SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Öquist Gunnar) "

Sökning: WFRF:(Öquist Gunnar)

  • Resultat 1-49 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krivosheeva, A, et al. (författare)
  • Cold acclimation and photoinhibition of photosynthesis in Scots pine
  • 1996
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 200:3, s. 296-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem Il reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20 degrees C. The amounts and activities of the majority of analysed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Björn, Lars Olof, et al. (författare)
  • A tribute to Per Halldal (1922-1986), a Norwegian photobiologist in Sweden.
  • 2007
  • Ingår i: Photosynthesis Research. - : Springer Science and Business Media LLC. - 0166-8595 .- 1573-5079. ; 92:1, s. 7-11
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here a tribute to Per Halldal (February 2, 1922-March 26, 1986), a leader, an instrumentalist, an expert on phototaxis in algae, and one whom we remember, even after 20 years of his death, as a person who spread joy, enthusiasm and knowledge wherever he went.
  •  
6.
  •  
7.
  •  
8.
  • Chow, Wah Soon, et al. (författare)
  • Quantifying and monitoring functional photosystem II and the stoichiometry of the two photosystems in leaf segments : approaches and approximations
  • 2012
  • Ingår i: Photosynthesis Research. - Dordrecht : Springer. - 0166-8595 .- 1573-5079. ; 113:1-3, s. 63-74
  • Forskningsöversikt (refereegranskat)abstract
    • Given its unique function in light-induced water oxidation and its susceptibility to photoinactivation during photosynthesis, photosystem II (PS II) is often the focus of studies of photosynthetic structure and function, particularly in environmental stress conditions. Here we review four approaches for quantifying or monitoring PS II functionality or the stoichiometry of the two photosystems in leaf segments, scrutinizing the approximations in each approach. (1) Chlorophyll fluorescence parameters are convenient to derive, but the information-rich signal suffers from the localized nature of its detection in leaf tissue. (2) The gross O-2 yield per single-turnover flash in CO2-enriched air is a more direct measurement of the functional content, assuming that each functional PS II evolves one O-2 molecule after four flashes. However, the gross O-2 yield per single-turnover flash (multiplied by four) could over-estimate the content of functional PS II if mitochondrial respiration is lower in flash illumination than in darkness. (3) The cumulative delivery of electrons from PS II to P700(+) (oxidized primary donor in PS I) after a flash is added to steady background far-red light is a whole-tissue measurement, such that a single linear correlation with functional PS II applies to leaves of all plant species investigated so far. However, the magnitude obtained in a simple analysis (with the signal normalized to the maximum photo-oxidizable P700 signal), which should equal the ratio of PS II to PS I centers, was too small to match the independently-obtained photosystem stoichiometry. Further, an under-estimation of functional PS II content could occur if some electrons were intercepted before reaching PS I. (4) The electrochromic signal from leaf segments appears to reliably quantify the photosystem stoichiometry, either by progressively photoinactivating PS II or suppressing PS I via photo-oxidation of a known fraction of the P700 with steady far-red light. Together, these approaches have the potential for quantitatively probing PS II in vivo in leaf segments, with prospects for application of the latter two approaches in the field.
  •  
9.
  • Ensminger, Ingo, et al. (författare)
  • Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests
  • 2004
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 10:6, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • During winter and early spring, evergreen boreal conifers are severely stressed because light energy cannot be used when photosynthesis is pre-empted by low ambient temperatures. To study photosynthetic performance dynamics in a severe boreal climate, seasonal changes in photosynthetic pigments, chloroplast proteins and photochemical efficiency were studied in a Scots pine forest near Zotino, Central Siberia. In winter, downregulation of photosynthesis involved loss of chlorophylls, a twofold increase in xanthophyll cycle pigments and sustained high levels of the light stress-induced zeaxanthin pigment. The highest levels of xanthophylls and zeaxanthin did not occur during the coldest winter period, but rather in April when light was increasing, indicating an increased capacity for thermal dissipation of excitation energy at that time. Concomitantly, in early spring the D1 protein of the photosystem II (PSII) reaction centre and the light-harvesting complex of PSII dropped to their lowest annual levels. In April and May, recovery of PSII activity, chloroplast protein synthesis and rearrangements of pigments were observed as air temperatures increased above 0°C. Nevertheless, severe intermittent low-temperature episodes during this period not only halted but actually reversed the physiological recovery. During these spring low-temperature episodes, protective processes involved a complementary function of the PsbS and early light-induced protein thylakoid proteins. Full recovery of photosynthesis did not occur until the end of May. Our results show that even after winter cold hardening, photosynthetic activity in evergreens responds opportunistically to environmental change throughout the cold season. Therefore, climate change effects potentially improve the sink capacity of boreal forests for atmospheric carbon. However, earlier photosynthesis in spring in response to warmer temperatures is strongly constrained by environmental variation, counteracting the positive effects of an early recovery process.
  •  
10.
  • Govindjee, Govindjee, et al. (författare)
  • David (Dave) Charles Fork (1929–2020) : a gentle human being, a great experimenter, and a passionate researcher
  • 2023
  • Ingår i: Photosynthesis Research. - : Springer Netherlands. - 0166-8595 .- 1573-5079. ; 155:1, s. 107-125
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide here an overview of the remarkable life and outstanding research of David (Dave) Charles Fork (March 4, 1929–December 13, 2021) in oxygenic photosynthesis. In the words of the late Jack Edgar Myers, he was a top ‘photosynthetiker’. His research dealt with novel findings on light absorption, excitation energy distribution, and redistribution among the two photosystems, electron transfer, and their relation to dynamic membrane change as affected by environmental changes, especially temperature. David was an attentive listener and a creative designer of experiments and instruments, and he was also great fun to work with. He is remembered here by his family, coworkers, and friends from around the world including Australia, France, Germany, Japan, Sweden, Israel, and USA.
  •  
11.
  • Greer, DH, et al. (författare)
  • Photoinhibition and recovery of photosynthesis in intact barley leaves at 5 and 20°C
  • 1991
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 81:2, s. 203-210
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinhibition of photosynthesis and its recovery were studied in intact barley (Hordeum vulgare L. cv. Gunilla) leaves grown in a controlled environment by exposing them to two temperatures, 5 and 20-degrees-C, and a range of photon flux densities in excess of that during growth. Additionally, photoinhibition was examined in the presence of chloramphenicol (CAP, an inhibitor of chloroplast protein synthesis) and of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Susceptibility to photoinhibition was much higher at 5 than at 20-degrees-C. Furthermore, at 20-degrees-C CAP exacerbated photoinhibition strongly, whereas CAP had little additional effect (10%) at 5-degrees-C. These results support the model that net photoinhibition is the difference between the inactivation and repair of photosystem II (PSII); i.e. the degradation and synthesis of the reaction centre protein, D1. Furthermore, the steady-state extent of photoinhibition was strongly dependent on temperature and the results indicated this was manifested through the effects of temperature on the repair process of PSII. We propose that the continuous repair of PSII at 20-degrees-C conferred at least some protection from photoinhibition. At 5-degrees-C the repair process was largely inhibited, with increased photoinhibition as a consequence. However, we suggest where repair is inhibited by low temperature, some protection is alternatively conferred by the photoinhibited reaction centres. Providing they are not degraded, such centres could still dissipate excitation energy non-radiatively, thereby conferring protection of remaining photochemically active centres under steady-state conditions. A fraction of PS II centres were capable of resisting photoinhibition when the repair process was inhibited by CAP. This is discussed in relation to PS II heterogeneity. Furthermore, the repair process was not apparently activated within 3 h when barley leaves were transferred to photoinhibitory light conditions at 20-degrees-C.
  •  
12.
  • Hendrickson, Luke, et al. (författare)
  • Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis.
  • 2006
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793. ; 580:20, s. 4959-68
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared the thylakoid membrane composition and photosynthetic properties of non- and cold-acclimated leaves from the dgd1 mutant (lacking >90% of digalactosyl–diacylglycerol; DGDG) and wild type (WT) Arabidopsis thaliana. In contrast to warm grown plants, cold-acclimated dgd1 leaves recovered pigment-protein pools and photosynthetic function equivalent to WT. Surprisingly, this recovery was not correlated with an increase in DGDG. When returned to warm temperatures the severe dgd1 mutant phenotype reappeared. We conclude that the relative recovery of photosynthetic activity at 5 °C resulted from a temperature/lipid interaction enabling the stable assembly of PSI complexes in the thylakoid.
  •  
13.
  • Huner, Norman P A, et al. (författare)
  • Photoprotection of Photosystem II: Reaction center quenching versus antenna quenching
  • 2006
  • Ingår i: Photoprotection, Photoinhibition, Gene Regulation and Environment. - : Springer. - 9781402035647 ; , s. 155-174
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Photoprotection, Photoinhibition, Gene Regulation, and Environment examines the processes whereby plants monitor environmental conditions and orchestrate their response to change, an ability paramount to the life of all plants. "Excess light", absorbed by the light-harvesting systems of photosynthetic organisms, is an integrative indicator of the environment, communicating the presence of intense light and any conditions unfavorable for growth and photosynthesis. Key plant responses are photoprotection and photoinhibition. In this volume, the dual role of photoprotective responses in the preservation of leaf integrity and in redox signaling networks modulating stress acclimation, growth, and development is addressed. In addition, the still unresolved impact of photoinhibition on plant survival and productivity is discussed. Specific topics include dissipation of excess energy via thermal and other pathways, scavenging of reactive oxygen by antioxidants, proteins key to photoprotection and photoinhibition, peroxidation of lipids, as well as signaling by reactive oxygen, lipid-derived messengers, and other messengers that modulate gene expression. Approaches include biochemical, physiological, genetic, molecular, and field studies, addressing intense visible and ultraviolet light, winter conditions, nutrient deficiency, drought, and salinity. This book is directed toward advanced undergraduate students, graduate students, and researchers interested in Plant Ecology, Stress Physiology, Plant Biochemistry, Integrative Biology, and Photobiology.
  •  
14.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale-Cereale L)
  • 1995
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 195:4, s. 554-562
  • Tidskriftsartikel (refereegranskat)abstract
    • Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mu mol O-2.m(-2).s(-1) when leaves were transferred from 20 to 5 degrees C for 30 min. Following cold-hardening at 5 degrees C for ten weeks, photosynthesis recovered to 15.05 mu mol O-2.m(-2).s(-1), comparable to the non-hardened rate at 20 degrees C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5 degrees C. The large increase in esterified phosphate in cold-hardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5 degrees C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.
  •  
15.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Effect of cold hardening on the components of respiratory decarboxylation in the light and in the dark in leaves of winter rye
  • 1996
  • Ingår i: Plant Physiology. - 0032-0889 .- 1532-2548. ; 111:3, s. 713-719
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dark, all decarboxylation reactions are associated with the oxidase reactions of mitochondrial electron transport. In the light, photorespiration is also active in photosynthetic cells. In winter rye (Secale cereale L.), cold hardening resulted in a P-fold increase in the rate of dark respiratory CO2 release from leaves compared with nonhardened (NH) controls. However, in the light, NH and cold-hardened (CH) leaves had comparable rates of oxidase decarboxylation and total intracellular decarboxylation, Furthermore, whereas CH leaves showed similar rates of total oxidase decarboxylation in the dark and light, NH leaves showed a 2-fold increase in total oxidase activity in the light compared with the dark. Light suppressed oxidase decarboxylation of end products of photosynthesis 2-fold in NH leaves and 3-fold in CH leaves in air. However, in high-CO2, light did not suppress the oxidase decarboxylation of end products. Thus, the decrease in oxidase decarboxylation of end products observed in the light and in air reflected glycolate-cycle-related inhibition of tricarboxylic acid cycle activity. We also showed that the glycolate cycle was involved in the decarboxylation of the end products of photosynthesis in both NH and CH leaves, suggesting a flow of fixed carbon out of the starch pool in the light.
  •  
16.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Effects of a short-term shift to low-temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase oxygenase and sucrose-phosphate synthase activity in leabves of winter rye (Secale-Cereale L)
  • 1994
  • Ingår i: Plant Physiology. - 0032-0889 .- 1532-2548. ; 106:3, s. 983-990
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a short-term (hours) shift to low temperature (5 degrees C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer), Cold-hardened plants grown at 5 degrees C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24 degrees C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5 degrees C required 9 h in the light at 5 degrees C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5 degrees C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering.
  •  
17.
  • Hurry, Vaughan M., 1960-, et al. (författare)
  • Cold hardening of spring and winter-wheat and rape results in differential-effects on growth, carbon metabolism, and carbohydrate content
  • 1995
  • Ingår i: Plant Physiology. - 0032-0889 .- 1532-2548. ; 109:2, s. 697-706
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of long-term (months) exposure to low temperature (5 degrees C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a P-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allows these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserves to support basal metabolism and regrowth in the spring.
  •  
18.
  • Hurry, V.M., et al. (författare)
  • Effects of growth at cold hardening temperatures and temperature shifts on resistance to photoinhibition
  • 1993
  • Ingår i: Advances in plant cold hardiness. - Boca Raton : CRC Press. - 9781351069526 - 0849349508 ; , s. 103-112
  • Bokkapitel (refereegranskat)abstract
    • This chapter presents a summary of results that illustrate the photosynthetic responses of cold-tolerant cereals, spinach, and pine to low temperature-induced photoinhibition. Pre Exposure to a low temperature regime induces a cold-hardened state that imparts a certain level of freezing resistance and enhances the winter survival of the seedlings under natural conditions. Photosynthesis provides the energy for this cold hardening process. The phenomenon of resistance to photoinhibition was examined at several levels of cellular organization in winter rye: isolated thylakoids; isolated, intact mesophyll cells; and leaf segments. In contrast to the herbaceous cold-tolerant plants, Scots pine exposed to cold hardening conditions exhibited the same susceptibility to low temperature-induced photoinhibition as nonhardened Scots pine. To attain maximum cold hardiness, the herbaceous plants grow and develop at low temperatures and, as a consequence, develop a resistance to low temperature photoinhibition. The capacity to down-regulate PSII through photoinhibition may be an important characteristic that separates cold-tolerant from chilling-sensitive plant species.
  •  
19.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale-Cereale L) following cold-hardening
  • 1995
  • Ingår i: Plant, Cell and Environment. - 0140-7791 .- 1365-3040. ; 18:1, s. 69-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-hardening of winter rye (Secale cereale L. cv. Musketeer) increased dark respiration from -2.2 to -3.9 mu mol O-2 m(-2)s(-1) and doubled light- and CO2-saturated photosynthesis at 20 degrees C from 18.1 to 37.0 mu mol O-2 m(-2) s(-1). We added oligomycin at a concentration that specifically inhibits oxidative phosphorylation to see whether the observed increase in dark respiration reflected an increase in respiration in the light, and whether this contributed to the enhanced photosynthesis of cold-hardened leaves, Oligomycin inhibited light- and CO2-saturated rates of photosynthesis in non-hardened and cold-hardened leaves by 14 and 25%, respectively, and decreased photochemical quenching of chlorophyll a fluorescence to a greater degree in cold-hardened than in non-hardened leaves, These data indicate an increase both in the rate of respiration in the light, and in the importance of respiration to photosynthesis following cold-hardening, Analysis of metabolite pools indicated that oligomycin inhibited photosynthesis by limiting regeneration of ribulose-1,5-bisphosphate, This limitation was particularly severe in cold-hardened leaves, and the resulting low 3-phosphoglycerate pools led to a feed-forward inhibition of sucrose-phosphate synthase activity, Thus, it does not appear that oxidative phosphorylation supports the increase in photosynthetic O-2 evolution following cold-hardening by increasing the availability of cytosolic ATP, The data instead support the hypothesis that the mitochondria function in the light by using the reducing equivalents generated by nan-cyclic photosynthetic electron transport.
  •  
20.
  • Ivanov, Alexander G, et al. (författare)
  • Acclimation to temperature and irradiance modulates PSII charge recombination.
  • 2006
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793. ; 580:11, s. 2797-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Acclimation of wild type and the chlorina F2 mutant of barley to either high light or low temperature results in a 2- to 3-fold increase in non-photochemical quenching which occurred independently of either energy-dependent quenching (qE), xanthophyll cycle-mediated antenna quenching or state transitions. Results of in vivo thermoluminescence measurements used to address this conundrum indicated that excitation pressure regulates the temperature gap for Click to view the MathML source and Click to view the MathML source charge recombinations within photosystem II reaction centers. This is discussed in terms of photoprotection through non-radiative charge recombination.
  •  
21.
  • Ivanov, Alexander G, et al. (författare)
  • Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine.
  • 2006
  • Ingår i: Planta. - : Springer Science and Business Media LLC. - 0032-0935 .- 1432-2048. ; 223:6, s. 1165-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter-induced inhibition of photosynthesis in Scots pine (Pinus sylvestris L.) needles is accompanied by a 65% reduction of the maximum photochemical efficiency of photosystem II (PSII), measured as F v/F m, but relatively stable photosystem I (PSI) activity. In contrast, the photochemical efficiency of PSII in bark chlorenchyma of Scots pine twigs was shown to be well preserved, while PSI capacity was severely decreased. Low-temperature (77 K) chlorophyll fluorescence measurements also revealed lower relative fluorescence intensity emitted from PSI in bark chlorenchyma compared to needles regardless of the growing season. Nondenaturating SDS-PAGE analysis of the chlorophyll–protein complexes also revealed much lower abundance of LHCI and the CPI band related to light harvesting and the core complex of PSI, respectively, in bark chlorenchyma. These changes were associated with a 38% reduction in the total amount of chlorophyll in the bark chlorenchyma relative to winter needles, but the Chl a/b ratio and carotenoid composition were similar in the two tissues. As distinct from winter pine needles exhibiting ATP/ADP ratio of 11.3, the total adenylate content in winter bark chlorenchyma was 2.5-fold higher and the estimated ATP/ADP ratio was 20.7. The photochemical efficiency of PSII in needles attached to the twig recovered significantly faster (28–30 h) then in detached needles. Fluorescence quenching analysis revealed a high reduction state of Q A and the PQ-pool in the green bark tissue. The role of bark chlorenchyma and its photochemical performance during the recovery of photosynthesis from winter stress in Scots pine is discussed.
  •  
22.
  • Ivanov, Alexander G, et al. (författare)
  • Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations.
  • 2006
  • Ingår i: Plant Cell Physiology. - : Oxford University Press (OUP). - 0032-0781 .- 1471-9053. ; 47:8, s. 1146-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared with wild type, the dgd1 mutant of Arabidopsis thaliana exhibited a lower amount of PSI-related Chl–protein complexes and lower abundance of the PSI-associated polypeptides, PsaA, PsaB, PsaC, PsaL and PsaH, with no changes in the levels of Lhca1–4. Functionally, the dgd1 mutant exhibited a significantly lower light-dependent, steady-state oxidation level of P700 (P700+) in vivo, a higher intersystem electron pool size, restricted linear electron transport and a higher rate of reduction of P700+ in the dark, indicating an increased capacity for PSI cyclic electron transfer compared with the wild type. Concomitantly, the dgd1 mutant exhibited a higher sensitivity to and incomplete recovery of photoinhibition of PSI. Furthermore, dgd1 exhibited a lower capacity to undergo state transitions compared with the wild type, which was associated with a higher reduction state of the plastoquinone (PQ) pool. We conclude that digalactosyl-diacylglycerol (DGDG) deficiency results in PSI acceptor-side limitations that alter the flux of electrons through the photosynthetic electron chain and impair the regulation of distribution of excitation energy between the photosystems. These results are discussed in terms of thylakoid membrane domain reorganization in response to DGDG deficiency in A. thaliana.
  •  
23.
  • Ivanov, A. G., et al. (författare)
  • Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana
  • 2012
  • Ingår i: Photosynthesis Research. - Dordrecht : Springer Science and Business Media LLC. - 0166-8595 .- 1573-5079. ; 113:1-3, s. 191-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure of control (non-hardened) Arabidopsis leaves to high light stress at 5 A degrees C resulted in a decrease of both photosystem II (PSII) (45 %) and Photosystem I (PSI) (35 %) photochemical efficiencies compared to non-treated plants. In contrast, cold-acclimated (CA) leaves exhibited only 35 and 22 % decrease of PSII and PSI photochemistry, respectively, under the same conditions. This was accompanied by an accelerated rate of P700(+) re-reduction, indicating an up-regulation of PSI-dependent cyclic electron transport (CET). Interestingly, the expression of the NDH-H gene and the relative abundance of the Ndh-H polypeptide, representing the NDH-complex, decreased as a result of exposure to low temperatures. This indicates that the NDH-dependent CET pathway cannot be involved and the overall stimulation of CET in CA plants is due to up-regulation of the ferredoxin-plastoquinone reductase, antimycin A-sensitive CET pathway. The lower abundance of NDH complex also implies lower activity of the chlororespiratory pathway in CA plants, although the expression level and overall abundance of the other well-characterized component involved in chlororespiration, the plastid terminal oxidase (PTOX), was up-regulated at low temperatures. This suggests increased PTOX-mediated alternative electron flow to oxygen in plants exposed to low temperatures. Indeed, the estimated proportion of O-2-dependent linear electron transport not utilized in carbon assimilation and not directed to photorespiration was twofold higher in CA Arabidopsis. The possible involvement of alternative electron transport pathways in inducing greater resistance of both PSII and PSI to high light stress in CA plants is discussed.
  •  
24.
  • Ivanov, Alexander G, et al. (författare)
  • Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 141:4, s. 1436-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The induction of the isiA (CP43') protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43' proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43'-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43' does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43' as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo.
  •  
25.
  • Ivanov, Alexander G., et al. (författare)
  • Photosystem II reaction centre quenching : mechanisms and physiological role
  • 2008
  • Ingår i: Photosynthesis Research. - : Springer Netherlands. - 0166-8595 .- 1573-5079. ; 98:1-3, s. 565-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and ΔpH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced QA in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.
  •  
26.
  • Ivanov, Alexander G., et al. (författare)
  • The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation
  • 2022
  • Ingår i: Planta. - : Springer. - 0032-0935 .- 1432-2048. ; 255:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Main conclusion: Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1.Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl–protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.
  •  
27.
  • Ivanov, Alexander G, et al. (författare)
  • The induction of CP43' by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation.
  • 2007
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 0005-2728. ; 1767:6, s. 807-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative lipid analysis demonstrated reduced amount of PG (50%) and lower ratio of MGDG/DGDG in iron-stressed Synechococcus sp. PCC 7942 cells compared to cells grown under iron sufficient conditions. In parallel, the monoenoic (C:1) fatty acids in MGDG, DGDG and PG increased from 46.8%, 43.7% and 45.6%, respectively in control cells to 51.6%, 48.8% and 48.7%, respectively in iron-stressed cells. This suggests increased membrane dynamics, which may facilitate the diffusion of PQ and keep the PQ pool in relatively more oxidized state in iron-stressed compared to control cells. This was confirmed by chlorophyll fluorescence and thermoluminescence measurements. Analysis of carotenoid composition demonstrated that the induction of isiA (CP43′) protein in response to iron stress is accompanied by significant increase of the relative abundance of all carotenoids. The quantity of carotenoids calculated on a Chl basis increased differentially with nostoxanthin, cryptoxanthin, zeaxanthin and β-carotene showing 2.6-, 3.1-, 1.9- and 1.9-fold increases, respectively, while the relative amount of caloxanthin was increased only by 30%. HPLC analyses of the pigment composition of Chl–protein complexes separated by non-denaturating SDS-PAGE demonstrated even higher relative carotenoids content, especially of cryptoxanthin, in trimer and monomer PSI Chl–protein complexes co-migrating with CP43′ from iron-stressed cells than in PSI complexes from control cells where CP43′ is not present. This implies a carotenoid-binding role for the CP43′ protein which supports our previous suggestion for effective energy quenching and photoprotective role of CP43′ protein in cyanobacteria under iron stress.
  •  
28.
  • Ivanov, AG, et al. (författare)
  • Restricted capacity for PSI-dependent cyclic electron flow in Delta petE mutant compromises the ability for acclimation to iron stress in Synechococcus sp PCC 7942 cells
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1817:8, s. 1277-1284
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure of wild type (WT) and plastocyanin coding petE gene deficient mutant (Delta petE) of Synechococcus cells to low iron growth conditions was accompanied by similar iron-stress induced blue-shift of the main red Chl a absorption peak and a gradual decrease of the Phc/Chl ratio, although Delta petE mutant was more sensitive when exposed to iron deficient conditions. Despite comparable iron stress induced phenotypic changes, the inactivation of petE gene expression was accompanied with a significant reduction of the growth rates compared to WT cells. To examine the photosynthetic electron fluxes in vivo, far-red light induced P700 redox state transients at 820 nm of WT and Delta petE mutant cells grown under iron sufficient and iron deficient conditions were compared. The extent of the absorbance change (Delta A(820)/A(820)) used for quantitative estimation of photooxidizable P700(+) indicated a 2-fold lower level of P700(+) in Delta petE compared to WT cells under control conditions. This was accompanied by a 2-fold slower re-reduction rate of P700(+) in the Delta petE indicating a lower capacity for cyclic electron flow around PSI in the cells lacking plastocyanin. Thermoluminescence (TL) measurements did not reveal significant differences in PSII photochemistry between control WT and Delta petE cells. However, exposure to iron stress induced a 4.5 times lower level of P700(+), 2-fold faster re-reduction rate of P700(+) and a temperature shift of the TL peak corresponding to S-2/S(3)Q(B)(-) charge recombination in WT cells. In contrast, the iron-stressed Delta petE mutant exhibited only a 40% decrease of P700(+) and no significant temperature shift in S-2/S(3)Q(B)(-) charge recombination. The role of mobile electron carriers in modulating the photosynthetic electron fluxes and physiological acclimation of cyanobacteria to low iron conditions is discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. (C) 2012 Elsevier B.V. All rights reserved.
  •  
29.
  • Kurepin, Leonid V., et al. (författare)
  • Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature
  • 2018
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 41:6, s. 1331-1345
  • Tidskriftsartikel (refereegranskat)abstract
    • High latitude forests will experience large changes in temperature and CO2 concentrations this century. We evaluated the effects of future climate conditions on 2 dominant boreal tree species, Pinus sylvestris L. and Picea abies (L.) H. Karst, exposing seedlings to 3 seasons of ambient (430 ppm) or elevated CO2 (750 ppm) and ambient temperatures, a + 4 degrees C warming or a + 8 degrees C warming. Pinus sylvestris responded positively to warming: seedlings developed a larger canopy, maintained high net CO2 assimilation rates (Anet), and acclimated dark respiration (Rdark). In contrast, carbon fluxes in Picea abies were negatively impacted by warming: maximum rates of Anet decreased, electron transport was redirected to alternative electron acceptors, and thermal acclimation of Rdark was weak. Elevated CO2 tended to exacerbate these effects in warm-grown Picea abies, and by the end of the experiment Picea abies from the +8 degrees C, high CO2 treatment produced fewer buds than they had 3 years earlier. Treatments had little effect on leaf and wood anatomy. Our results highlight that species within the same plant functional type may show opposite responses to warming and imply that Picea abies may be particularly vulnerable to warming due to low plasticity in photosynthetic and respiratory metabolism.
  •  
30.
  •  
31.
  • Martin, Björn, et al. (författare)
  • Identification of the photosynthetic co2 fixation inhibitors in isolated pine chloroplasts as resin acids
  • 1984
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 62:1, s. 110-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Thus far all attempts to isolate CO, fixing chloroplasts from pine have failed. In this paper it is proposed that resin acids present in pine needles partition into membranes during chloroplast isolation and interfere with specific reactions of the Calvin cycle. CO, fixation by isolated spinach chloroplasts was strongly inhibited by the introduction of a suspension of chloroplasts isolated from Pinus sylvestris L. A partially purified organic extract obtained from chloroplasts of this pine species also strongly inhibited CO, fixation by the spinach chloroplasts. The major inhibitory compounds from the organic extract were identified as a mixture of resin acids by gas-liquid chromatography and mass spectrometry. Two resin acids, abietic acid and dehydroabietic acid, were tested for inhibitory activity. Both resin acids were potent inhibitors of photosynthetic CO2fixation, with dehydroabietic acid being about three times more potent than abietic acid.
  •  
32.
  • Norén, Hanna, 1974- (författare)
  • Arabidopsis thaliana as a model organism from a biochemical perspective and The use of early light-induced proteins as a light stress marker
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the photosynthetic process higher plants, green algae and cyanobacteria convert light energy from the sun into carbohydrates, products essential to maintain life on earth. Even though sunlight is an essential condition for life it can also cause damage to plants. In order to cope with excess light plants have evolved several protective strategies including the accumulation of light stress proteins Elips (early light-induced protein). To facilitate studies on photosynthetic behaviour we developed a hydroponic cultivation system for Arabidopsis thaliana. The new cultivation method produces large amounts of plant material sufficient for e.g. biochemical studies. Using biochemical techniques originally developed for other model plants, Arabidopsis showed to be well suited not only for genetic but also for biochemical studies. Investigations of Elip expression in both Arabidopsis and pea plants demonstrate that Elips protective role is developmentally regulated. In general, Elip protein levels decrease with plant age in contrast to its transcript levels that accumulate in senescent plants. Other factors like low temperature and the content of protective pigments such as carotenoids and anthocyanins influence the Elip expression in leaves. Studies on Elip1 and Elip2 in Arabidopsis reveal that these two proteins are differently expressed in the thylakoid membrane. Therefore these data suggest that Elip1 and Elip2 might have different physiological roles under light stress conditions.
  •  
33.
  • Ottander, Christina, 1962-, et al. (författare)
  • Photosystem II reaction centres stay intact during low temperature photoinhibition
  • 1993
  • Ingår i: Photosynthesis Research. - 0166-8595 .- 1573-5079. ; 35:2, s. 191-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinhibition of photosynthesis was studied in intact barley leaves at 5 and 20-degrees-C, to reveal if Photosystem II becomes predisposed to photoinhibition at low temperature by 1) creation of excessive excitation of Photosystem II or, 2) inhibition of the repair process of Photosystem II. The light and temperature dependence of the reduction state of Q(A) was measured by modulated fluorescence. Photon flux densities giving 60% of Q(A) in a reduced state at steady-state photosynthesis (300 mu mol m-2 s-1 at 5-degrees-C and 1200 mumol m-2 s-1 at 20-degrees-C) resulted in a depression of the photochemical efficiency of Photosystem II (F(v)/F(m)) at both 5 and 20-degrees-C. Inhibition of F(v)/F(m) occurred with initially similar kinetics at the two temperatures. After 6 h, F(v)/F(m), was inhibited by 30% and had reached steady-state at 20-degrees-C. However, at 5-degrees-C, F(v)/F(m) continued to decrease and after 10 h, F(v)/F(m) was depressed to 55% of control. The light response of the reduction state of Q(A) did not change during photoinhibition at 20-degrees-C, whereas after photoinhibition at 5-degrees-C, the proportion of closed reaction centres at a given photon flux density was 10-20% lower than before photoinhibition. Changes in the D1-content were measured by immunoblotting and by the atrazine binding capacity during photoinhibition at high and low temperatures, with and without the addition of chloramphenicol to block chloroplast encoded protein synthesis. At 20-degrees-C, there was a close correlation between the amount of D1-protein and the photochemical efficiency of photosystem II, both in the presence or in the absence of an active repair cycle. At 5-degrees-C, an accumulation of inactive reaction centres occurred, since the photochemical efficiency of Photosystem II was much more depressed than the loss of D1-protein. Furthermore, at 5-degrees-C the repair cycle was largely inhibited as concluded from the finding that blockage of chloroplast encoded protein synthesis did not enhance the susceptibility to photoinihibition at 5-degrees-C. It is concluded that, the kinetics of the initial decrease of F(v)/F(m) was determined by the reduction state of the primary electron acceptor Q(A), at both temperatures. However, the further suppression of F(v)/F(m) at 5-degrees-C after several hours of photoinhibition implies that the inhibited repair cycle started to have an effect in determining the photochemical efficiency of Photosystem II.
  •  
34.
  • Ottander, Christina, 1962-, et al. (författare)
  • Recovery of photosynthesis in winter-stressed Scots pine
  • 1991
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 14:3, s. 345-349
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter-induced inhibition of photosynthesis in Scots pine (Pinus sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem 11 (Strand & Oquist, 1985b, Physiologia Plantarum, 65, 117-123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Oquist, 1988, Plant, Cell & Environment, 11, 231-238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18-degrees-C and 100-mu-mol m-2 s-1, light saturated rates and apparent quantum yields of photosynthetic O2-evolution recovered fully within approximately 48 h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shaded pine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.
  •  
35.
  • Ottander, Christina, 1962-, et al. (författare)
  • Seasonal-changes in photosystem-II organiszation and pigment composition in Pinus-Sylvestris
  • 1995
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 197:1, s. 176-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Conifers of the boreal zone encounter considerable combined stress of low temperature and high light during winter, when photosynthetic consumption of excitation energy is blocked. In the evergreen Pinus sylvestris L. these stresses coincided with major seasonal changes in photosystem II (PSII) organisation and pigment composition. The earliest changes occurred in September, before any freezing stress, with initial losses of chlorophyll, the D1-protein of the PSTI reaction centre and of PSII light-harvesting-complex (LHC Il) proteins. In October there was a transient increase in F-o, resulting from detachment of the light-harvesting antennae as reaction centres lost D1. The D1-protein content eventually decreased to 90%, reaching a minimum by December, but PSII photochemical efficiency [variable fluorescence (F-v)/maximum fluorescence (F-m)] did not reach the winter minimum until mid-February. The carotenoid composition varied seasonally with a twofold increase in lutein and the carotenoids of the xanthophyll cycle during winter, while the epoxidation state of the xanthophylls decreased from 0.9 to 0.1 from October to January. The loss of chlorophyll was complete by October and during winter much of the remaining chlorophyll was reorganised in aggregates of specific polypeptide composition, which apparently efficiently quench excitation energy through non-radiative dissipation. The timing of the autumn and winter changes indicated that xanthophyll de-epoxidation correlates with winter quenching of chlorophyll fluorescence while the drop in photochemical efficiency relates more to loss of D1-protein. In April and May recovery of the photochemistry of PSII, protein synthesis, pigment rearrangements and zeaxanthin epoxidation occurred concomitantly. Indoor recovery of photosynthesis in winter-stressed branches under favourable conditions was completed within 3 d, with rapid increases in F-o, the epoxidation state of the xanthophylls and in light-harvesting polypeptides, followed by recovery of D1-protein content and F-v/F-m, all without net increase in chlorophyll. The fall and winter reorganisation allow Pinus sylvestris is to maintain a large stock of chlorophyll in a quenched, photoprotected state, allowing rapid recovery of photosynthesis in spring.
  •  
36.
  • Sane, Prafullachandra Vishnu, et al. (författare)
  • Thermoluminescence
  • 2012
  • Ingår i: Photosynthesis. - Dordrecht : Springer Netherlands. - 9789400715783 - 9789400715790 ; , s. 445-474
  • Bokkapitel (refereegranskat)abstract
    • Thermo luminescence (TL) of photosynthetic membranes was discovered by William Arnold and Helen Sherwood in 1957. In the last half century, several studies have elucidated the mechanism of TL emission, which showed that the recombination of different charge pairs generated and trapped during pre-illumination are responsible for the observed light emission. Since most of the TL bands originate within Photosystem II (PS II), the technique of TL has become a useful complementary tool to chlorophyll a fluorescence to probe subtle changes in PS II photochemistry. The technique is simple and non-invasive; it has been successfully used to study leaf, cells, thylakoids and even reaction center preparations. The TL technique provides quick information about the redox potential changes of the bound primary quinone (Q(A)) and the secondary quinone (Q(B)) acceptors of PS II; TL has been extensively used to study the effects of photoinhibition, mutations, stresses and myriad responses of the photosynthetic apparatus during acclimation and adaptation. This chapter reviews crucial evidence for the identification of charge pairs responsible for the generation of different TL bands; the relationship of these bands to the components of delayed light emission; responses to excitation pressure arising out of environmental factors; methodology, and instrumentation. A model based on the detailed analysis of the redox shifts of the PS II electron acceptors Q(A) and Q(B), explaining the possibility of non-radiative dissipation of excess light energy within the reaction center of PS II (reaction center quenching) and its physiological significance in photoprotection of the photosynthetic membranes has been suggested. Developments in the analysis of biophysical parameters and the non-adherence of photosynthetic TL to the analysis by the 1945 theory of J.T. Randall and M.H.F. Wilkins have been briefly reviewed.
  •  
37.
  • Savitch, Leonid V., et al. (författare)
  • Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent
  • 2010
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press (OUP). - 0032-0781 .- 1471-9053. ; 51:9, s. 1555-1570
  • Tidskriftsartikel (refereegranskat)abstract
    • Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer [summer; 25C/250 photon flux denisty (PFD)], autumn (autumn; 15C/250 PFD) or winter conditions (winter; 5C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETRCO2) was 40 lower in both autumn and winter pine when compared with the summer pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETRexcess) not used for carbon assimilation within the total ETRJf increased by 30 in both autumn and winter pine. In autumn pine acclimated to 15C, the increased amounts of excess electrons were directed equally to 21kPa O-2-dependent and 2kPa O-2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry ((PSII)), thermally dissipated through (NPQ) and dissipated by additional quenching mechanism(s) ((f,D)) were similar to those in summer pine. In contrast, in winter needles acclimated to 5C, 60 of photosynthetically generated excess electrons were utilized through the 2kPa O-2-dependent electron sink and only 15 by the photorespiratory (21kPa O-2) electron pathway. Needles exposed to winter conditions led to a 3-fold lower (PSII), only a marginal increase in (NPQ) and a 2-fold higher (f,D), which was O-2 dependent compared with the summer and autumn pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O-2 dependent.
  •  
38.
  •  
39.
  •  
40.
  • Sveshnikov, Dmitry, et al. (författare)
  • Excitation energy partitioning and quenching during cold acclimation in Scots pine.
  • 2006
  • Ingår i: Tree Physiology. - 0829-318X. ; 26:3, s. 325-36
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the influence of two irradiances on cold acclimation and recovery of photosynthesis in Scots pine (Pinus sylvestris L.) seedlings to assess mechanisms for quenching the excess energy captured by the photosynthetic apparatus. A shift in temperature from 20 to 5 °C caused a greater decrease in photosynthetic activity, measured by chlorophyll fluorescence and oxygen evolution, in plants exposed to moderate light (350 µmol m–2 s–1) than in shaded plants (50 µmol m–2 s–1). In response to the temperature shift, maximal photochemical efficiency of photosystem II (PSII), measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of dark-adapted samples, decreased to 70% in exposed seedlings, whereas shaded seedlings maintained Fv/Fm close to initial values. After a further temperature decrease to –5 °C, only 8% of initial Fv/Fm remained in exposed plants, whereas shaded plants retained 40% of initial Fv/Fm. Seven days after transfer from –5 to 20 °C, recovery of photochemical efficiency was more complete in the shaded plants than in the exposed plants (87 and 65% of the initial Fv/Fm value, respectively).In response to cold stress, the estimated functional absorption cross section per remaining PSII reaction center increased at both irradiances, but the increase was more pronounced in exposed seedlings. Estimates of energy partitioning in the needles showed a much higher dissipative component in the expoesd seedlings at low temperatures, pointing to stronger development of non-photochemical quenching at moderate irradiances. The de-epoxidation state of the xanthophyll cycle pigments increased in exposed seedlings at 5 °C, contributing to the quenching capacity, whereas significant de-epoxidation in the shaded plants was observed only when temperatures decreased to –5 °C. Thermoluminescence (TL) measurements of PSII revealed that charge recombinations between the second oxidation state of Mn-cluster S2 and the semireduced secondary electron acceptor quinone QB–(S2QB–) were shifted to lower temperatures in cold-acclimated seedlings compared with control seedlings and this effect depended on irradiance. Concomitant with this, cold-acclimated seedlings demonstrated a significant shift in the S2 recombination with primary acceptor QA– (S2QA–) characteristic TL emission peak to higher temperatures, thus narrowing the redox potential gap between S2QB– and S2QA–, which might result in increased probability for non-radiative radical pair recombination betweem the PSII reaction center chlorophyll a (P680+) and QA– (P680+QA–) (reaction center quenching) in cold-acclimated seedlings. In Scots pine seedlings, mechanisms of quenching excess light energy in winter therefore involve light-dependent regulation of reaction center content and both reaction center-based and antenna-based quenching of excess light energy, enabling them to withstand high excitation pressure under northern winter conditions.
  •  
41.
  • Wilson, Kenneth E, et al. (författare)
  • Energy balance, organellar redox status, and acclimation to environmental stress
  • 2006
  • Ingår i: Canadian Journal of Botany. - 0008-4026 .- 1480-3305. ; 84, s. 1355-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • In plants and algal cells, changes in light intensity can induce intrachloroplastic and retrograde regulation of gene expression in response to changes in the plastoquinone redox status. We review the evidence in support of the thesis that the chloroplast acts as a general sensor of cellular energy imbalance sensed through the plastoquinone pool. Alteration in cellular energy balance caused by chloroplast or mitochondrial metabolism can induce intracellular signalling to affect chloroplastic and nuclear gene expression in response, not only to light intensity, but to a myriad of abiotic stresses. In addition, this chloroplastic redox sensing also appears to have a broader impact, affecting long-distance systemic signalling related to plant growth and development. The organization of the respiratory electron transport chains of mitochondria and heterotrophic prokaryotes is comparable to that of chloroplast thylakoid membranes, and the redox state of the respiratory ubiquinone pool is a well-documented cellular energy sensor. Thus, modulation of electron transport component redox status by abiotic stress regulates organellar as well as nuclear gene expression. From the evidence presented, we suggest that the photosynthetic and respiratory machinery in prokaryotic and eukaryotic organisms have a dual function: primary cellular energy transformation, and global environmental sensing.
  •  
42.
  • Zavafer, Alonso, et al. (författare)
  • Wah Soon Chow, a teacher, a friend and a colleague
  • 2021
  • Ingår i: Photosynthesis Research. - : Springer. - 0166-8595 .- 1573-5079. ; 149:1-2, s. 253-258
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • To finish this special issue, some friends, colleagues and students of Prof. Chow (Emeritus Professor, the Research School of Biology, the Australian National University) have written small tributes to acknowledge not only his eminent career but to describe his wonderful personality.
  •  
43.
  • Ögren, Erling, et al. (författare)
  • Photoinhibition of photosynthesis in lemna-gibba as induced by the interaction between light and temperature .3. Chlorophyll fluorescence at 77-K
  • 1984
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 62:2, s. 193-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinhibition in Lemna gibba L. was studied by interpreting chlorophyll fluorescence characteristics at 77 K on the basis of the bipartite model of Butler and co-workers (Butler 1978). Application of this analysis to chloroplasts (isolated from plants before and after exposure to a photosynthetic photon flux density of 1 750 μmol m−2 s−1 at 3°C for 2 h) revealed that photoinhibition had the following effect on primary events in photosynthesis. Firstly, the fluorescence of PS II increased (44%) in the state of open traps (Fo) and decreased (32%) in the state of closed traps (Fm). It is suggested, that the Fo-decrease reflects increased quenching by radiationless decay, both effects occurring at PS II reaction centers. Secondly, the rate constant for transfer of excitation energy from PS II to PS I (kT(μ→J)) increased by 34%. However, in the state of closed traps, the flux of excitation energy via this transfer process decreased, most likely because of increased quenching by radiationless decay at PS II reaction centers. Thirdly, the probability for fluorescence from PS I decreased (19%). This indicates increased quenching by radiationless decay.
  •  
44.
  • Ögren, Erling, et al. (författare)
  • Photoinhibition of photosynthesis in Lemna gibba as induced by the interaction between light and temperature. II. Photosynthetic electron transport
  • 1984
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 62:2, s. 187-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinhibition of photosynthesis in Lemna gibba L. was induced by exposing intact plants to a high photosynthetic photon flux density of 1 750 μmol m−2 s−1 at a low temperature of 3°C. Subsequently isolated chloroplasts showed pronounced reductions in the capacity of whole chain electron transport, measured as Hill activity, and in the efficiency of electron transport to the primary electron acceptor Q of photosystem II, measured as variable chlorophyll fluorescence at 20°C. These changes proceeded with similar kinetics (probably of the first-order reaction), suggesting that the site of photoinhibition is in the electron transfer to Q. A partial uncoupling of the whole chain electron transport also occured. The capacity of electron transport mediated by photosystem I was unaffected. The extent of photoinhibition of photosynthetic electron transport, as produced by a 2 h exposure of L. gibba to three different combinations of photon flux density and temperature was studied. It was shown that intrinsically similar states of photoinhibition, on the evidence of their time courses of recovery, were induced by either a high photon flux density and 25°C or by a moderate photon flux density and 3°C.
  •  
45.
  • Öquist, Gunnar, 1941- (författare)
  • Effects of low temperature on photosynthesis
  • 1983
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 6:4, s. 281-300
  • Forskningsöversikt (refereegranskat)
  •  
46.
  •  
47.
  • Öquist, Gunnar, 1941-, et al. (författare)
  • Photosynthesis of overwintering evergreen plants
  • 2003
  • Ingår i: Annual Review of Plant Physiology and Plant Molecular Biology. - : Annual Reviews. - 1040-2519 .- 2331-0960. ; 54, s. 329-355
  • Forskningsöversikt (refereegranskat)abstract
    • In this review we focus on photosynthetic behavior of overwintering evergreens with an emphasis on both the acclimative responses of photosynthesis to cold and the winter behavior of photosynthesis in conifers. Photosynthetic acclimation is discussed in terms of the requirement for a balance between the energy absorbed through largely temperature-insensitive photochemical processes and the energy used for temperature-sensitive biochemical processes and growth. Cold acclimation transforms the xanthophyll-mediated nonphotochemical antenna quenching of absorbed light from a short-term dynamic response to a long-term sustained quenching for the whole winter period. This acclimative response helps protect the evergreen foliage from photooxidative damage during the winter when photosynthesis is restricted or prevented by low temperatures. Although the molecular mechanisms behind the sustained winter excitation quenching are largely unknown, it does involve major alterations in the organization and composition of the photosystem II antenna. In addition, photosystem I may play an important role in overwintering evergreens not only by quenching absorbed light photochemically via its support of cyclic electron transport at low temperatures, but also by nonphotochemical quenching of absorbed light irrespective of temperature. The possible role of photosystem II reaction centers in nonphotochemical quenching of absorbed energy in overwintering evergreens is also discussed. Processes like chlororespiration and cyclic electron transport may also be important for maintaining the functional integrity of the photosynthetic apparatus of overwintering evergreens both during periods of thawing in winter and during recovery from winter stress in spring. We suggest that the photosynthetic acclimation responses of overwintering evergreens represent specific evolutionary adaptations for plant species that invest in the long-term maintenance of leaf structure in cold climatic zones as exemplified by the boreal forests of the Northern Hemisphere.
  •  
48.
  •  
49.
  • Öquist, Gunnar, et al. (författare)
  • Why Are Some Nations More Successful Than Others in Research Impact? A Comparison Between Denmark and Sweden
  • 2015
  • Ingår i: Incentives and Performance: Governance of Research Organizations. - Cham : Springer International Publishing. - 9783319097855 - 9783319097848 ; , s. 241-257
  • Bokkapitel (refereegranskat)abstract
    • Bibliometric impact analyses show that Swedish research has less international visibility than Danish research. When taking a global view on all subject fields and selecting publications cited higher than the 90th percentile, i.e., the Top 10 %—publications, the Swedish Research Council shows that although Sweden ranks 15 % above world average, Denmark, the Netherlands and Switzerland rank 35–40 % above. To explain these different performances, The Royal Swedish Academy of Sciences asked us to compare the national research systems on three levels: priority setting at national level, governance of universities and direction and funding of research. There are of course many similarities between the Danish and Swedish research systems but there are still subtle differences that have developed over time, which may explain the different international visibility. First of all, it does not depend on different levels of public spending on research and development. However, the core funding of universities relative external funding is higher in Denmark than in Sweden. The academic leadership of Danish universities in terms of board, vice-chancellor, faculty dean and department chair is also more coherent and focused on priority setting, recruitment, organization and deployment of resources to establish research environments that operate at the forefront of international research. On all these points we see a weaker leadership in Sweden. Furthermore, over the last 20 years, public funding of research in Sweden has become more and more unpredictable and program oriented with many new actors, while the Danish funding system, although it also has developed over time, shows more consistency with strong actors to fund individuals with novel ideas. The research policy in Sweden has also developed multiple, sometimes even conflicting goals, which have undermined conditions for high-impact research, while in Denmark a policy to support excellence in research has been more coherent.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-49 av 49
Typ av publikation
tidskriftsartikel (36)
bokkapitel (5)
rapport (3)
forskningsöversikt (3)
annan publikation (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt/konstnärligt (7)
populärvet., debatt m.m. (2)
Författare/redaktör
Öquist, Gunnar, 1941 ... (24)
Öquist, Gunnar (23)
Ivanov, Alexander G. (14)
Huner, Norman P A (14)
Hurry, Vaughan (7)
Ottander, Christina, ... (5)
visa fler...
Hurry, Vaughan, 1960 ... (5)
Gardeström, Per, 195 ... (5)
Benner, Mats (3)
Funk, Christiane (2)
He, Jie (2)
Lloyd, Jon (2)
Lidin, Sven (1)
Campbell, D. (1)
Selstam, Eva, 1945- (1)
Calmfors, Lars (1)
Andersson, B. (1)
Malek, L. (1)
Larsson, Mats (1)
Heldin, Carl-Henrik (1)
Jansson, Stefan (1)
Gardeström, Per (1)
Lidén, Kerstin (1)
Berry, Joseph A. (1)
Rosso, D. (1)
Strand, Åsa (1)
Wingsle, Gunnar (1)
Sjöberg, Britt-Marie (1)
Eliasson, L (1)
Björn, Lars Olof (1)
Claesson, Stefan (1)
Shibistova, Olga (1)
Sundqvist, Christer (1)
Gref, Rolf (1)
Guenther, Alex (1)
Huang, Wei (1)
Simpson, David (1)
Huner, Norman (1)
Bengtsson, Lennart (1)
Rodhe, Henning, 1941 ... (1)
Benner, Mats, 1965- (1)
Winiwarter, Wilfried (1)
Ståhlberg, Krister (1)
Steinbrecher, Rainer (1)
Bishop, NI (1)
Govindjee, Govindjee (1)
Sandberg, Helena (1)
Schreiber, Ulrich (1)
Larkum, Anthony W. D ... (1)
Campbell, Douglas (1)
visa färre...
Lärosäte
Umeå universitet (41)
Lunds universitet (5)
Stockholms universitet (3)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (46)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Samhällsvetenskap (6)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy