SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aalizadeh Reza) "

Sökning: WFRF:(Aalizadeh Reza)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martens, Marvin, et al. (författare)
  • ELIXIR and Toxicology : a community in development
  • 2021
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 1129-1129
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.  
  •  
2.
  • Mohammed Taha, Hiba, et al. (författare)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
3.
  • Dulio, Valeria, et al. (författare)
  • Beyond target chemicals : updating the NORMAN prioritisation scheme to support the EU chemicals strategy with semi-quantitative suspect/non-target screening data
  • 2024
  • Ingår i: Environmental Sciences Europe. - : Springer Nature. - 2190-4707 .- 2190-4715. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.Results: As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.Conclusions: This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools. Graphical Abstract: (Figure presented.)
  •  
4.
  • Dulio, Valeria, et al. (författare)
  • The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC) : let’s cooperate!
  • 2020
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 32:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken.
  •  
5.
  • Dürig, Wiebke, et al. (författare)
  • What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 181
  • Tidskriftsartikel (refereegranskat)abstract
    • A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9–69 % of spiked compounds using LC-HRMS and 20–60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants’ own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from −9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.
  •  
6.
  • Rostkowski, Pawel, et al. (författare)
  • The strength in numbers : comprehensive characterization of house dust using complementary mass spectrometric techniques
  • 2019
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 411:10, s. 1957-1977
  • Tidskriftsartikel (refereegranskat)abstract
    • Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GCxGC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.
  •  
7.
  • Schulze, Bastian, et al. (författare)
  • Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis
  • 2021
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows. An effective strategy to mitigate such problems is the implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows and agree on harmonized/standardized quality control procedures. Here we present the data generated during such an ILS. This study was organized through the Norman Network and included 21 participants from 11 countries. A set of samples based on the passive sampling of drinking water pre and post treatment was shipped to all the participating laboratories for analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The data generated represents a valuable resource (i.e. benchmark) for future developments of algorithms and workflows for NTA experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Aalizadeh, Reza (7)
Hollender, Juliane (5)
Slobodnik, Jaroslav (5)
Thomaidis, Nikolaos (5)
Alygizakis, Nikiforo ... (4)
Haglund, Peter (4)
visa fler...
Schymanski, Emma L. (4)
Schulze, Tobias (4)
Gago-Ferrero, Pablo (4)
Rostkowski, Pawel (4)
Ahrens, Lutz (3)
Čirka, Ľuboš (3)
Koschorreck, Jan (3)
Dulio, Valeria (3)
Vorkamp, Katrin (3)
Samanipour, Saer (3)
Valsecchi, Sara (3)
Miège, Cécile (3)
Hansen, Martin (2)
Martin, Jonathan W. (2)
Vrana, Branislav (2)
Lamoree, Marja (2)
Brack, Werner (2)
Jacobs, Griet (2)
Covaci, Adrian (2)
Ng, Kelsey (2)
Deviller, Geneviève (2)
Thomaidis, Nikolaos ... (2)
Oswald, Peter (2)
Hollert, Henner (2)
Salek, Reza M (2)
Hernandez, Felix (2)
Letzel, Thomas (2)
Lopez de Alda, Miren (2)
Allan, Ian (2)
O'Toole, Simon (2)
Sengl, Manfred (2)
von der Ohe, Peter C ... (2)
Menger, Frank (2)
Leonards, Pim (2)
Derksen, Anja (2)
Fischer, Stellan (2)
Fu, Qiuguo (2)
Junghans, Marion (2)
Kools, Stefan A. E. (2)
Lopez, Benjamin (2)
Mascolo, Giuseppe (2)
Sims, Kerry (2)
Togola, Anne (2)
Rodriguez-Mozaz, Sar ... (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (5)
Umeå universitet (4)
Stockholms universitet (4)
Örebro universitet (2)
Uppsala universitet (1)
Luleå tekniska universitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy