SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abadpour Shadab) "

Sökning: WFRF:(Abadpour Shadab)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abadpour, Shadab, et al. (författare)
  • Adipose-Derived Stromal Cells Preserve Pancreatic Islet Function in a Transplantable 3D Bioprinted Scaffold
  • 2023
  • Ingår i: Advanced healthcare materials. - 2192-2640 .- 2192-2659. ; 12:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Intra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold. Manufacturing the 3D bioprinted double-layered scaffolds with primary islets and ASCs using a mix of alginate/nanofibrillated cellulose (NFC) bioink is reported. The diffusion properties of the bioink and the supportive effect of human ASCs on islet viability, glucose sensing, insulin secretion, and reducing the secretion of pro-inflammatory cytokines are demonstrated. Diabetic mice transplanted with islet-ASC scaffolds reach normoglycemia seven days post-transplantation with no significant difference between this group and the group received islets under the kidney capsules. In addition, animals transplanted with islet-ASC scaffolds stay normoglycemic and show elevated levels of C-peptide compared to mice transplanted with islet-only scaffolds. The data present a functional 3D bioprinted scaffold for islets and ASCs transplanted to the extrahepatic site and suggest a possible role of ASCs on improving the islet micro-environment.
  •  
3.
  • Abadpour, Shadab, et al. (författare)
  • Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin: insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1 alpha and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre- treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1 alpha and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
  •  
4.
  • Abadpour, Shadab, et al. (författare)
  • Interleukin-22 reverses human islet dysfunction and apoptosis triggered by hyperglycemia and LIGHT
  • 2018
  • Ingår i: Journal of Molecular Endocrinology. - 0952-5041 .- 1479-6813. ; 60:3, s. 171-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found up-regulation of LIGHT receptors (LTβR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20mM glucose) + LIGHT in vitro and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by up-regulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.
  •  
5.
  • Kloster-Jensen, Kristine, et al. (författare)
  • Intracellular sirolimus concentration is reduced by tacrolimus in human pancreatic islets invitro
  • 2015
  • Ingår i: Transplant International. - : Frontiers Media SA. - 0934-0874 .- 1432-2277. ; 28:10, s. 1152-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • Main problemIslet transplantation has become a promising treatment for type 1 diabetes. However, immunosuppressive drugs used today cause islet deterioration and modification strategies are necessary. But little is known about pharmacokinetics interactions and intracellular concentrations of immunosuppressive drugs in human islets. MethodsWe determined the pharmacokinetics of tacrolimus and sirolimus in islets by measuring intracellular concentration after exposure alone or in combination at two different doses up to 48h. A quantification technique established in our laboratory using a Micromass Quattro micro API MS/MS-instrument with electrospray ionization was used. Islets function was measured by oxygen consumption rates. Presence of drug transporters OATP1B1 and ABCB1 and metabolizing enzyme CYP3A4 in islets were quantified using real-time quantitative PCR. ResultsIslets incubated with tacrolimus and sirolimus had a significant decrease in intracellular concentration of sirolimus compared to sirolimus alone. Reduced intracellular sirolimus concentration was followed by increased p70S6k phosphorylation suggesting preservation of the mTOR-signaling pathway. Drug transporters OATP1B1 and ABCB1 and enzyme CYP3A4 were expressed in human islets, but were not involved in the reduced sirolimus concentration by tacrolimus. ConclusionThese findings provide new knowledge of the drug interaction between tacrolimus and sirolimus, suggesting that tacrolimus has an inhibitory effect on the intracellular concentration of sirolimus in human islets.
  •  
6.
  • Sahraoui, Afaf, et al. (författare)
  • The Effects of Exendin-4 Treatment on Graft Failure : An Animal Study Using a Novel Re-Vascularized Minimal Human Islet Transplant Model
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20 mu g/kg/day) or high (200 mu g/kg/day) dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1), C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose, maintaining beta cell numbers, and improving metabolic parameters during hyperglycemic stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy