SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abera Asmamaw) "

Sökning: WFRF:(Abera Asmamaw)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Abera, Asmamaw, et al. (författare)
  • Air pollution measurements and land-use regression in urban sub-saharan Africa using low-cost sensors—possibilities and pitfalls
  • 2020
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution is recognized as the most important environmental factor that adversely affects human and societal wellbeing. Due to rapid urbanization, air pollution levels are increasing in the Sub-Saharan region, but there is a shortage of air pollution monitoring. Hence, exposure data to use as a base for exposure modelling and health effect assessments is also lacking. In this study, low-cost sensors were used to assess PM2.5 (particulate matter) levels in the city of Adama, Ethiopia. The measurements were conducted during two separate 1-week periods. The measurements were used to develop a land-use regression (LUR) model. The developed LUR model explained 33.4% of the variance in the concentrations of PM2.5. Two predictor variables were included in the final model, of which both were related to emissions from traffic sources. Some concern regarding influential observations remained in the final model. Long-term PM2.5 and wind direction data were obtained from the city’s meteorological station, which should be used to validate the representativeness of our sensor measurements. The PM2.5 long-term data were however not reliable. Means of obtaining good reference data combined with longer sensor measurements would be a good way forward to develop a stronger LUR model which, together with improved knowledge, can be applied towards improving the quality of health. A health impact assessment, based on the mean level of PM2.5 (23 µg/m3), presented the attributable burden of disease and showed the importance of addressing causes of these high ambient levels in the area.
  •  
3.
  • Abera, Asmamaw, et al. (författare)
  • Air Quality in Africa : Public Health Implications
  • 2021
  • Ingår i: Annual review of public health. - : Annual Reviews. - 0163-7525 .- 1545-2093. ; 42, s. 193-210
  • Tidskriftsartikel (refereegranskat)abstract
    • This review highlights the importance of air quality in the African urban development process. We address connections between air pollution and (a) rapid urbanization, (b) social problems, (c) health impacts, (d) climate change, (e) policies, and ( f ) new innovations. We acknowledge that air pollution levels in Africa can be extremely high and a serious health threat. The toxic content of the pollution could relate to region-specific sources such as low standards for vehicles and fuels, cooking with solid fuels, and burning household waste. We implore the pursuit of interdisciplinary research to create new approaches with relevant stakeholders. Moreover, successful air pollution research must regard conflicts, tensions, and synergies inherent to development processes in African municipalities, regions, and countries. This includes global relationships regarding climate change, trade, urban planning, and transportation. Incorporating aspects of local political situations (e.g., democracy) can also enhance greater political accountability and awareness about air pollution. Expected final online publication date for the Annual Review of Public Health, Volume 42 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
  •  
4.
  • Abera, Asmamaw, et al. (författare)
  • Measurements of nox and development of land use regression models in an east-African city
  • 2021
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution causes premature mortality and morbidity globally, but these adverse health effects occur over proportionately in low-and middle-income countries. Lack of both air pollution data and knowledge of its spatial distribution in African countries have been suggested to lead to an underestimation of health effects from air pollution. This study aims to measure nitrogen oxides (NOx), as well as nitrogen dioxide (NO2), to develop Land Use Regression (LUR) models in the city of Adama, Ethiopia. NOx and NO2 was measured at over 40 sites during six days in both the wet and dry seasons. Throughout the city, measured mean levels of NOx and NO2 were 29.0 µg/m3 and 13.1 µg/m3, respectively. The developed LUR models explained 68% of the NOx variances and 75% of the NO2. Both models included similar geographical predictor variables (related to roads, industries, and transportation administration areas) as those included in prior LUR models. The models were validated by using leave-one-out cross-validation and tested for spatial autocorrelation and multicollinearity. The performance of the models was good, and they are feasible to use to predict variance in annual average NOx and NO2 concentrations. The models developed will be used in future epidemiological and health impact assessment studies. Such studies may potentially support mitigation action and improve public health.
  •  
5.
  • Balidemaj, Festina, et al. (författare)
  • Indoor air pollution exposure of women in adama, ethiopia, and assessment of disease burden attributable to risk factor
  • 2021
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 18:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction and aim: Air pollution, a major environmental threat to human health, contributes to the premature deaths of millions of people worldwide. Cooking with solid fuels, such as charcoal and wood, in low-and middle-income countries generates very high emissions of particulate matter within and near the household as a result of their inefficient combustion. Women are especially exposed, as they often perform the cooking. The purpose of this study was to assess the burden of disease attributable to household air pollution exposure from cooking among women in Adama, Ethiopia. Methods: AirQ+ software (WHO Regional Office for Europe, Copenhagen, Denmark) was used to assess the health impact of household air pollution by estimating the burden of disease (BoD) including Acute Lower Respiratory Infections (ALRI), Chronic Obstructive Pulmonary Disease (COPD), Ischemic Heart Disease (IHD), lung cancer, and stroke, among a cohort of women in Adama. Household air pollution exposure estimated by cooking fuel type was assessed through questionnaires. Results: Three-quarters (75%) of Adama’s population used solid fuel for cooking; with this, the household air pollution attributable mortality was estimated to be 50% (95% CI: 38–58%) due to ALRI, 50% (95% CI: 35–61%) due to COPD, 50% (95% CI: 27–58%) due to lung cancer, (95% CI: 23–48%) due to IHD, and (95% CI: 23–51%) due to stroke. The corresponding disability-adjusted life years (DALYs) per 100,000 women ranged between 6000 and 9000 per disease. Conclusions: This health impact assessment illustrates that household air pollution due to solid fuel use among women in Adama leads to premature death and a substantial quantity of DALYs. Therefore, decreasing or eliminating solid fuel use for cooking purposes could prevent deaths and improve quality of life.
  •  
6.
  •  
7.
  • Eriksson, Axel, et al. (författare)
  • Characterization of fine particulate matter from indoor cooking with solid biomass fuels
  • 2022
  • Ingår i: Indoor Air. - : Hindawi Limited. - 0905-6947 .- 1600-0668. ; 32:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Household burning of solid biomass fuels emits pollution particles that are a huge health risk factor, especially in low-income countries (LICs) such as those in Sub-Saharan Africa. In epidemiological studies, indoor exposure is often more challenging to assess than outdoor exposure. Laboratory studies of solid biomass fuels, performed under real-life conditions, are an important path toward improved exposure assessments. Using on- and offline measurement techniques, particulate matter (PM) from the most commonly used solid biomass fuels (charcoal, wood, dung, and crops residue) was characterized in laboratory settings using a way of burning the fuels and an air exchange rate that is representative of real-world settings in low-income countries. All the fuels generated emissions that resulted in concentrations which by far exceed both the annual and the 24-hour-average WHO guidelines for healthy air. Fuels with lower energy density, such as dung, emitted orders of magnitude more than, for example, charcoal. The vast majority of the emitted particles were smaller than 300 nm, indicating high deposition in the alveoli tract. The chemical composition of the indoor pollution changes over time, with organic particle emissions often peaking early in the stove operation. The chemical composition of the emitted PM is different for different biomass fuels, which is important to consider both in toxicological studies and in source apportionment efforts. For example, dung and wood yield higher organic aerosol emissions, and for dung, nitrogen content in the organic PM fraction is higher than for the other fuels. We show that aerosol mass spectrometry can be used to differentiate stove-related emissions from fuel, accelerant, and incense. We argue that further emission studies, targeting, for example, vehicles relevant for LICs and trash burning, coupled with field observations of chemical composition, would advance our understanding of air pollution in LIC. We believe this to be a necessary step for improved air quality policy.
  •  
8.
  • Flanagan, Erin, et al. (författare)
  • Air Pollution and Urban Green Space : Evidence of Environmental Injustice in Adama, Ethiopia
  • 2021
  • Ingår i: Frontiers in Sustainable Cities. - : Frontiers Media SA. - 2624-9634. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • While air pollution data in Ethiopia is limited, existing studies indicate high levels of both ambient and household air pollution; rapid urbanization also threatens the preservation of urban green spaces. In this study, environmental injustice, or the disproportionate burden of environmental exposures on persons of lower socioeconomic status (SES), was explored among women in Ethiopia using a mother and child cohort from the city of Adama. Land-use regression models were previously developed for modeling ambient nitrogen dioxide (NO2) and nitrogen oxides (NOx) throughout Adama, while household air pollution (cooking fuel type) and the presence of green space were assessed through questionnaires and home visits, respectively. The odds of being exposed to these environmental factors were analyzed in association with two SES indicators, education and occupation, using logistic regression. Our results indicate the presence of environmental injustice in Adama, as women with lower SES shouldered a higher burden of air pollution exposure and enjoyed less urban green space than their higher SES counterparts. These findings encourage the prioritization of air quality control and urban planning resources toward policy action within lower SES areas. From a societal perspective, our results also support more upstream interventions, including investment in educational and occupational opportunities. Still, a human rights approach is emphasized, as governments are responsible for protecting the right to a clean environment, especially for those disproportionately exposed. To the best of our knowledge, this is the first study on environmental injustice in Ethiopia, and the first in Sub-Saharan Africa to investigate the inequalities of ambient and household air pollution exposure as well as urban green space access in the same cohort.
  •  
9.
  • Flanagan, Erin, et al. (författare)
  • Ambient and indoor air pollution exposure and adverse birth outcomes in Adama, Ethiopia
  • 2022
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120. ; 164
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution poses a threat to human health, with pregnant women and their developing fetuses being particularly vulnerable. A high dual burden of ambient and indoor air pollution exposure has been identified in Ethiopia, but studies investigating their effects on adverse birth outcomes are currently lacking. This study explores the association between ambient air pollution (NOX and NO2) and indoor air pollution (cooking fuel type) and fetal and neonatal death in Adama, Ethiopia. A prospective cohort of mothers and their babies was used, into which pregnant women were recruited at their first antenatal visit (n = 2085) from November 2015 to February 2018. Previously developed land-use regression models were utilized to assess ambient concentrations of NOX and NO2 at the residential address, whereas data on cooking fuel type was derived from questionnaires. Birth outcome data was obtained from self-reported questionnaire responses during the participant's postnatal visit or by phone if an in-person meeting was not possible. Binary logistic regression was employed to assess associations within the final study population (n = 1616) using both univariate and multivariate models; the latter of which adjusted for age, education, parity, and HIV status. Odds ratios (OR) and their corresponding 95% confidence intervals (CI) were reported. Within the cohort, 69 instances of fetal death (n = 16 miscarriages; n = 53 stillbirths) and 16 cases of neonatal death were identified. The findings suggest a tendency towards an association between ambient NOX and NO2 exposure during pregnancy and an increased risk of fetal death overall as well as stillbirth, specifically. However, statistical significance was not observed. Results for indoor air pollution and neonatal death were inconclusive. As limited evidence on the effects of exposure to ambient air pollution on adverse birth outcomes exists in Sub-Saharan Africa and Ethiopia, additional studies with larger study populations should be conducted.
  •  
10.
  • Isaxon, Christina, et al. (författare)
  • A call for action : Air Pollution, a serious health and economic hazard suffocating Africa
  • 2022
  • Ingår i: Clean Air Journal. - 1017-1703. ; 32:2
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Air pollution research has been conducted in Europe and North America as well as in Asia and South America for decades, but there has, so far, only been a limited amount of studies on air pollution and its health effects conducted in Africa. Until recently, global inventories of pollutants from North America Europe and Asia have been used for air quality and climate change modelling in Africa (Bond et al., 2004, Streets et al., 2004, Bond et al., 2007, Klimont et al., 2009, Klimont et al., 2013, Lamarque et al., 2010). Research in air pollution has, however, been lagging far behind in African countries, despite the increasing health and economic impact associated with air pollution in these nations, since systematic monitoring in Africa is often lacking. The health impact of air pollution in African cities has only been sparsely studied: a review from 2018 (Coker and Kizito, 2018) found only 3 studies outside South Africa. Earlier last year, a study showed that air pollution was responsible for 1.1 million deaths across Africa in 2019, with household air pollution—driven largely by solid biofuel used in indoor cook stoves—accounting for 697 000 fatalities (64% of the total), while increased outdoor air pollution claimed 394 000 lives (36% of the total) (Fisher et al., 2021).
  •  
11.
  • McCarrick, Sarah, et al. (författare)
  • Toxicity of particles derived from combustion of Ethiopian traditional biomass fuels in human bronchial and macrophage-like cells
  • 2024
  • Ingår i: Archives of Toxicology. - 0340-5761. ; 98:5, s. 1515-1532
  • Tidskriftsartikel (refereegranskat)abstract
    • The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC–MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1–150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.
  •  
12.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
13.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
14.
  • Walles, John, et al. (författare)
  • Tuberculosis infection and stillbirth in Ethiopia —A prospective cohort study
  • 2022
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Tuberculosis is among the leading causes of death among infectious diseases. Regions with a high incidence of tuberculosis, such as sub-Saharan Africa, are disproportionately burdened by stillbirth and other pregnancy complications. Active tuberculosis increases the risk of pregnancy complications, but the association between latent tuberculosis infection (LTBI) and pregnancy outcomes is unknown. We explored the effect of latent tuberculosis infection on the risk of stillbirth in women attending antenatal care clinics in Ethiopia, a country with >170 000 annual cases of active tuberculosis. Method Pregnant women were enrolled from antenatal care at three health facilities in Adama, Ethiopia, during 2015–2018, with assessment for previous and current active tuberculosis and testing for LTBI using QuantiFERON-TB-GOLD-PLUS. Proportions of stillbirth (≥20 weeks of gestation) and neonatal death (< 29 days of birth) were compared with respect to categories of maternal tuberculosis infection (tuberculosis-uninfected, LTBI, previous-, and current active tuberculosis). Multivariable logistic regression was performed for stillbirth. Results Among 1463 participants enrolled, the median age was 25 years, 10.2% were HIV-positive, 34.6% were primigravidae, and the median gestational age at inclusion was 18 weeks. Four (0.3%) were diagnosed with active tuberculosis during pregnancy, 68 (4.6%) reported previous treatment for active tuberculosis, 470 (32.1%) had LTBI, and 921 (63.0%) were tuberculosis-uninfected. Stillbirth was more frequent in participants with LTBI compared to tuberculosis-uninfected participants, although not reaching statistical significance (19/470, 4.0% vs 25/921, 2.7%, adjusted [for age, gravidity and HIV serostatus] odds ratio 1.38, 95% confidence interval 0.73–2.57, p = 0.30). Rates of neonatal death (5/470, 1.1% vs 10/921, 1.1%) were similar between these categories. Conclusion Latent tuberculosis infection was not significantly associated with stillbirth or neonatal death in this cohort. Studies based on larger cohorts and with details on causes of stillbirth, as well as other pregnancy outcomes, are needed to further investigate this issue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (13)
konferensbidrag (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Abera, Asmamaw (11)
Isaxon, Christina (10)
Malmqvist, Ebba (9)
Eriksson, Axel (5)
Mattisson, Kristoffe ... (4)
Ärnlöv, Johan, 1970- (3)
visa fler...
Hankey, Graeme J. (3)
Wijeratne, Tissa (3)
Sahebkar, Amirhossei ... (3)
Hassankhani, Hadi (3)
Madotto, Fabiana (3)
Flanagan, Erin (3)
Koyanagi, Ai (3)
Castro, Franz (3)
Koul, Parvaiz A. (3)
Edvardsson, David (3)
Cooper, Cyrus (3)
Weiderpass, Elisabet ... (3)
Dhimal, Meghnath (3)
Vaduganathan, Muthia ... (3)
Sheikh, Aziz (3)
Acharya, Pawan (3)
Gething, Peter W. (3)
Hay, Simon I. (3)
Afshin, Ashkan (3)
Cornaby, Leslie (3)
Abebe, Zegeye (3)
Afarideh, Mohsen (3)
Agrawal, Sutapa (3)
Alahdab, Fares (3)
Badali, Hamid (3)
Badawi, Alaa (3)
Bensenor, Isabela M. (3)
Bernabe, Eduardo (3)
Dandona, Lalit (3)
Dandona, Rakhi (3)
Esteghamati, Alireza (3)
Farvid, Maryam S. (3)
Feigin, Valery L. (3)
Geleijnse, Johanna M ... (3)
Grosso, Giuseppe (3)
Hamidi, Samer (3)
Hassen, Hamid Yimam (3)
James, Spencer L. (3)
Jonas, Jost B. (3)
Kasaeian, Amir (3)
Khader, Yousef Saleh (3)
Khalil, Ibrahim A. (3)
Khang, Young-Ho (3)
Kimokoti, Ruth W. (3)
visa färre...
Lärosäte
Lunds universitet (13)
Karolinska Institutet (4)
Umeå universitet (3)
Chalmers tekniska högskola (3)
Högskolan Dalarna (3)
Uppsala universitet (1)
visa fler...
Södertörns högskola (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (3)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy