SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Örtenblad M.) "

Sökning: WFRF:(Örtenblad M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jensen, R., et al. (författare)
  • Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men
  • 2020
  • Ingår i: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 598:19, s. 4271-4292
  • Tidskriftsartikel (refereegranskat)abstract
    • Key points: When muscle biopsies first began to be used routinely in research on exercise physiology five decades ago, it soon become clear that the muscle content of glycogen is an important determinant of exercise performance. Glycogen particles are stored in distinct pools within the muscles, but the role of each pool during exercise and how this is affected by diet is unknown. Here, the effects of diet and exercise on these pools, as well as their relation to endurance during prolonged cycling were examined. We demonstrate here that an improved endurance capacity with high carbohydrate loading is associated with a temporal shift in the utilisation of the distinct stores of glycogen pools and is closely linked to the content of the glycogen pool closest to actin and myosin (intramyofibrillar glycogen). These findings highlight the functional importance of distinguishing between different subcellular microcompartments of glycogen in individual muscle fibres. Abstract: In muscle cells, glycogen is stored in three distinct subcellular pools: between or within myofibrils (inter- and intramyofibrillar glycogen, respectively) or beneath the sarcolemma (subsarcolemmal glycogen) and these pools may well have different functions. Here, we investigated the effect of diet and exercise on the content of these distinct pools and their relation to endurance capacity in type 1 and 2 muscle fibres. Following consumption of three different diets (normal, mixed diet = MIX, high in carbohydrate = HIGH, or low in carbohydrate = LOW) for 72 h, 11 men cycled at 75% of (Formula presented.) max until exhaustion. The volumetric content of the glycogen pools in muscle biopsies obtained before, during, and after exercise were quantified by transmission electron micrographs. The mean (SD) time to exhaustion was 150 (30), 112 (22), and 69 (18) minutes in the HIGH, MIX and LOW trials, respectively (P < 0.001). As shown by multiple regression analyses, the intramyofibrillar glycogen content in type 1 fibres, particularly after 60 min of exercise, correlated most strongly with time to exhaustion. In the HIGH trial, intramyofibrillar glycogen was spared during the initial 60 min of exercise, which was associated with levels and utilisation of subsarcolemmal glycogen above normal. In all trials, utilisation of subsarcolemmal and intramyofibrillar glycogen was more pronounced than that of intermyofibrillar glycogen in relative terms. In conclusion, the muscle pool of intramyofibrillar glycogen appears to be the most important for endurance capacity in humans. In addition, a local abundance of subsarcolemmal glycogen reduces the utilisation of intramyofibrillar glycogen during exercise. 
  •  
2.
  • Parola, S., et al. (författare)
  • Hybrid materials for non linear absorption
  • 2005
  • Ingår i: Nonlinear Optical Transmission and Multiphoton Processes in Organics III. - : SPIE - International Society for Optical Engineering. ; , s. 1-5
  • Konferensbidrag (refereegranskat)abstract
    • Alkynyl platinum derivatives and thiacalixarenes were trapped in solid transparent matrices prepared by the sol-gel process. By using functionalyzed silicon alkoxides, molecular species were grafted to the gel matrix giving a high doping concentration and chemically stable materials. In this communication we present broadband optical limiting performance in the visible wavelength region observed in the prepared materials.
  •  
3.
  • Hostrup, M., et al. (författare)
  • β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men
  • 2014
  • Ingår i: Journal of Physiology. - : Wiley. - 0022-3751 .- 1469-7793. ; 592:24, s. 5445-5459
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+-K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V˙O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+-K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue.
  •  
4.
  • Pellegrini, B., et al. (författare)
  • Methodological Guidelines Designed to Improve the Quality of Research on Cross-Country Skiing
  • 2021
  • Ingår i: Journal of Science in Sport and Exercise. - : Springer Science and Business Media LLC. - 2096-6709 .- 2662-1371. ; 3:3, s. 207-223
  • Forskningsöversikt (refereegranskat)abstract
    • Cross-country (XC) ski races involve a variety of formats, two different techniques and tracks with highly variable topography and environmental conditions. In addition, XC skiing is a major component of both Nordic combined and biathlon competitions. Research in this area, both in the laboratory and field, encounters certain difficulties that may reduce the reliability and validity of the data obtained, as well as complicate comparisons between studies. Here, 13 international experts propose specific guidelines designed to enhance the quality of research and publications on XC skiing, as well as on the biathlon and Nordic combined skiing. We consider biomechanical (kinematic, kinetic and neuromuscular) and physiological methodology (at the systemic and/or muscle level), providing recommendations for standardization/control of the experimental setup. We describe the types of measuring equipment and technology that are most suitable in this context. Moreover, we also deal with certain aspects of nomenclature of the classical and skating sub-techniques. In addition to enhancing the quality of studies on XC skiing, Nordic combined and biathlon, our guidelines should also be of value for sport scientists and coaches in other disciplines where physiological and/or biomechanical measurements are performed in the laboratory and/or outdoors. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy