SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:( r Barer) "

Sökning: WFRF:( r Barer)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bafadhel, Mona, et al. (författare)
  • Acute Exacerbations of Chronic Obstructive Pulmonary Disease : Identification of Biologic Clusters and Their Biomarkers
  • 2011
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 184:6, s. 662-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Exacerbations of chronic obstructive pulmonary disease (COPD) are heterogeneous with respect to inflammation and etiology. Objectives: Investigate biomarker expression in COPD exacerbations to identify biologic clusters and determine biomarkers that recognize clinical COPD exacerbation phenotypes, namely those associated with bacteria, viruses, or eosinophilic airway inflammation. Methods: Patients with COPD were observed for 1 year at stable and exacerbation visits. Biomarkers were measured in sputum and serum. Viruses and selected bacteria were assessed in sputum by polymerase chain reaction and routine diagnostic bacterial culture. Biologic phenotypes were explored using unbiased cluster analysis and biomarkers that differentiated clinical exacerbation phenotypes were investigated. Measurements and Main Results: A total of 145 patients (101 men and 44 women) entered the study. A total of 182 exacerbations were captured from 86 patients. Four distinct biologic exacerbation clusters were identified. These were bacterial-, viral-, or eosinophilic-predominant, and a fourth associated with limited changes in the inflammatory profile termed "pauciinflammatory." Of all exacerbations, 55%, 29%, and 28% were associated with bacteria, virus, or a sputum eosinophilia. The biomarkers that best identified these clinical phenotypes were sputum IL-1 beta, 0.89 (area under receiver operating characteristic curve) (95% confidence interval [CI], 0.83-0.95); serum CXCL10, 0.83 (95% CI, 0.70-0.96); and percentage peripheral eosinophils, 0.85 (95% CI, 0.78-0.93), respectively. Conclusions: The heterogeneity of the biologic response of COPD exacerbations can be defined. Sputum IL-1 beta, serum CXCL10, and peripheral eosinophils are biomarkers of bacteria-, virus-, or eosinophil-associated exacerbations of COPD. Whether phenotype-specific biomarkers can be applied to direct therapy warrants further investigation.
  •  
3.
  • Bafadhel, Mona, et al. (författare)
  • Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease A Randomized Placebo-Controlled Trial
  • 2012
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 186:1, s. 48-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Exacerbations of chronic obstructive pulmonary disease (COPD) and responses to treatment are heterogeneous. Objectives: Investigate the usefulness of blood eosinophils to direct corticosteroid therapy during exacerbations. Methods: Subjects with COPD exacerbations were entered into a randomized biomarker-directed double-blind corticosteroid versus standard therapy study. Subjects in the standard arm received prednisolone for 2 weeks, whereas in the biomarker-directed arm, prednisolone or matching placebo was given according to the blood eosinophil count biomarker. Both study groups received antibiotics. Blood eosinophils were measured in the biomarker-directed and standard therapy arms to define biomarker-positive and -negative exacerbations (blood eosinophil count > and <= 2%, respectively). The primary outcome was to determine noninferiority in health status using the chronic respiratory questionnaire (CRQ) and in the proportion of exacerbations associated with a treatment failure between subjects allocated to the biomarker-directed and standard therapy arms. Measurements and Main Results: There were 86 and 80 exacerbations in the biomarker-directed and standard treatment groups, respectively. In the biomarker-directed group, 49% of the exacerbations were not treated with prednisolone. CRQ improvement after treatment in the standard and biomarker-directed therapy groups was similar (0.8 vs. 1.1; mean difference, 0.3; 95% confidence interval, 0.0-0.6; P = 0.05). There was a greater improvement in CRQ in biomarker-negative exacerbations given placebo compared with those given prednisolone (mean difference, 0.45; 95% confidence interval, 0.01-0.90; P = 0.04). In biomarker-negative exacerbations, treatment failures occurred in 15% given prednisolone and 2% of those given placebo (P = 0.04). Conclusions: The peripheral blood eosinophil count is a promising biomarker to direct corticosteroid therapy during COPD exacerbations, but larger studies are required.
  •  
4.
  • Faraj, Alan, et al. (författare)
  • Difference in persistent tuberculosis bacteria between in vitro and sputum from patients : implications for translational predictions
  • 2020
  • Ingår i: Scientific Reports. - : NATURE RESEARCH. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to investigate the number of persistent bacteria in sputum from tuberculosis patients compared to in vitro and to suggest a model-based approach for accounting for the potential difference. Sputum smear positive patients (n=25) provided sputum samples prior to onset of chemotherapy. The number of cells detected by conventional agar colony forming unit (CFU) and most probable number (MPN) with Rpf supplementation were quantified. Persistent bacteria was assumed to be the difference between MPNrpf and CFU. The difference in persistent bacteria between in vitro and human sputum prior to chemotherapy was quantified using different model-based approaches. The persistent bacteria in sputum was 17% of the in vitro levels, suggesting a difference in phenotypic resistance, whereas no difference was found for multiplying bacterial subpopulations. Clinical trial simulations showed that the predicted time to 2 log fall in MPNrpf in a Phase 2a setting using in vitro pre-clinical efficacy information, would be almost 3 days longer if drug response was predicted ignoring the difference in phenotypic resistance. The discovered phenotypic differences between in vitro and humans prior to chemotherapy could have implications on translational efforts but can be accounted for using a model-based approach for translating in vitro to human drug response.
  •  
5.
  • Jankute, M., et al. (författare)
  • The role of hydrophobicity in tuberculosis evolution and pathogenicity
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of tubercle bacilli parallels a route from environmental Mycobacterium kansasii, through intermediate "Mycobacterium canettii", to the modern Mycobacterium tuberculosis complex. Cell envelope outer membrane lipids change systematically from hydrophilic lipooligosaccharides and phenolic glycolipids to hydrophobic phthiocerol dimycocerosates, di-and pentaacyl trehaloses and sulfoglycolipids. Such lipid changes point to a hydrophobic phenotype for M. tuberculosis sensu stricto. Using Congo Red staining and hexadecane-aqueous buffer partitioning, the hydrophobicity of rough morphology M. tuberculosis and Mycobacterium bovis strains was greater than smooth "M. canettii" and M. kansasii. Killed mycobacteria maintained differential hydrophobicity but defatted cells were similar, indicating that outer membrane lipids govern overall hydrophobicity. A rough M. tuberculosis H37Rv Delta papA1 sulfoglycolipid-deficient mutant had significantly diminished Congo Red uptake though hexadecane-aqueous buffer partitioning was similar to H37Rv. An M. kansasii, Delta MKAN27435 partially lipooligosaccharide-deficient mutant absorbed marginally more Congo Red dye than the parent strain but was comparable in partition experiments. In evolving from ancestral mycobacteria, related to "M. canettii" and M. kansasii, modern M. tuberculosis probably became more hydrophobic by increasing the proportion of less polar lipids in the outer membrane. Importantly, such a change would enhance the capability for aerosol transmission, affecting virulence and pathogenicity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy