dementia at baseline, 81 (42%) had AD, 27 (14%) SVD, 41 (21%) mixed type dementia (=AD+SVD=MixD), and 46 (23%) other etiologies. After 6 years, 292 SCI/MCI patients were eligible for follow-up. Of these 292, 69 (24%) had converted to dementia (29 (42%) AD, 16 (23%) SVD, 15 (22%) MixD, 9 (13%) other etiologies). The study has shown that it is possible to identify not only AD but also incipient and manifest MixD/SVD in a memory clinic setting. These conditions should be taken into account in clinical trials.Journal of Cerebral Blood Flow & Metabolism advance online publication, 15 July 2015; doi:10.1038/jcbfm.2015.147.
  •  
26.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer's Disease.
  • 2019
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 420, s. 136-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic degeneration is central in Alzheimer's disease (AD) pathogenesis and biomarkers to monitor this pathophysiology in living patients are warranted. We developed a novel sandwich enzyme-linked immunosorbent assay (ELISA) for the measurement of the pre-synaptic protein SNAP-25 in cerebrospinal fluid (CSF) and evaluated it as a biomarker for AD. CSF samples included a pilot study consisting of AD (N=26) and controls (N=26), and two independent clinical cohorts of AD patients and controls. Cohort I included CSF samples from patients with dementia due to AD (N=17), patients with mild cognitive impairment (MCI) due to AD (N=5) and controls (N=17), and cohort II CSF samples from patients with dementia due to AD (N=24), patients with MCI due to AD (N=18) and controls (N=36). CSF levels of SNAP-25 were significantly increased in patients with AD compared with controls (P≤0.00001). In both clinical cohorts, CSF levels of SNAP-25 were significantly increased in patients with MCI due to AD (P<0.0001). SNAP-25 could differentiate dementia due to AD (N=41) from controls (N=52) and MCI due to AD (N=23) from controls (N=52) with areas under the curve of 0.967 (P<0.0001) and 0.948 (P<0.0001), respectively. CSF SNAP-25 is a promising AD biomarker that differentiates AD patients in different clinical stages of the disease from controls with excellent diagnostic accuracy. Future studies should address the specificity of the CSF SNAP-25 against common differential diagnoses to AD, as well as how the biomarker changes in response to treatment with disease-modifying drug candidates.
  •  
27.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • Association of CSF GAP-43 With the Rate of Cognitive Decline and Progression to Dementia in Amyloid-Positive Individuals.
  • 2023
  • Ingår i: Neurology. - 0028-3878 .- 1526-632X. ; 100:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To test the associations between the presynaptic growth-associated protein 43 (GAP-43) protein, quantified in cerebrospinal fluid (CSF), and biomarkers of Alzheimer's disease (AD) pathophysiology, cross-sectionally and longitudinally.In this retrospective study, GAP-43 was measured in participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort using an in-house ELISA method, and levels were compared between groups, both cross-sectionally and longitudinally. Linear regression models tested the associations between biomarkers of AD (Aβ and tau pathologies, neurodegeneration and cognition) adjusted by age, sex and diagnosis. Linear mixed effect models (LME) evaluated how baseline GAP-43 predicts brain hypometabolism, atrophy and cognitive decline over time. Cox-proportional hazard regression models tested how GAP-43 levels and Aβ status, at baseline, increased the risk of progression to AD dementia over time.This study included 786 participants from the ADNI cohort, which were further classified in cognitively unimpaired (CU) Aβ-negative (nCU-=197); CU Aβ-positive (nCU+=55), mild cognitively impaired (MCI) Aβ-negative (nMCI-=228), MCI Aβ-positive (nMCI+=193) and AD dementia Aβ-positive (nAD=113). CSF GAP-43 levels were increased in Aβ-positive compared to Aβ-negative participants, independent of the cognitive status. In Aβ-positive participants, high baseline GAP-43 levels led to worse brain metabolic decline (P=0.01), worse brain atrophy (P=8.8x10-27) as well as worse MMSE scores (P= 0.03) over time, as compared to those with low GAP-43 levels. Similarly, Aβ-positive participants with high baseline GAP-43 had the highest risk to convert to AD dementia (hazard ratio [HR=8.56, 95% CI, 4.94-14.80, P=1.5x10-14]). Despite the significant association with Aβ pathology (η 2 Aβ PET=0.09, P Aβ PET<0.001), CSF tTau and P-Tau had a larger effect size on GAP43 than had Aβ PET (η 2 pTau-181=0.53, P pTau-181<0.001; η 2 tTau=0.59, P tTau<0.001).and Classification of Evidence: This study provides Class III classification of evidence that high baseline levels of CSF GAP-43 are associated to progression in Aβ-positive individuals, with a more aggressive neurodegenerative process, faster rate of cognitive decline and increased risk of converting to dementia.
  •  
28.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • Full-length and C-terminal neurogranin in Alzheimer's disease cerebrospinal fluid analyzed by novel ultrasensitive immunoassays
  • 2020
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Neurogranin (Ng) is a neuron-specific and postsynaptic protein that is abundantly expressed in the brain, particularly in the dendritic spine of the hippocampus and cerebral cortex. The enzymatic cleavage of Ng produces fragments that are released into cerebrospinal (CSF), which have been shown to be elevated in Alzheimer's disease (AD) patients and predict cognitive decline. Thus, quantification of distinctive cleavage products of Ng could elucidate different features of the disease. Methods In this study, we developed novel ultrasensitive single molecule array (Simoa) assays for measurement of full-length neurogranin (FL-Ng) and C-terminal neurogranin (CT-Ng) fragments in CSF. The Ng Simoa assays were evaluated in CSF samples from AD patients (N = 23), mild cognitive impairment due to AD (MCI-AD) (N = 18), and from neurological controls (N = 26). Results The intra-assay repeatability and inter-assay precision of the novel methods had coefficients of variation below 7% and 14%, respectively. CSF FL-Ng and CSF CT-Ng median concentrations were increased in AD patients (6.02 ng/L, P < 0.00001 and 452 ng/L, P = 0.00001, respectively) and in patients with MCI-AD (5.69 ng/L, P < 0.00001 and 566 ng/L, P < 0.00001) compared to neurological controls (0.644 ng/L and 145 ng/L). The median CSF ratio of CT-Ng/FL-Ng were decreased in AD patients (ratio = 101, P = 0.008) and in patients with MCI-AD (ratio = 115, P = 0.016) compared to neurological controls (ratio = 180). CSF of FL-Ng, CT-Ng, and ratio of CT-Ng/FL-Ng could each significantly differentiate AD patients from controls (FL-Ng, AUC = 0.907; CT-Ng, AUC = 0.913; CT-Ng/FL-Ng, AUC = 0.775) and patients with MCI-AD from controls (FL-Ng, AUC = 0.937; CT-Ng, AUC = 0.963; CT-Ng/FL-Ng, AUC = 0.785). Conclusions Assessments of the FL-Ng and CT-Ng levels in CSF with the novel sensitive immunoassays provide a high separation of AD from controls, even in early phase of the disease. The novel Ng assays are robust and highly sensitive and may be valuable tools to study synaptic alteration in AD, as well as to monitor the effect on synaptic integrity of novel drug candidates in clinical trials.
  •  
29.
  •  
30.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone.
  • 2016
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 22:12, s. 1587-1595
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia-mediated proteolysis of the triggering receptor expressed on myeloid cells-2 (TREM-2) produces soluble TREM-2 (sTREM-2) that can be measured in cerebrospinal fluid (CSF) samples. Loss-of-function mutations in TREM2 or in the gene encoding its adaptor protein cause the rare Nasu-Hakola disease (NHD). Multiple sclerosis (MS) is an autoimmune disease that in common with NHD is characterized by demyelination and microglial activation.
  •  
31.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer's disease
  • 2016
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is a central pathogenic event in Alzheimer's disease that occurs early during the course of disease and correlates with cognitive symptoms. The pre-synaptic vesicle protein synaptotagmin-1 appears to be essential for the maintenance of an intact synaptic transmission and cognitive function. Synaptotagmin-1 in cerebrospinal fluid is a candidate Alzheimer biomarker for synaptic dysfunction that also may correlate with cognitive decline. Methods: In this study, a novel mass spectrometry-based assay for measurement of cerebrospinal fluid synaptotagmin-1 was developed, and was evaluated in two independent sample sets of patients and controls. Sample set I included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 17, age 52-86 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 5, age 62-88 years), and controls (N = 17, age 41-82 years). Sample set II included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 24, age 52-84 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 18, age 58-83 years), and controls (N = 36, age 43-80 years). Results: The reproducibility of the novel method showed coefficients of variation of the measured synaptotagmin-1 peptide 215-223 (VPYSELGGK) and peptide 238-245 (HDIIGEFK) of 14 % or below. In both investigated sample sets, the CSF levels of synaptotagmin-1 were significantly increased in patients with dementia due to Alzheimer's disease (P <= 0.0001) and in patients with mild cognitive impairment due to Alzheimer's disease (P < 0.001). In addition, in sample set I the synaptotagmin-1 level was significantly higher in patients with mild cognitive impairment due to Alzheimer's disease compared with patients with dementia due to Alzheimer's disease (P <= 0.05). Conclusions: Cerebrospinal fluid synaptotagmin-1 is a promising biomarker to monitor synaptic dysfunction and degeneration in Alzheimer's disease that may be useful for clinical diagnosis, to monitor effect on synaptic integrity by novel drug candidates, and to explore pathophysiology directly in patients with Alzheimer's disease.
  •  
32.
  • Öhrfelt Olsson, Annika, 1973, et al. (författare)
  • Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders-a marker of synapse loss?
  • 2009
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 0304-3940. ; 450:3, s. 332-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The association of alpha-synuclein (alpha-syn) neuropathology with Parkinson's disease (PD) and several related disorders has led to an intense research effort to develop cerebrospinal fluid (CSF)- or blood-based alpha-syn biomarkers for these types of diseases. Recent studies show that alpha-syn is present in CSF and possible to measure using enzyme-linked immunosorbent assay (ELISA). Here, we describe a novel ELISA that allows for quantification of alpha-syn in CSF down to 50pg/mL. The diagnostic value of the test was assessed using CSF samples from 66 Alzheimer's disease (AD) patients, 15PD patients, 15 patients with dementia with Lewy bodies (DLB) and 55 cognitively normal controls. PD and DLB patients and controls displayed similar CSF alpha-syn levels. AD patients had significantly lower alpha-syn levels than controls (median [inter-quartile range] 296 [234-372] and 395 [298-452], respectively, p<0.001). Moreover, AD patients with mini-mental state examination (MMSE) scores below 20 had significantly lower alpha-syn than AD patients with MMSE scores of 20 or higher (p=0.02). There was also a tendency towards a negative correlation between alpha-syn levels and disease duration in the AD group (r=-0.247, p=0.06). Altogether, our results speak against CSF alpha-syn as a reliable biomarker for PD and DLB. The lower alpha-syn levels in AD, as well as the association of alpha-syn reduction with AD severity, approximated by MMSE, suggests that it may be a general marker of synapse loss, a hypothesis that warrants further investigation.
  •  
33.
  • Öhrfelt Olsson, Annika, 1973, et al. (författare)
  • Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method.
  • 2011
  • Ingår i: Neurochemical research. - : Springer Science and Business Media LLC. - 1573-6903 .- 0364-3190. ; 36:11, s. 2029-2042
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn(1-140)) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn(1-139) and Ac-α-syn(1-103)) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).
  •  
34.
  • Öhrfelt Olsson, Annika, 1973, et al. (författare)
  • Screening for new biomarkers for subcortical vascular dementia and Alzheimer's disease
  • 2011
  • Ingår i: Dementia and Geriatric Cognitive Disorders Extra. - : S. Karger AG. - 1664-5464. ; 1:1, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Novel biomarkers are important for identifying as well as differentiating subcortical vascular dementia (SVD) and Alzheimer’s disease (AD) at an early stage in the disease process. Methods: In two independent cohorts, a multiplex immunoassay was utilized to analyze 90 proteins in cerebrospinal fluid (CSF) samples from dementia patients and patients at risk of developing dementia (mild cognitive impairment). Results: The levels of several CSF proteins were increased in SVD and its incipient state, and in moderate-to-severe AD compared with the control group. In contrast, some CSF proteins were altered in AD, but not in SVD. The levels of heart-type fatty acid binding protein (H-FABP) were consistently increased in all groups with dementia but only in some of their incipient states. Conclusions: In summary, these results support the notion that SVD and AD are driven by different pathophysiological mechanisms reflected in the CSF protein profile and that H-FABP in CSF is a general marker of neurodegeneration
  •  
35.
  • Kalm, Marie, 1981, et al. (författare)
  • Transient inflammation in neurogenic regions after irradiation of the developing brain.
  • 2009
  • Ingår i: Radiation research. - 0033-7587. ; 171:1, s. 66-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Kalm, M., Fukuda, A., Fukuda, H., Ohrfelt, A., Lannering, B., Björk-Eriksson, T., Blennow, K., Márky, I. and Blomgren, K. Transient Inflammation in Neurogenic Regions after Irradiation of the Developing Brain. Radiat. Res. 171, 66-76 (2009).We characterized the inflammatory response after a single dose of 8 Gy to the brains of postnatal day 9 rats. Affymetrix gene chips revealed activation of multiple inflammatory mechanisms in the acute phase, 6 h after irradiation. In the subacute phase, 7 days after irradiation, genes related to neurogenesis and cell cycle were down-regulated, but glial fibrillary acidic protein (GFAP) was up-regulated. The concentrations of 14 different cytokines and chemokines were measured using a microsphere-based xMAPtrade mark technology. CCL2, Gro/KC and IL-1alpha were the most strongly up-regulated 6 h after irradiation. CCL2 was expressed in astrocytes and microglia in the dentate gyrus and the subventricular zone (SVZ). Hypertrophy, but not hyperplasia, of astrocytes was demonstrated 7 days after irradiation. In summary, we found transient activation of multiple inflammatory mechanisms in the acute phase (6 h) after irradiation and activation of astrocytes in the subacute phase (7 days) after irradiation. It remains to be elucidated whether these transient changes are involved in the persistent effects of radiation observed on neurogenesis and cognition in rodents.
  •  
36.
  •  
37.
  • Sjödin, Simon, et al. (författare)
  • Mass Spectrometric Analysis of Cerebrospinal Fluid Ubiquitin in Alzheimer's Disease and Parkinsonian Disorders
  • 2017
  • Ingår i: Proteomics - Clinical Applications. - : Wiley. - 1862-8346 .- 1862-8354. ; 11:11-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Dysfunctional proteostasis, with decreased protein degradation and an accumulation of ubiquitin into aggregated protein inclusions, is a feature of neurodegenerative diseases. Identifying new potential biomarkers in cerebrospinal fluid (CSF) reflecting this process could contribute important information on pathophysiology. Experimental design: A developed method combining SPE and PRM-MS is employed to monitor the concentration of ubiquitin in CSF from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and progressive supranuclear palsy (PSP). Four independent cross-sectional studies are conducted, studies 1–4, including controls (n = 86) and participants with AD (n = 60), PD (n = 15), and PSP (n = 11). Results: The method shows a repeatability and intermediate precision not exceeding 6.1 and 7.9%, respectively. The determined LOD is 0.1 nm and the LOQ range between 0.625 and 80 nm. The CSF ubiquitin concentration is 1.2–1.5-fold higher in AD patients compared with controls in the three independent AD-control studies (Study 1, p < 0.001; Study 2, p < 0.001; and Study 3, p = 0.003). In the fourth study, there is no difference in PD or PSP, compared to controls. Conclusion and clinical relevance: CSF ubiquitin may reflect dysfunctional proteostasis in AD. The described method can be used for further exploration of ubiquitin as a potential biomarker in neurodegenerative diseases.
  •  
38.
  • Vanderstichele, Hugo, et al. (författare)
  • Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer's disease and dementia with Lewy bodies.
  • 2006
  • Ingår i: Clinical chemistry and laboratory medicine : CCLM / FESCC. - 1434-6621. ; 44:12, s. 1472-80
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Total tau (T-tau) and beta-amyloid((1-42)) (Abeta(1-42)) levels in cerebrospinal fluid (CSF) can differentiate Alzheimer's disease (AD) from normal aging or depressive pseudo-dementia. Differential diagnosis from dementia with Lewy bodies (DLB) in clinical settings is difficult. METHODS: The analytical performance of the INNOTEST PHOSPHO-TAU(181P) assay was validated in terms of selectivity, sensitivity, specificity, precision, robustness, and stability. Clinical utility of the assay alone, or combined with T-tau and Abeta(1-42), for discrimination of AD (n=94) from patients suffering from DLB (n=60) or from age-matched control subjects (CS) (n=60) was assessed in a multicenter study. RESULTS: CSF concentrations of tau phosphorylated at threonine 181 (P-tau(181P)) in AD was significantly higher than in DLB and CS. Discriminant analysis, a classification tree, and logistic regression showed that P-tau(181P) was the most statistically significant single variable of the three biomarkers for discrimination between AD and DLB. CONCLUSIONS: P-tau(181P) quantification is a robust and reliable assay that may be useful in discriminating AD from DLB.
  •  
39.
  • Wallin, Anders, 1950, et al. (författare)
  • Characteristic clinical presentation and CSF biomarker pattern in cerebral small vessel disease
  • 2012
  • Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X. ; 322:1-2, s. 192-196
  • Tidskriftsartikel (refereegranskat)abstract
    • To be able to live a good, independent life cognitive functions need to be intact. Dementia, stroke and neuropsychiatric disorders are the major disorders underlying disability. Stroke is usually a consequence of an underlying vessel wall disease that has lasted for a longer period. This vessel wall disease is commonly silent or without prominent symptoms. Damage to the small penetrating arterioles of the brain, arteriolosclerosis, induced by aging and hypertension, as well as other factors such as diabetes and genetic vulnerability, plays an important role in the origin of white matter changes. The pathological vascular wall process leads to lumen constriction, impaired ability to change lumen diameter according to metabolic needs and possible ischemic-hypoxic tissue damage in the vulnerable vascular architectural terminal areas of the long penetrating arteries. The arteriolosclerotic blood vessels are associated with inflammation and remodelling of the extracellular matrix. Enzymes connected to this process have also been found to be involved in demyelination and blood brain barrier opening but also in the repair process of angiogenesis and neurogenesis. Biochemical changes reflecting these processes might be early indicators of small vessel disease and hence increase the knowledge about the disease characteristic mechanisms. Moreover, monitoring disease modifying treatment effects can be an important application for small vessel disease specific biochemical markers. (c) 2012 Elsevier B.V. All rights reserved.
  •  
40.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-40 av 40
Typ av publikation
tidskriftsartikel (38)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (40)
Författare/redaktör
Blennow, Kaj, 1958 (35)
Zetterberg, Henrik, ... (34)
Öhrfelt, Annika, 197 ... (27)
Öhrfelt Olsson, Anni ... (13)
Brinkmalm, Gunnar (12)
Hansson, Oskar (11)
visa fler...
Brinkmalm-Westman, A ... (10)
Wallin, Anders, 1950 (8)
Andreasson, Ulf, 196 ... (8)
Minthon, Lennart (6)
Portelius, Erik, 197 ... (6)
Brinkmalm, Ann (5)
Bjerke, Maria, 1977 (5)
Svensson, Johan, 196 ... (4)
Vanmechelen, Eugeen (4)
Hall, Sara (4)
Londos, Elisabet (3)
Kvartsberg, Hlin, 19 ... (3)
Andreasen, Niels (3)
Nägga, Katarina (3)
Sjödin, Simon (3)
Persson, Rita, 1951 (3)
Surova, Yulia (3)
Rolstad, Sindre, 197 ... (2)
Olsson, Bob, 1969 (2)
Forsgren, Lars (2)
Linder, Jan (2)
Heslegrave, Amanda (2)
Ashton, Nicholas J. (2)
Gobom, Johan (2)
Johansson, Per, 1966 (2)
Alves, Guido (2)
Lange, Johannes (2)
Tysnes, Ole-Bjørn (2)
Eckerström, Marie, 1 ... (2)
Nordlund, Arto, 1962 (2)
Bhattacharjee, Payel ... (2)
Edman, Åke (2)
Jonsson, Michael, 19 ... (2)
Eckerström, Carl (2)
Dumurgier, J. (2)
Paquet, C. (2)
Nutu, Magdalena, 196 ... (2)
Honer, William G. (2)
Olsson, Erik, 1960 (2)
Trupp, Miles (2)
Hugon, J (2)
Bouaziz-Amar, E. (2)
Göthlin, Mattias, 19 ... (2)
Førland, Marthe Guri ... (2)
visa färre...
Lärosäte
Göteborgs universitet (40)
Lunds universitet (9)
Karolinska Institutet (4)
Linköpings universitet (3)
Umeå universitet (2)
Uppsala universitet (1)
visa fler...
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (40)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy