SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Östli Per 1979) "

Sökning: WFRF:(Östli Per 1979)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Håkansson, Bo, 1953, et al. (författare)
  • A novel bone conduction implant (BCI): engineering aspects and pre-clinical studies.
  • 2010
  • Ingår i: International journal of audiology. - : Informa UK Limited. - 1499-2027 .- 1708-8186. ; 49:3, s. 203-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Percutaneous bone anchored hearing aids (BAHA) are today an important rehabilitation alternative for patients suffering from conductive or mixed hearing loss. Despite their success they are associated with drawbacks such as skin infections, accidental or spontaneous loss of the bone implant, and patient refusal for treatment due to stigma. A novel bone conduction implant (BCI) system has been proposed as an alternative to the BAHA system because it leaves the skin intact. Such a BCI system has now been developed and the encapsulated transducer uses a non-screw attachment to a hollow recess of the lateral portion of the temporal bone. The aim of this study is to describe the basic engineering principals and some preclinical results obtained with the new BCI system. Laser Doppler vibrometer measurements on three cadaver heads show that the new BCI system produces 0-10 dB higher maximum output acceleration level at the ipsilateral promontory relative to conventional ear-level BAHA at speech frequencies. At the contralateral promontory the maximum output acceleration level was considerably lower for the BCI than for the BAHA.
  •  
4.
  • Reinfeldt, Sabine, 1978, et al. (författare)
  • Hearing one's own voice during phoneme vocalization-Transmission by air and bone conduction
  • 2010
  • Ingår i: Journal of the Acoustical Society of America. - : Acoustical Society of America (ASA). - 1520-8524 .- 0001-4966. ; 128:2, s. 751-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between the bone conduction (BC) part and the air conduction (AC) part of one's own voice has previously not been well determined. This relation is important for hearing impaired subjects as a hearing aid affects these two parts differently and thereby changes the perception of one's own voice. A large ear-muff that minimized the occlusion effect while still attenuating AC sound was designed. During vocalization and wearing the ear muff the ear-canal sound pressure could be related to the BC component of a person's own voice while the AC component was derived from the sound pressure at the entrance of an open ear-canal. The BC relative to AC sensitivity of one's own voice was defined as the ratio between these two components related to the ear-canal sound pressure at hearing thresholds for BC and AC stimulation. The results of ten phonemes showed that the BC part of one's own voice dominated at frequencies between 1 and 2 kHz for most of the phonemes. The different phonemes gave slightly different results caused by differences during vocalization. However, similarities were seen for phonemes with comparable vocalization. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3458855]
  •  
5.
  • Reinfeldt, Sabine, 1978, et al. (författare)
  • Study of the Feasible Size of a Bone Conduction Implant Transducer in the Temporal Bone
  • 2015
  • Ingår i: Otology and Neurotology. - 1531-7129 .- 1537-4505. ; 36:4, s. 631-637
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis: The aim was to assess the temporal bone volume to determine the suitable size and position of a bone conduction implant (BCI) transducer. Background: A BCI transducer needs to be sufficiently small to fit in the mastoid portion of the temporal bone for a majority of patients. The anatomical geometry limits both the dimension of an implanted transducer and its positions in the temporal bone to provide a safe and simple surgery. Methods: Computed tomography (CT) scans of temporal bones from 22 subjects were virtually reconstructed. With an algorithm in MATLAB, the maximum transducer diameter as function of the maximum transducer depth in the temporal bone, and the most suitable position were calculated in all subjects. Results: An implanted transducer diameter of 16 mm inserted at a depth of 4 mm statistically fitted 95% of the subjects. If changing the transducer diameter to 12 mm, a depth of 6 mm would fit in 95% of the subjects. The most suitable position was found to be around 20 mm behind the ear canal. Conclusion: The present BCI transducer casing, used in ongoing clinical trials, was designed from the results in this study, demonstrating that the present BCI transducer casing (largest diameter [diagonal]: 15.5 mm, height: 6.4 mm) will statistically fit more than 95% of the subjects. Hence, the present BCI transducer is concluded to be sufficiently small to fit most normal-sized temporal bones and should be placed approximately 20 mm behind the ear canal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy