SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Östlin Göran 1968 ) "

Sökning: WFRF:(Östlin Göran 1968 )

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrado, David, et al. (författare)
  • 15NH3 in the atmosphere of a cool brown dwarf
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 624:7991, s. 263-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets. 
  •  
2.
  • Dyrek, Achrène, et al. (författare)
  • SO2, silicate clouds, but no CH4 detected in a warm Neptune
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 51-54
  • Tidskriftsartikel (refereegranskat)abstract
    • WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 μm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8,9,10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 μm and 8.69 μm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.
  •  
3.
  • Gasman, Danny, et al. (författare)
  • MINDS Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) on board the James Webb Space Telescope (JWST) allows us to probe the inner regions of protoplanetary disks, where the elevated temperatures result in an active chemistry and where the gas composition may dictate the composition of planets forming in this region. The disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core, was observed with the MRS, and we examine its spectrum here.Aims. We aim to explain the observations and put the disk of Sz 98 in context with other disks, with a focus on the H2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations.Methods. In order to model the molecular features in the spectrum, the continuum was subtracted and local thermodynamic equilibrium (LTE) slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2O lines of different excitation conditions, and the slab model fits were performed individually per region.Results. We confidently detect CO, H2O, OH, CO2, and HCN in the emitting layers. Despite the plethora of H2O lines, the isotopo-logue (H2O)-O-18 is not detected. Additionally, no other organics, including C2H2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. Additionally, the OH and CO2 emission is relatively weak. It is likely that H2O is not significantly photodissociated, either due to self-shielding against the stellar irradiation, or UV shielding from small dust particles. While H2O is prominent and OH is relatively weak, the line fluxes in the inner disk of Sz 98 are not outliers compared to other disks.Conclusions. The relative emitting strength of the different identified molecular features points towards UV shielding of H2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.
  •  
4.
  • Perotti, G., et al. (författare)
  • Water in the terrestrial planet-forming zone of the PDS 70 disk
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 620:7974, s. 516-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial and sub-Neptune planets are expected to form in the inner (less than 10 AU) regions of protoplanetary disks1. Water plays a key role in their formation2,3,4, although it is yet unclear whether water molecules are formed in situ or transported from the outer disk5,6. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks7, similar to PDS 70, the first system with direct confirmation of protoplanet presence8,9. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (approximately 54 AU) planet-carved gap separating an inner and outer disk10,11. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2 and/or OH, and survival through water self-shielding5. This is also supported by the presence of CO2 emission, another molecule sensitive to ultraviolet photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir12. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.
  •  
5.
  • Álvarez-Márquez, J., et al. (författare)
  • MIRI/JWST observations reveal an extremely obscured starburst in the z = 6.9 system SPT0311-58
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Luminous infrared starbursts in the early Universe are thought to be the progenitors of massive quiescent galaxies identified at redshifts 2–4. Using the Mid-IRfrared Instrument (MIRI) on board the James Webb Space Telescope (JWST), we present mid-infrared sub-arcsec imaging and spectroscopy of such a starburst: the slightly lensed hyper-luminous infrared system SPT0311-58 at z = 6.9. The MIRI IMager (MIRIM) and Medium Resolution Spectrometer (MRS) observations target the stellar (rest-frame 1.26 μm emission) structure and ionised (Paα and Hα) medium on kpc scales in the system. The MIRI observations are compared with existing ALMA far-infrared continuum and [C II]158μm imaging at a similar angular resolution. Even though the ALMA observations imply very high star formation rates (SFRs) in the eastern (E) and western (W) galaxies of the system, the Hα line is, strikingly, not detected in our MRS observations. This fact, together with the detection of the ionised gas phase in Paα, implies very high internal nebular extinction with lower limits (AV) of 4.2 (E) and 3.9 mag (W) as well as even larger values (5.6 (E) and 10.0 (W)) by spectral energy distribution (SED) fitting analysis. The extinction-corrected Paα lower limits of the SFRs are 383 and 230 M⊙ yr−1 for the E and W galaxies, respectively. This represents 50% of the SFRs derived from the [C II]158 μm line and infrared light for the E galaxy and as low as 6% for the W galaxy. The MIRIM observations reveal a clumpy stellar structure, with each clump having 3–5×109 M⊙ mass in stars, leading to a total stellar mass of 2.0 and 1.5×1010 M⊙ for the E and W galaxies, respectively. The specific star formation (sSFR) in the stellar clumps ranges from 25 to 59 Gyr−1, assuming a star formation with a 50–100 Myr constant rate. This sSFR is three to ten times larger than the values measured in galaxies of similar stellar mass at redshifts 6–8. Thus, SPT0311-58 clearly stands out as a starburst system when compared with typical massive star-forming galaxies at similar high redshifts. The overall gas mass fraction is Mgas/M∗ ∼ 3, similar to that of z ∼ 4.5–6 star-forming galaxies, suggesting a flattening of the gas mass fraction in massive starbursts up to redshift 7. The kinematics of the ionised gas in the E galaxy agrees with the known [C II] gas kinematics, indicating a physical association between the ionised gas and the cold ionised or neutral gas clumps. The situation in the W galaxy is more complex, as it appears to be a velocity offset by about +700 km s−1 in the Paα relative to the [C II] emitting gas. The nature of this offset and its reality are not fully established and require further investigation. The observed properties of SPT0311-58, such as the clumpy distribution at sub(kpc) scales and the very high average extinction, are similar to those observed in low- and intermediate-z luminous (E galaxy) and ultra-luminous (W galaxy) infrared galaxies, even though SPT0311-58 is observed only ∼800 Myr after the Big Bang. Such massive, heavily obscured clumpy starburst systems as SPT0311-58 likely represent the early phases in the formation of a massive high-redshift bulge, spheroids and/or luminous quasars. This study demonstrates that MIRI and JWST are, for the first time, able to explore the rest-frame near-infrared stellar and ionised gas structure of these galaxies, even during the Epoch of Reionization.
  •  
6.
  • Amorín, R. O., et al. (författare)
  • Ubiquitous broad-line emission and the relation between ionized gas outflows and Lyman continuum escape in Green Pea galaxies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observational evidence of highly turbulent ionized gas kinematics in a sample of 20 Lyman continuum (LyC) emitters (LCEs) at low redshift (z ∼ 0.3). Detailed Gaussian modeling of optical emission line profiles in high-dispersion spectra consistently shows that both bright recombination and collisionally excited lines can be fitted as one or two narrow components with intrinsic velocity dispersion of σ ∼ 40 − 100 km s−1, in addition to a broader component with σ ∼ 100 − 300 km s−1, which contributes up to ∼40% of the total flux and is preferentially blueshifted from the systemic velocity. We interpret the narrow emission as highly ionized gas close to the young massive star clusters and the broader emission as a signpost of unresolved ionized outflows, resulting from massive stars and supernova feedback. We find a significant correlation between the width of the broad emission and the LyC escape fraction, with strong LCEs exhibiting more complex and broader line profiles than galaxies with weaker or undetected LyC emission. We provide new observational evidence supporting predictions from models and simulations; our findings suggest that gas turbulence and outflows resulting from strong radiative and mechanical feedback play a key role in clearing channels through which LyC photons escape from galaxies. We propose that the detection of blueshifted broad emission in the nebular lines of compact extreme emission-line galaxies can provide a new indirect diagnostic of Lyman photon escape, which could be useful to identify potential LyC leakers in the epoch of reionization with the JWST.
  •  
7.
  • Bortolini, Giacomo, 1996-, et al. (författare)
  • The spatially resolved star formation history of the dwarf spiral galaxy NGC 5474
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 5339-5355
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the resolved stellar populations and derive the star formation history of NGC 5474, a peculiar star-forming dwarf galaxy at a distance of ∼7 Mpc, using Hubble Space Telescope Advanced Camera for Surveys data from the Legacy Extragalactic UV Survey (LEGUS) programme. We apply an improved colour–magnitude diagram fitting technique based on the code SFERA and use the latest PARSEC–COLIBRI stellar models. Our results are the following. The off-centre bulge-like structure, suggested to constitute the bulge of the galaxy, is dominated by star formation (SF) activity initiated 14 Gyr ago and lasted at least up to 1 Gyr ago. Nevertheless, this component shows clear evidence of prolonged SF activity (lasting until ∼10 Myr ago). We estimate the total stellar mass of the bulge-like structure to be (5.0 ± 0.3) × 108 M⊙. Such a mass is consistent with published suggestions that this structure is in fact an independent system orbiting around and not within NGC 5474’s disc. The stellar overdensity located to the South–West of the bulge-like structure shows a significant SF event older than 1 Gyr, while it is characterized by two recent peaks of SF, around ∼10 and ∼100 Myr ago. In the last Gyr, the behaviour of the stellar disc is consistent with what is known in the literature as ‘gasping’. The synchronized burst at 10–35 Myr in all components might hint to the recent gravitational interaction between the stellar bulge-like structure and the disc of NGC 5474.
  •  
8.
  • Bouchet, P., et al. (författare)
  • JWST MIRI Imager Observations of Supernova SN 1987A
  • 2024
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 965:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There exist very few mid-infrared (IR) observations of supernovae (SNe) in general. Therefore, SN 1987A, the closest visible SN in 400 yr, gives us the opportunity to explore the mid-IR properties of SNe, the dust in their ejecta, and the surrounding medium and to witness the birth of an SN remnant (SNR). The James Webb Space Telescope, with its high spatial resolution and extreme sensitivity, gives a new view on these issues. We report on the first imaging observations obtained with the Mid-InfraRed Instrument (MIRI). We build temperature maps and discuss the morphology of the nascent SNR. Our results show that the temperatures in the equatorial ring (ER) are quite nonuniform. This could be due to dust destruction in some parts of the ring, as had been assumed in some previous works. We show that the IR emission extends beyond the ER, illustrating the fact that the shock wave has now passed through this ring to affect the circumstellar medium on a larger scale. Finally, while submillimeter Atacama Large Millimeter Array observations have hinted at the location of the compact remnant of SN 1987A, we note that our MIRI data have found no such evidence.
  •  
9.
  • Ejdetjärn, Timmy (författare)
  • Exploring the nature of ISM turbulencein disc galaxies
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Galaxy formation is a continuous process that started only a few hundred million yearsafter the Big Bang. The first galaxies were very volatile, with bursts of star formationand disorganised gas motions. However, even as these galaxies evolved to have orderlyrotating gas discs, the gas within the disc, referred to as the interstellar medium (ISM),still remained highly turbulent. In fact, the ISM is supersonically turbulent, meaning thatthe disorganised gas motion exceeds the speed of sound in the medium. This supersonicturbulence has been connected to several crucial properties related to galaxy evolution; forexample, increasing (and decreasing in some regions) the ISM gas density, star formation,and gas mixing.Many observation have shown that all of the gas phases in the ISM experience su-personic levels of turbulence, with line widths (an observational method to quantify theamount of turbulence) as high as σg ≲ 100 km s−1 in high-redshift (younger) disc galaxies,while local quiescent discs have σg ≲ 40 km s−1 . However, the ISM contains a variety ofgas phases that cover a wide range of temperatures and densities, which exhibit differentlevels of turbulence. For example, the warm ionised gas phase represents the upper limitsquoted above, while colder denser gas only reaches σg ≲ 40 km s−1 and σg ≲ 15 km s−1 inhigh-redshift and local galaxies, respectively.The physical processes driving this turbulence are not fully understood, but a combi-nation of stellar feedback (e.g. supernova) and gravitational instability (e.g. during cloudcollapse) have been suggested to provide a majority of the turbulent energy. In particular,stellar feedback is crucial in the formation of warm ionised gas and may therefore have asignificant contribution on the turbulence within ionised gas. Furthermore, heterogeneousdata of widely different galaxies (in terms of e.g. mass and size) at different resolutions(which causes artificial line broadening) complicates understanding the underlying cause.A commonly used tracer of ionised gas is the Hα emission line and has been usedextensively in high-redshift surveys. However, the contribution of the Hα signal comesfrom two primary sources: the radiatively ionised regions around massive newborn starsembedded in molecular gas (called H II regions) and diffuse ionised gas (DIG) filling theentire galactic disc. Observations have found that these two sources contribute, on average,roughly the same amount to the Hα signal (although with a large spread), but the levelsof turbulence is starkly different; with the DIG being roughly 2-3 times more turbulethan the gas in H II regions.Numerical simulations have come a long way and are now able to simulate entire discgalaxies at parsec-scale resolution (in regions of interest). Furthermore, galaxy simulationshave been able to reproduce the level of turbulence observed in local and high-redshiftgalaxies. Direct comparisons between numerical and observational studies are crucial tounderstand the relevant physics driving observed correlations. However, numerical andobservational work have different data available and the reduction/analysis varies betweenauthors, and so diligence is required to perform qualitative comparisons.In this work, I perform numerical simulations to investigate ISM turbulence in differentgas phases. My simulations model a Milky Way-like galaxy at two different redshifts(using gas fraction as a proxy for redshift) and with/without stellar feedback physics, toevaluate its impact. I perform mock observations to explore the relation between the starformation rate and turbulence, and investigate what is driving this relation. Additionally, Ianalyse the Hα emission line and compare the contribution in intensity and line broadening(turbulence) from H II regions and DIG.
  •  
10.
  • Ejdetjärn, Timmy (författare)
  • The origin of the Hα line profiles in simulated disc galaxies
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Observations of ionised Hα gas in disc galaxies with high star formation rates have ubiquitous and significant line broadening with widths σHα≳50−100 km s−1. To understand whether this broadening reflects gas turbulence within the interstellar medium (ISM) of galactic discs, or arises from off-the-plane emission in mass-loaded galactic winds, we perform radiation hydrodynamic (RHD) simulations of isolated Milky Way-mass disc galaxies in a gas-poor (low-redshift) and gas rich (high-redshift) condition and create mock Hα emission line profiles. We find that the vast majority of the Hα emission is confined within the ISM, with extraplanar gas contributing mainly to the extended profile wings. This substantiates the \Halpha emission line as a tracer of mid-plane disc dynamics. We investigate the relative contribution of diffuse and dense Hα emitting gas, corresponding to DIG (ρ≲0.1 cm−3, T∼8 000 K) and HII regions (ρ≳10 cm−3, T∼10 000 K), respectively, and find that DIG contributes ≲10% of the total LHα. However, the DIG can reach upwards of σHα∼60−80 km s−1 while the HII regions are much less turbulent σHα∼10−40 km s−1. This implies that the σHα observed using the full Hα emission line is dependent on the relative Hα contribution from DIG/HII regions and a larger fDIG would shift σHα to higher values. Finally, we show that σHα evolves, in both the DIG and HII regions, with the galaxy gas fraction. Our high-redshift equivalent galaxy is roughly twice as turbulent, except for in the DIG which has a more shallow evolution.
  •  
11.
  • Francis, L., et al. (författare)
  • JOYS: MIRI/MRS spectroscopy of gas-phase molecules from the high-mass star-forming region IRAS 23385+6053
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Space-based mid-infrared (IR) spectroscopy is a powerful tool for the characterization of important star formation tracers of warm gas which are unobservable from the ground. The previous mid-IR spectra of bright high-mass protostars with the Infrared Space Observatory (ISO) in the hot-core phase typically show strong absorption features from molecules such as CO2, C2H2, and HCN. However, little is known about their fainter counterparts at earlier stages. Aims. We aim to characterize the gas-phase molecular features in James Webb Space Telescope Mid-Infrared Instrument Medium Resolution Spectrometer (MIRI/MRS) spectra of the young and clustered high-mass star-forming region IRAS 23385+6053. Methods. Spectra were extracted from several locations in the MIRI/MRS field of view, targeting two mid-IR sources tracing embedded massive protostars as well as three H2 bright outflow knots at distances of >8000 au from the multiple. Molecular features in the spectra were fit with local thermodynamic equilibrium (LTE) slab models, with their caveats discussed in detail. Results. Rich molecular spectra with emission from CO, H2, HD, H2O, C2H2, HCN, CO2, and OH are detected towards the two mid-IR sources. However, only CO and OH are seen towards the brightest H2 knot positions, suggesting that the majority of the observed species are associated with disks or hot core regions rather than outflows or shocks. The LTE model fits to 12CO2, C2H2, HCN emission suggest warm 120a-200 K emission arising from a disk surface around one or both protostars. The abundances of CO2 and C2H2 of ~10âà  à  7 are consistent with previous observations of high-mass protostars. Weak ~500 K H2O emission at ~6a-7 μm is detected towards one mid-IR source, whereas 250a-1050 K H2O absorption is found in the other. The H2O absorption may occur in the disk atmosphere due to strong accretion-heating of the midplane, or in a disk wind viewed at an ideal angle for absorption. CO emission may originate in the hot inner disk or outflow shocks, but NIRSpec data covering the 4.6 μm band head are required to determine the physical conditions of the CO gas, as the high temperatures seen in the MIRI data may be due to optical depth. OH emission is detected towards both mid-IR source positions and one of the shocks, and is likely excited by water photodissociation or chemical formation pumping in a highly non-LTE manner. Conclusions. The observed molecular spectra are consistent with disks having already formed around two protostars in the young IRAS 23385+6054 system. Molecular features mostly appear in emission from a variety of species, in contrast to the more evolved hot core phase protostars which typically show only absorption; however, further observations of young high-mass protostars are needed to disentangle geometry and viewing angle effects from evolution.
  •  
12.
  • Fransson, Claes, 1951-, et al. (författare)
  • Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A
  • 2024
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 383:6685, s. 898-903
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur. The line emission is spatially unresolved and blueshifted in velocity relative to the supernova rest frame. We interpret the lines as gas illuminated by a source of ionizing photons located close to the center of the expanding ejecta. Photoionization models show that the line ratios are consistent with ionization by a cooling neutron star or a pulsar wind nebula. The velocity shift could be evidence for a neutron star natal kick.
  •  
13.
  • Fynbo, J. P. U., et al. (författare)
  • The galaxy counterpart and environment of the dusty damped Lyman-α absorber at z = 2.226 towards Q 1218+0832
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on further observations of the field of the quasar Q 1218+0832. Geier et al. (2019, A&A, 625, L9) presented the discovery of the quasar resulting from a search for quasars reddened and dimmed by dust in foreground damped Lyman-α absorbers (DLAs). The DLA is remarkable by having a very large H I column density close to 1022 cm−2. Its dust extinction curve shows the 2175 Å bump known from the Local Group. It also shows absorption from cold gas exemplified by C I and CO molecules. For this paper, we present narrow-band observations of the field of Q 1218+0832 and also use an archival Hubble Space Telescope (HST) image to search for the galaxy counterpart of the DLA. No emission from the DLA galaxy is found in either the narrow-band imaging or in the HST image. In the HST image, we could probe down to an impact parameter of 0.3 arcsec and a 3-σ detection limit of 26.8 mag per arcsec2. In the narrow-band image, we probed down to a 0 arcsec impact parameter and detected nothing down to a 3-σ detection limit of about 3 × 10−17 erg s−1 cm−2. We did detect a bright Lyman-α emitter 59 arcsec south of Q 1218+0832 with a flux of 3 × 10−16 erg s−1 cm−2. We conclude that the DLA galaxy must be located at a very small impact parameter (< 0.3 arcsec, 2.5 kpc) or it is optically dark. Also, the DLA galaxy most likely is part of a galaxy group.
  •  
14.
  • Gieser, C., et al. (författare)
  • JOYS: Disentangling the warm and cold material in the high-mass IRAS 23385+6053 cluster
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-mass star formation occurs in a clustered mode where fragmentation is observed from an early stage onward. Young protostars can now be studied in great detail with the recently launched James Webb Space Telescope (JWST). Aims. We study and compare the warm (>100 K) and cold (<100 K) material toward the high-mass star-forming region (HMSFR) IRAS 23385+6053 (IRAS 23385 hereafter) combining high-angular-resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOrthern Extended Millimeter Array (NOEMA) at millimeter (mm) wavelengths at angular resolutions of 0.a2 1.a0. Methods. We investigated the spatial morphology of atomic and molecular species using line-integrated intensity maps. We estimated the temperature and column density of different gas components using H2 transitions (warm and hot component) and a series of CH3CN transitions as well as 3 mm continuum emission (cold component). Results. Toward the central dense core of IRAS 23385, the material consists of relatively cold gas and dust ( 50 K), while multiple outflows create heated and/or shocked H2 and show enhanced temperatures ( 400 K) along the outflow structures. An energetic outflow with enhanced emission knots of [FeII] and [NiII] suggests J-type shocks, while two other outflows have enhanced emission of only H2 and [SI] caused by C-type shocks. The latter two outflows are also more prominent in molecular line emission at mm wavelengths (e.g., SiO, SO, H2CO, and CH3OH). Data of even higher angular resolution are needed to unambiguously identify the outflow-driving sources given the clustered nature of IRAS 23385. While most of the forbidden fine structure transitions are blueshifted, [NeII] and [NeIII] peak at the source velocity toward the MIR source A/mmA2 suggesting that the emission is originating from closer to the protostar. Conclusions. The warm and cold gas traced by MIR and mm observations, respectively, are strongly linked in IRAS 23385. The outflows traced by MIR H2 lines have molecular counterparts in the mm regime. Despite the presence of multiple powerful outflows that cause dense and hot shocks, a cold dense envelope still allows star formation to further proceed. To study and fully understand the spatially resolved MIR properties, a representative sample of low- and high-mass protostars has to be probed using JWST.
  •  
15.
  • Iani, Edoardo, et al. (författare)
  • MIDIS : JWST NIRCam and MIRI Unveil the Stellar Population Properties of Lyα Emitters and Lyman-break Galaxies at z ≃ 3–7
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 963:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the stellar population properties of 182 spectroscopically confirmed (MUSE/VLT) Lyα emitters (LAEs) and 450 photometrically selected Lyman-break galaxies (LBGs) at z = 2.8–6.7 in the Hubble Extreme Deep Field. Leveraging the combined power of Hubble Space Telescope and JWST NIRCam and MIRI observations, we analyze their rest-frame UV-through-near-IR spectral energy distributions, with MIRI playing a crucial role in robustly assessing the LAEs' stellar masses and ages. Our LAEs are low-mass objects (log10(M⋆/M⊙)≃7.5) with little or no dust extinction (E(B − V) ≃ 0.1) and a blue UV continuum slope (β ≃ −2.2). While 75% of our LAEs are young (<100 Myr), the remaining 25% have significantly older stellar populations (≥100 Myr). These old LAEs are statistically more massive, less extinct, and have lower specific star formation rate than young LAEs. Besides, they populate the plane of M⋆ versus star formation rate along the main sequence of star-forming galaxies, while young LAEs populate the starburst region. The comparison between the LAEs' properties and those of a stellar-mass-matched sample of LBGs shows no statistical difference between these objects, except for the LBGs' redder UV continuum slope and marginally larger E(B − V) values. Interestingly, 48% of the LBGs have ages <10 Myr and are classified as starbursts, but lack detectable Lyα emission. This is likely due to H i resonant scattering and/or dust-selective extinction. Overall, we find that JWST observations are crucial in determining the properties of LAEs and shedding light on their comparison with LBGs.
  •  
16.
  • Jones, O. C., et al. (författare)
  • Ejecta, Rings, and Dust in SN 1987A with JWST MIRI/MRS
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 958:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) 1987A is the nearest supernova in ∼400 yr. Using the JWST MIRI Medium Resolution Spectrograph, we spatially resolved the ejecta, equatorial ring (ER), and outer rings in the mid-infrared 12,927 days (35.4 yr) after the explosion. The spectra are rich in line and dust continuum emission, both in the ejecta and the ring. The broad emission lines (280–380 km s−1 FWHM) that are seen from all singly-ionized species originate from the expanding ER, with properties consistent with dense post-shock cooling gas. Narrower emission lines (100–170 km s−1 FWHM) are seen from species originating from a more extended lower-density component whose high ionization may have been produced by shocks progressing through the ER or by the UV radiation pulse associated with the original supernova event. The asymmetric east–west dust emission in the ER has continued to fade, with constant temperature, signifying a reduction in dust mass. Small grains in the ER are preferentially destroyed, with larger grains from the progenitor surviving the transition from SN into SNR. The ER dust is fit with a single set of optical constants, eliminating the need for a secondary featureless hot dust component. We find several broad ejecta emission lines from [Ne ii], [Ar ii], [Fe ii], and [Ni ii]. With the exception of [Fe ii] 25.99 μm, these all originate from the ejecta close to the ring and are likely to be excited by X-rays from the interaction. The [Fe ii] 5.34 to 25.99 μm line ratio indicates a temperature of only a few hundred K in the inner core, which is consistent with being powered by 44 Ti decay.
  •  
17.
  • Melinder, Jens, 1977-, et al. (författare)
  • The Lyα Reference Sample. XIV. Lyα Imaging of 45 Low-redshift Star-forming Galaxies and Inferences on Global Emission
  • 2023
  • Ingår i: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 266:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Lyα imaging of 45 low-redshift star-forming galaxies observed with the Hubble Space Telescope. The galaxies have been selected to have moderate to high star formation rates (SFRs) using far-ultraviolet (FUV) luminosity and Hα equivalent width criteria, but no constraints on Lyα luminosity. We employ a pixel stellar continuum fitting code to obtain accurate continuum-subtracted Lyα, Hα, and Hβ maps. We find that Lyα is less concentrated than FUV and optical line emission in almost all galaxies with significant Lyα emission. We present global measurements of Lyα and other quantities measured in apertures designed to capture all of the Lyα emission. We then show how the escape fraction of Lyα relates to a number of other measured quantities (mass, metallicity, star formation, ionization parameter, and extinction). We find that the escape fraction is strongly anticorrelated with nebular and stellar extinction, weakly anticorrelated with stellar mass, but no conclusive evidence for correlations with other quantities. We show that Lyα escape fractions are inconsistent with common dust extinction laws, and discuss how a combination of radiative transfer effects and clumpy dust models can help resolve the discrepancies. We present an SFR calibration based on Lyα luminosity, where the equivalent width of Lyα is used to correct for nonunity escape fraction, and show that this relation provides a reasonably accurate SFR estimate. We also show stacked growth curves of Lyα for the galaxies that can be used to find aperture loss fractions at a given physical radius.
  •  
18.
  • Oey, M. S., et al. (författare)
  • Nebular C iv λ1550 Imaging of the Metal-poor Starburst Mrk 71 : Direct Evidence of Catastrophic Cooling
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 958:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the Hubble Space Telescope Advanced Camera for Surveys to obtain the first spatially resolved, nebular imaging in the light of C ivλλ1548, 1551 by using the F150LP and F165LP filters. These observations of the local starburst Mrk 71 in NGC 2366 show emission apparently originating within the interior cavity around the dominant super star cluster (SSC), Knot A. Together with imaging in He iiλ4686 and supporting Space Telescope Imaging Spectrograph far-ultraviolet spectroscopy, the morphology and intensity of the C iv nebular surface brightness and the C iv/He ii ratio map provide direct evidence that the mechanical feedback is likely dominated by catastrophic radiative cooling, which strongly disrupts adiabatic superbubble evolution. The implied extreme mass loading and low kinetic efficiency of the cluster wind are reasonably consistent with the wind energy budget, which is probably enhanced by radiation pressure. In contrast, the Knot B SSC lies within a well-defined superbubble with associated soft X-rays and He iiλ1640 emission, which are signatures of adiabatic, energy-driven feedback from a supernova-driven outflow. This system lacks clear evidence of C iv from the limb-brightened shell, as expected for this model, but the observations may not be deep enough to confirm its presence. We also detect a small C iv-emitting object that is likely an embedded compact H ii region. Its C iv emission may indicate the presence of very massive stars (>100 M⊙) or strongly pressure-confined stellar feedback.
  •  
19.
  • Perez-Gonzalez, Pablo G., et al. (författare)
  • Life beyond 30 : Probing the-20 < M (UV) <-17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 951:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the ultraviolet luminosity function and an estimate of the cosmic star formation rate density at 8 < z < 13 derived from deep NIRCam observations taken in parallel with the MIRI Deep Survey of the Hubble Ultra Deep Field (HUDF), NIRCam covering the parallel field 2. Our deep (40 hr) NIRCam observations reach an F277W magnitude of 30.8 (5 & sigma;), more than 2 mag deeper than JWST public data sets already analyzed to find high-redshift galaxies. We select a sample of 44 z > 8 galaxy candidates based on their dropout nature in the F115W and/or F150W filters, a high probability for their photometric redshifts, estimated with three different codes, being at z > 8, good fits based on & chi; (2) calculations, and predominant solutions compared to z < 8 alternatives. We find mild evolution in the luminosity function from z & SIM; 13 to z & SIM; 8, i.e., only a small increase in the average number density of & SIM;0.2 dex, while the faint-end slope and absolute magnitude of the knee remain approximately constant, with values & alpha; = - 2.2 & PLUSMN; 0.1, and M * = - 20.8 & PLUSMN; 0.2 mag. Comparing our results with the predictions of state-of-the-art galaxy evolution models, we find two main results: (1) a slower increase with time in the cosmic star formation rate density compared to a steeper rise predicted by models; (2) nearly a factor of 10 higher star formation activity concentrated in scales around 2 kpc in galaxies with stellar masses & SIM;10(8) M (& ODOT;) during the first 350 Myr of the universe, z & SIM; 12, with models matching better the luminosity density observational estimations & SIM;150 Myr later, by z & SIM; 9.
  •  
20.
  • Puschnig, Johannes, 1980-, et al. (författare)
  • Unveiling the gravitationally unstable disc of a massive star-forming galaxy using NOEMA and MUSE
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 524:3, s. 3913-3929
  • Tidskriftsartikel (refereegranskat)abstract
    • Using new high-resolution data of CO (2–1), Hα and Hβ obtained with the Northern Extended Millimeter Array (NOEMA) and the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope, we have performed a Toomre Q disc stability analysis and studied star formation, gas depletion times and other environmental parameters on sub-kpc scales within the z ∼ 0 galaxy SDSS J125013.84+073444.5 (LARS 8). The galaxy hosts a massive, clumpy disc and is a proto-typical analogue of main-sequence galaxies at z ∼ 1 − 2. We show that the massive (molecular) clumps in LARS 8 are the result of an extremely gravitationally unstable gas disc, with large scale instabilities found across the whole extent of the rotating disc, with only the innermost 500 pc being stabilized by its bulge-like structure. The radial profiles further reveal that – contrary to typical disc galaxies – the molecular gas depletion time decreases from more than 1 Gyr in the centre to less than ∼100 Myr in the outskirts of the disc, supporting the findings of a Toomre-unstable disc. We further identified and analysed 12 individual massive molecular clumps. They are virialized and follow the mass–size relation, indicating that on local (cloud/clump) scales the stars form with efficiencies comparable to those in Milky Way clouds. The observed high star formation rate must thus be the result of triggering of cloud/clump formation over large scales due to disc instability. Our study provides evidence that ‘in-situ’ massive clump formation (as also observed at high redshifts) is very efficiently induced by large-scale instabilities.
  •  
21.
  • Ray, T. P., et al. (författare)
  • Outflows from the youngest stars are mostly molecular
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 622, s. 48-52
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of stars and planets is accompanied not only by the build-up of matter, namely accretion, but also by its expulsion in the form of highly supersonic jets that can stretch for several parsecs1,2. As accretion and jet activity are correlated and because young stars acquire most of their mass rapidly early on, the most powerful jets are associated with the youngest protostars3. This period, however, coincides with the time when the protostar and its surroundings are hidden behind many magnitudes of visual extinction. Millimetre interferometers can probe this stage but only for the coolest components3. No information is provided on the hottest (greater than 1,000 K) constituents of the jet, that is, the atomic, ionized and high-temperature molecular gases that are thought to make up the jet's backbone. Detecting such a spine relies on observing in the infrared that can penetrate through the shroud of dust. Here we report near-infrared observations of Herbig-Haro 211 from the James Webb Space Telescope, an outflow from an analogue of our Sun when it was, at most, a few times 104 years old. These observations reveal copious emission from hot molecules, explaining the origin of the 'green fuzzies'4-7 discovered nearly two decades ago by the Spitzer Space Telescope8. This outflow is found to be propagating slowly in comparison to its more evolved counterparts and, surprisingly, almost no trace of atomic or ionized emission is seen, suggesting its spine is almost purely molecular. Near-infrared imagery and spectroscopy from JWST of the Herbig-Haro 211 system, an analogue of the young Sun, reveals supersonic jets of hot molecules that can explain the origin of the 'green fuzzies' phenomenon.
  •  
22.
  • Rinaldi, P., et al. (författare)
  • MIDIS : Strong (H beta plus [OIII]) and Ha Emitters at Redshift z similar or equal to 7-8 Unveiled with JWST NIRCam and MIRI Imaging in the Hubble eXtreme Deep Field
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 952:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We make use of JWST medium-band and broadband NIRCam imaging, along with ultradeep MIRI 5.6 mu m imaging, in the Hubble eXtreme Deep Field to identify prominent line emitters at z similar or equal to 7-8. Out of a total of 58 galaxies at z similar or equal to 7-8, we find 18 robust candidates ( similar or equal to 31%) for (H beta + [O III]) emitters, based on their enhanced fluxes in the F430M and F444W filters, with EW0(H beta +[O III]) similar or equal to 87-2100 angstrom. Among these emitters, 16 lie in the MIRI coverage area and 12 exhibit a clear flux excess at 5.6 mu m, indicating the simultaneous presence of a prominent Ha emission line with EW0(H alpha) similar or equal to 200-3000 angstrom. This is the first time that H alpha emission can be detected in individual galaxies at z > 7. The Ha line, when present, allows us to separate the contributions of H beta and [O III] to the (H beta +[O III]) complex and derive Ha-based star formation rates (SFRs). We find that in most cases [O III]/ H beta > 1. Instead, two galaxies have [O III]/H beta < 1, indicating that the NIRCam flux excess is mainly driven by H beta. Most prominent line emitters are very young starbursts or galaxies on their way to/from the starburst cloud. They make for a cosmic SFR density log(10)( rho(SFRH alpha) (M-circle dot yr(-1) Mpc))similar or equal to - 2.351 3 which is about a quarter of the total value (log(10)( SFR (M-circle dot yr(-1) Mpc))similar or equal to - 1.761 3 ) at z similar or equal to 7-8. Therefore, the strong Ha emitters likely had a significant role in reionization.
  •  
23.
  • Runnholm, Axel, 1992-, et al. (författare)
  • On the evolution of the size of Lyman alpha haloes across cosmic time : no change in the circumgalactic gas distribution when probed by line emission
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 4275-4293
  • Tidskriftsartikel (refereegranskat)abstract
    • Lyman alpha (Ly alpha) is now routinely used as a tool for studying high-redshift galaxies, and its resonant nature means it can trace neutral hydrogen around star-forming galaxies. Integral field spectrograph measurements of high-redshift Ly alpha emitters indicate that significant extended Ly alpha halo emission is ubiquitous around such objects. We present a sample of redshift 0.23 to 0.31 galaxies observed with the Hubble Space Telescope selected to match the star formation properties of high-z samples while optimizing the observations for detection of low surface brightness Ly alpha emission. The Ly alpha escape fractions range between 0.7 and 37 per cent, and we detect extended Ly alpha emission around six out of seven targets. We find Ly alpha halo to UV scale length ratios around 6:1, which is marginally lower than high-redshift observations, and halo flux fractions between 60 and 85 per cent - consistent with high-redshift observations - when using comparable methods. However, our targets show additional extended stellar UV emission: we parametrize this with a new double exponential model. We find that this parametrization does not strongly affect the observed Ly alpha halo fractions. We find that deeper H alpha data would be required to firmly determine the origin of Ly alpha halo emission; however, there are indications that H alpha is more extended than the central FUV profile, potentially indicating conditions favourable for the escape of ionizing radiation. We discuss our results in the context of high-redshift galaxies, cosmological simulations, evolutionary studies of the circumgalactic medium in emission, and the emission of ionizing radiation.
  •  
24.
  • Sirressi, Mattia, 1995-, et al. (författare)
  • CLusters in the Uv as EngineS (CLUES). II. Subkiloparsec-scale Outflows Driven by Stellar Feedback
  • 2024
  • Ingår i: Astronomical Journal. - 0004-6256 .- 1538-3881. ; 167:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the far-ultraviolet (1130−1770 Å rest frame) spectroscopy of 20 young (<50 Myr) and massive (>104M⊙) star clusters (YSCs) in 11 nearby star-forming galaxies. We probe the interstellar gas intervening along the line of sight, detecting several metal absorption lines of a wide range of ionization potentials, from 6.0 to 77.5 eV. Multiple-component Voigt fits to the absorption lines are used to study the kinematics of the gas. We find that nearly all targets in the sample feature gas outflowing from 30 up to 190 km s−1, often in both the neutral and ionized phases. The outflow velocities correlate with the underlying stellar population properties directly linked to the feedback: the mass of the YSCs, the photon production rate, and the instantaneous mechanical luminosity produced by stellar winds and supernovae. We detect a neutral inflow in four targets, which we interpret as likely not associated with the star cluster but tracing larger-scale gas kinematics. A comparison between the outflows' energy and that produced by the associated young stellar populations suggests an average coupling efficiency of 10% with a broad scatter. Our results extend the relation found in previous works between galactic outflows and the host galaxy star formation rate to smaller scales, pointing toward the key role that clustered star formation and feedback play in regulating galaxy growth.
  •  
25.
  • Smith, Linda J., et al. (författare)
  • HST FUV Spectroscopy of Super Star Cluster A in the Green Pea Analog Mrk 71 : Revealing the Presence of Very Massive Stars
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 958:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mrk 71 is a low-metallicity (Z = 0.16 Z☉) starburst region in the local dwarf galaxy NGC 2366, hosting two super star clusters (SSCs A and B), and it is recognized as a Green Pea (GP) analog with SSC A responsible for the GP properties. We present STIS and FOS far-ultraviolet (FUV) spectra of the embedded SSC Mrk 71-A obtained with the Hubble Space Telescope. The STIS FUV spectrum shows the characteristic features of very massive stars (VMS; masses >100 M⊙) and we derive an age of 1 ± 1 Myr by comparison with the Charlot & Bruzual suite of spectral population synthesis models with upper mass limits of 300 and 600 M⊙. We compare the STIS spectrum with all known SSC spectra exhibiting VMS signatures: NGC 5253-5, R136a, NGC 3125-A1, and the z = 2.37 Sunburst cluster. We find that the cluster mass-loss rates and wind velocities, as characterized by the C iv P Cygni profiles and the He ii emission line strengths, are very similar over Z = 0.16–0.4 Z☉. This agrees with predictions that the optically thick winds of VMS will be enhanced near the Eddington limit and show little metallicity dependence. We find very strong damped Lyα absorption with N(H i) =1022.2 cm−2 associated with Mrk 71-A. We discuss the natal environment of this young SSC in terms of radiatively driven winds, catastrophic cooling, and recent models where the cluster is surrounded by highly pressurized clouds with large neutral columns.
  •  
26.
  • Wright, Gillian, et al. (författare)
  • The Mid-infrared Instrument for JWST and Its In-flight Performance
  • 2023
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy