SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abbaszad Rafi Abdolrahim) "

Sökning: WFRF:(Abbaszad Rafi Abdolrahim)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbaszad Rafi, Abdolrahim, et al. (författare)
  • A facile route for concurrent fabrication and surface selective functionalization of cellulose nanofibers by lactic acid mediated catalysis
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322 .- 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Celulose nanofibers are lightweight, recycable, biodegradable, and renewable. Hence, there is a great interest of using them instead of fossil-based components in new materials and biocomposites. In this study, we disclose an environmentally benign (green) one-step reaction approach to fabricate lactic acid ester functionalized cellulose nanofibrils from wood-derived pulp fibers in high yields. This was accomplished by converting wood-derived pulp fibers to nanofibrillated “cellulose lactate” under mild conditions using lactic acid as both the reaction media and catalyst. Thus, in parallel to the cellulose nanofibril production, concurrent lactic acid-catalyzed esterification of lactic acid to the cellulose nanofibers surface occured. The direct lactic acid esterification, which is a surface selective functionalization and reversible (de-attaching the ester groups by cleavage of the ester bonds), of the cellulose nanofibrils was confirmed by low numbers of degree of substitution, and FT-IR analyses. Thus, autocatalytic esterification and cellulose hydrolysis occurred without the need of metal based or a harsh mineral acid catalysts, which has disadvantages such as acid corrosiveness and high recovery cost of acid. Moreover, adding a mineral acid as a co-catalyst significantly decreased the yield of the nanocellulose. The lactic acid media is successfully recycled in multiple reaction cycles producing the corresponding nanocellulose fibers in high yields. The disclosed green cellulose nanofibril production route is industrial relevant and gives direct access to nanocellulose for use in variety of applications such as sustainable filaments, composites, packaging and strengthening of recycled fibers.
  •  
2.
  • Abbaszad Rafi, Abdolrahim, et al. (författare)
  • Copper nanoparticles on controlled pore glass (CPG) as highly efficient heterogeneous catalysts for “click reactions”
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We herein report that supported copper nanoparticles (CuNPs) on commercially available controlled pore glass (CPG), which exhibit high mechanical, thermal and chemical stability as compared to other silica-based materials, serve as a useful heterogeneous catalyst system for 1,3-dipolar cycloadditions (“click” reactions) between terminal alkynes and organic azides under green chemistry conditions. The supported CuNPs-CPG catalyst exhibited a broad substrate scope and gave the corresponding triazole products in high yields. The CuNPs-CPG catalyst exhibit recyclability and could be reuced multiple times without contaminating the products with Cu. 
  •  
3.
  • Abbaszad Rafi, Abdolrahim, et al. (författare)
  • Photo-Switchable Nanomechanical Systems Comprising a Nanocontainer (Montmorillonite) and Light-Driven Molecular Jack (Azobenzene-Imidazolium Ionic Liquids) as Drug Delivery Systems; Synthesis, Characterization, and in Vitro Release Studies
  • 2018
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society. - 2373-9878. ; 4:1, s. 184-192
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, photoresponsive nanomechanical systems were prepared through the intercalation of positively charged photoswitching molecular jacks (azobenzene ionic liquids, Azo-ILs) within montmorillonite (MMT) layers (MMT@Azo-ILs). The study shows that MMT@Azo-ILs are photosensitive and the synthesized molecular jacks could change the basal distances of MMT layers upon UV irradiation. These changes come from changes in the structure and geometry of Azo molecules (i.e., cis-trans isomerization) between clay layers upon UV irradiation. The prepared photoresponsive nanomechanical systems were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscope (FE-SEM). Moreover, the in vitro release studies were performed in different conditions (upon UV irradiation and darkness) in pH 5.8 at 34 ± 1 °C, and it was found that the release rates from drug loaded MMT@Azo-ILs were higher upon UV irradiation in comparison with the release rates in darkness. According to the release studies, the prepared photoresponsive carriers might be considered as an excellent potential candidate in order to formulate smart sunscreens. © 2017 American Chemical Society.
  •  
4.
  •  
5.
  • Alimohammadzadeh, Rana, et al. (författare)
  • Direct Organocatalytic Thioglycolic Acid Esterification of Cellulose Nanocrystals : A simple entry to click chemistry on the surface of nanocellulose
  • 2022
  • Ingår i: Carbohydrate Polymer Technologies and Applications. - : Elsevier BV. - 2666-8939. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The mild and simple direct organocatalytic esterification of cellulose nanocrystals (CNC) and nanocellulose-based materials (e.g. foams and films) with thioglycolic acid (TGA) is disclosed. The transformation gives the corresponding thiol group (-SH) functionalized crystalline nanocellulose (CNC-SH) using simple, naturally occurring, and non-toxic organic acids (e.g. tartaric acid) as catalysts. We also discovered that the direct esterification of cellulose with TGA is autocatalytic (i.e. the TGA is catalyzing its own esterification). The introduction of the -SH functionality at the nanocellulose surface opens up for further selective applications. This was demonstrated by attaching organic catalysts and fluorescent molecules, which are useful as sensors, to the CNC-SH surface by thiol-ene click chemistry. Another application is to use the CNC-SH-based foam as a heterogeneous biomimetic reducing agent, which is stable during multiple recycles, for the copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition (“click” reaction).
  •  
6.
  • Alimohammadzadeh, Rana, et al. (författare)
  • Improving the mechanical properties of CTMP fibers by combining synergistic organocatalytic/polyelectrolyte complex surface engineering with sulfite pretreatment
  • 2022
  • Ingår i: Proceedings of the International Mechanical Pulping Conference. ; , s. 149-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Fabrication of paper-based packaging materials is increasing and the challenge is developing a sustainable process to manufacture the materials that can compete with plastics. Employing stronger fiber in production of fiber-based materials improves the efficiency of fabrication process by using a reduced amount of biomass. Cationic starch is a well-known polysaccharide that has been introduced to paper and paperboard fibers to improve the mechanical properties of lignocellulosic fibers. The polyelectrolyte (PE) multilayer method has been popularized as a new and interesting technique to enhance the adsorption of cationic starch on the fiber for improving the strength properties of chemi-thermomechanical pulp (CTMP), chemical and kraft pulps. We have shown in our previous work that the synergistic combination of organocatalysis and PE complexes improved the mechanical properties of CTMP and TMP. In this work, we chose to expand this concept by integrating it with low-dose sulfite pretreatment of wood chips in preparation of CTMP. Thus, CTMP produced by initial sulfite pre-treatment was next surface engineered by synergistic combination of organocatalysis and PE complexes using organic acids as catalysts. The CTMP pulps, which contains 0.1-0.24 wt.% sulfur, produced by our novel pulp-engineering strategy shows a dramatic strength increase (Z- strength: up to 100 %) as compared to no surface engineering. While only sulfite pre-treatment and PE-complex surface engineering were able to improve the strength properties, it was only when the organic catalysts was present that the highest strength improvements were reached. Thus, a clear synergistic effect of the catalyst was observed.
  •  
7.
  • Alimohammadzadeh, Rana, et al. (författare)
  • Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal‐Free Catalysis and Polyelectrolyte Complexes
  • 2019
  • Ingår i: Global Challenges. - : Wiley. - 2056-6646. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • A sustainable strategy for synergistic surface engineering of lignocellulose and cellulose fibers derived from wood by synergistic combination of metal‐free catalysis and renewable polyelectrolyte (PE) complexes is disclosed. The strategy allows for improvement and introduction of important properties such as strength, water resistance, and fluorescence to the renewable fibers and cellulosic materials. For example, the “green” surface engineering significantly increases the strength properties (up to 100% in Z‐strength) of chemi‐thermomechanical pulp (CTMP) and bleached sulphite pulp (BSP)‐derived sheets. Next, performing an organocatalytic silylation with a nontoxic organic acid makes the corresponding lignocellulose and cellulose sheets hydrophobic. A selective color modification of polysaccharides is developed by combining metal‐free catalysis and thiol‐ene click chemistry. Next, fluorescent PE complexes based on cationic starch (CS) and carboxymethylcellulose (CMC) are prepared and used for modification of CTMP or BSP in the presence of a metal‐free catalyst. Laser‐scanning confocal microscopy reveals that the PE‐strength additive is evenly distributed on the CTMP and heterogeneously on the BSP. The fluorescent CS distribution on the CTMP follows the lignin distribution of the lignocellulosic fibers.
  •  
8.
  • Deiana, Luca, et al. (författare)
  • Artificial Arthropod Exoskeletons/Fungi Cell Walls Integrating Metal and Biocatalysts for Heterogeneous Synergistic Catalysis of Asymmetric Cascade Transformations
  • 2023
  • Ingår i: ChemCatChem. - : John Wiley & Sons. - 1867-3880 .- 1867-3899. ; 15:15
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel and sustainable tandem-catalysis system for asymmetric synthesis is disclosed, which is fabricated by bio-inspired self-assembly of artificial arthropod exoskeletons (AAEs) or artificial fungi cell walls (AFCWs) containing two different types of catalysts (enzyme and metal nanoparticles). The heterogeneous integrated enzyme/metal nanoparticle AAE/AFCW systems, which contain chitosan as the main structural component, co-catalyze dynamic kinetic resolution of primary amines via a tandem racemization/enantioselective amidation reaction process to give the corresponding amides in high yields and excellent ee. The heterogeneous AAE/AFCW systems display successful heterogeneous synergistic catalysis at the surfaces since they can catalyze multiple reaction cycles without metal leaching. The use of natural-based and biocompatible structural components makes the AAE/AFCW systems fully biodegradable and renewable, thus fulfilling important green chemistry requirements. 
  •  
9.
  • Deiana, Luca, et al. (författare)
  • Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media
  • 2021
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; 57:70, s. 8814-8817
  • Tidskriftsartikel (refereegranskat)abstract
    • The assembly of cellulose-based artificial plant cell wall (APCW) structures that contain different types of catalysts is a powerful strategy for the development of cascade reactions. Here we disclose an APCW catalytic system containing a lipase enzyme and nanopalladium particles that transform a racemic amine into the corresponding enantiomerically pure amide in high yield via a dynamic kinetic resolution.
  •  
10.
  • Deiana, Luca, et al. (författare)
  • Cellulose-Supported Heterogeneous Gold-Catalyzed Cycloisomerization Reactions of Alkynoic Acids and Allenynamides
  • 2023
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 13:15, s. 10418-10424
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we describe efficient nanogold-catalyzed cycloisomerization reactions of alkynoic acids and allenynamides to enol lactones and dihydropyrroles, respectively (the latter via an Alder-ene reaction). The gold nanoparticles were immobilized on thiol-functionalized microcrystalline cellulose and characterized by electron microscopy (HAADF-STEM) and by XPS. The thiol-stabilized gold nanoparticles (Au-0) were obtained in the size range 1.5-6 nm at the cellulose surface. The robust and sustainable cellulose-supported gold nanocatalyst can be recycled for multiple cycles without losing activity.
  •  
11.
  • Deiana, Luca, et al. (författare)
  • Subtilisin integrated artificial plant cell walls as heterogeneous catalysts for asymmetric synthesis of (S)-amides
  • 2023
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 13:29, s. 19975-19980
  • Tidskriftsartikel (refereegranskat)abstract
    • Subtilisin integrated artificial plant-cell walls (APCWs) were fabricated by self-assembly using cellulose or nanocellulose as the main component. The resulting APCW catalysts are excellent heterogeneous catalysts for the asymmetric synthesis of (S)-amides. This was demonstrated by the APCW-catalyzed kinetic resolution of several racemic primary amines to give the corresponding (S)-amides in high yields with excellent enantioselectivity. The APCW catalyst can be recycled for multiple reaction cycles without loss of enantioselectivity. The assembled APCW catalyst was also able to cooperate with a homogeneous organoruthenium complex, which allowed for the co-catalytic dynamic kinetic resolution (DKR) of a racemic primary amine to give the corresponding (S)-amide in high yield. The APCW/Ru co-catalysis constitutes the first examples of DKR of chiral primary amines when subtilisin is used as a co-catalyst.
  •  
12.
  • Li, Man-Bo, et al. (författare)
  • Silver-Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:26, s. 10391-10395
  • Tidskriftsartikel (refereegranskat)abstract
    • A silver-triggered heterogeneous Pd-catalyzed oxidative carbonylation has been developed. This heterogeneous process exhibits high efficiency and good recyclability, and was utilized for the one-pot construction of polycyclic compounds with multiple chiral centers. AgOTf was used to remove chloride ions in the heterogeneous catalyst Pd-AmP-CNC, thereby generating highly active Pd-II, which results in high efficiency of the heterogeneous catalytic system.
  •  
13.
  • Veluru, Ramesh Naidu, et al. (författare)
  • Regio- and Stereoselective Carbon-Boron Bond Formation via Heterogeneous Palladium-Catalyzed Hydroboration of Enallenes
  • 2023
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 29:24
  • Tidskriftsartikel (refereegranskat)abstract
    • A highly efficient regio- and stereoselective heterogeneous palladium-catalyzed hydroboration reaction of enallenes was developed. Nanopalladium immobilized on microcrystalline cellulose (MCC) was successfully employed as an efficient catalyst for the enallene hydroboration reaction. The nanopalladium particles were shown by HAADF-STEM to have an average size of 2.4 nm. The cellulose-supported palladium catalyst exhibits high stability and provides vinyl boron products in good to high isolated yields (up to 90 %). The nanopalladium catalyst can be efficiently recycled and it was demonstrated that the catalyst can be used in 7 runs with a maintained high yield (>80 %). The vinylboron compounds prepared from enallenes are important synthetic intermediates that can be used in various organic synthetic transformations. 
  •  
14.
  • Zheng, Zhiyao, et al. (författare)
  • Efficient Heterogeneous Copper-Catalyzed Alder-Ene Reaction of Allenynamides to Pyrrolines
  • 2022
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 12:3, s. 1791-1796
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we describe an efficient nanocopper-catalyzed Alder-ene reaction of allenynamides. The copper nanoparticles were immobilized on amino-functionalized microcrystalline cellulose. A solvent-controlled chemoselectivity of the reaction was observed, leading to the chemodivergent synthesis of pyrrolines (2,5-dihydropyrroles) and pyrroles. The heterogeneous copper catalyst exhibits high efficiency and good recyclability in the Alder-ene reaction, constituting a highly attractive catalytic system from an economical and environmental point of view. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy