SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abou Hachem Maher) "

Sökning: WFRF:(Abou Hachem Maher)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abou-Hachem, Maher, et al. (författare)
  • Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus.
  • 2002
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 41:18, s. 5720-5729
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium binding to carbohydrate binding module CBM4-2 of xylanase 10A (Xyn10A) from Rhodothermus marinus was explored using calorimetry, NMR, fluorescence, and absorbance spectroscopy. CBM4-2 binds two calcium ions, one with moderate affinity and one with extremely high affinity. The moderate-affinity site has an association constant of (1.3 +/- 0.3) x 10(5) M(-1) and a binding enthalpy DeltaH(a) of -9.3 +/- 0.4 kJ x mol(-1), while the high-affinity site has an association constant of approximately 10(10) M(-1) and a binding enthalpy DeltaH(a) of -40.5 +/- 0.5 kJ x mol(-1). The locations of the binding sites have been identified by NMR and structural homology, and were verified by site-directed mutagenesis. The high-affinity site consists of the side chains of E11 and D160 and backbone carbonyls of E52 and K55, while the moderate-affinity site comprises the side chain of D29 and backbone carbonyls of L21, A22, V25, and W28. The high-affinity site is in a position analogous to the calcium site in CBM4 structures and in a recent CBM22 structure. Binding of calcium increases the unfolding temperature of the protein (T(m)) by approximately 23 degrees C at pH 7.5. No correlation between binding affinity and T(m) change was noted, as each of the two calcium ions contributes almost equally to the increase in unfolding temperature.
  •  
2.
  • Abou Hachem, Maher, et al. (författare)
  • Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase : Cloning, expression and binding studies
  • 2000
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021. ; 345:1, s. 53-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The two N-terminally repeated carbohydrate-binding modules (CBM4-1 and CBM4-2) encoded by xyn10A from Rhodothermus marinus were produced in Escherichia coli and purified by affinity chromatography. Binding assays to insoluble polysaccharides showed binding to insoluble xylan and to phosphoric-acid-swollen cellulose but not to Avicel or crystalline cellulose. Binding to insoluble substrates was significantly enhanced by the presence of Na+ and Ca2+ ions. The binding affinities for soluble polysaccharides were tested by affinity electrophoresis; strong binding occurred with different xylans and β-glucan. CBM4-2 displayed a somewhat higher binding affinity than CBM4-1 for both soluble and insoluble substrates but both had similar specificities. Binding to short oligosaccharides was measured by NMR; both modules bound with similar affinities. The binding of the modules was shown to be dominated by enthalpic forces. The binding modules did not contribute with any significant synergistic effects on xylan hydrolysis when incubated with a Xyn10A catalytic module. This is the first report of family 4 CBMs with affinity for both insoluble xylan and amorphous cellulose.
  •  
3.
  • Abou-Hachem, Maher (författare)
  • Glycoside hydrolases from Rhodothermus marinus Modular organisation and structure-function relationships
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The thermophilic bacterium Rhodothermus marinus produces several thermostable glycoside hydrolases. The studies presented in this thesis were performed on two enzymes, belonging to glycoside hydrolase families 10 and 12, produced by this microorganism. The family 10 xylanase, Xyn10A, is modular in architecture consisting of five domains or modules. The two isolated N-terminal modules were produced and characterised. These modules were proven to be carbohydrate-binding modules (CBMs) belonging to a novel subdivision of family 4 CBMs. Both modules display affinity for xylans, b-glucans, and to a less extent non-crystalline cellulose. The structure of the second of these binding modules (CBM4-2), solved by NMR, featured a b-sandwich with jelly roll-topology. Structural details and substrate titrations provided valuable insight on the determinants of specificity of the module. Both the Xyn10A CBMs and the third domain in the enzyme were shown to bind calcium ions, which had a pronounced effect on their thermostabilities. In addition, modular interactions seemed to enhance the stability of the enzyme, since deletion mutants were less stable than the full-length enzyme. No specific function could be ascribed the third domain of Xyn10A, while evidence suggested that the fifth domain is a novel module type that mediates cell-attachment. The primary structure of the family 12 endoglucanase Cel12A was analysed. These analyses showed that the catalytic module of this enzyme is preceded by a linker sequence and a putative signal peptide that destabilised the enzyme and impaired its expression in Escherichia coli. Designing mutants lacking this signal peptide readily solved the stability and production problems and these mutants retained their thermostability and activity. Finally, fusion proteins between the Xyn10A CBMs and the catalytic module of Cel12A were produced and some of their properties are reported.
  •  
4.
  • Abou-Hachem, Maher, et al. (författare)
  • Probing stability of the modular thermostable xylanase Xyn10A
  • 2003
  • Ingår i: Extremophiles. - : Springer Science and Business Media LLC. - 1433-4909 .- 1431-0651. ; 7:6, s. 483-491
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermophilic bacterium Rhodothermus marinus produces a modular xylanase (Xyn10A) consisting of two N-terminal carbohydrate-binding modules (CBMs), followed by a domain of unknown function, and a catalytic module flanked by a fifth domain. Both Xyn10A CBMs bind calcium ions, and this study explores the effect of these ions on the stability of the full-length enzyme. Xyn10A and truncated forms thereof were produced and their thermostabilities were evaluated under different calcium loads. Studies performed using differential scanning calorimetry showed that the unfolding temperature of the Xyn10A was significantly dependent on the presence of Ca2+, and that the third domain of the enzyme binds at least one Ca2+. Thermal inactivation studies confirmed the role of tightly bound Ca2+ in stabilizing the enzyme, but showed that the presence of a large excess of this ion results in reduced kinetic stability. The truncated forms of Xyn10A were less stable than the full-length enzyme, indicative of module/domain thermostabilizing interactions. Finally, possible roles of the two domains of unknown function are discussed in the light of this study. This is the first report on the thermostabilizing role of calcium on a modular family 10 xylanase that displays multiple calcium binding in three of its five domains/modules.
  •  
5.
  • Abou-Hachem, Maher, et al. (författare)
  • The modular organisation and stability of a thermostable family 10 xylanase
  • 2003
  • Ingår i: Biocatalysis and Biotransformation. - : Informa UK Limited. - 1024-2422 .- 1029-2446. ; 21:5-6, s. 253-260
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.
  •  
6.
  • Ejby, Morten, et al. (författare)
  • An atp binding cassette transporter mediates the uptake of α-(1,6)-linked dietary oligosaccharides in bifidobacterium and correlates with competitive growth on these substrates
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 291:38, s. 20220-20231
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the nonreducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria.
  •  
7.
  • Ejby, Morten, et al. (författare)
  • Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp lactis Bl-04
  • 2013
  • Ingår i: Molecular Microbiology. - : Wiley. - 1365-2958 .- 0950-382X. ; 90:5, s. 1100-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo-oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactisBl-04. The binding protein BlAXBP, which is associated with an ATP-binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad specificity for arabinosyl-decorated and undecorated xylo-oligosaccharides, with preference for tri- and tetra-saccharides. Crystal structures of BlAXBP in complex with four different ligands revealed the basis for this versatility. Uniquely, the protein was able to recognize oligosaccharides in two opposite orientations, which facilitates the optimization of interactions with the various ligands. Broad substrate specificity was further enhanced by a spacious binding pocket accommodating decorations at different mainchain positions and conformational flexibility of a lid-like loop. Phylogenetic and genetic analyses show that BlAXBP is highly conserved within Bifidobacterium, but is lacking in other gut microbiota members. These data indicate niche adaptation within Bifidobacterium and highlight the metabolic syntrophy (cross-feeding) among the gut microbiota.
  •  
8.
  • Ejby, Morten, et al. (författare)
  • Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp lactis Bl-04
  • 2012
  • Ingår i: Journal of Psychopharmacology. - 1461-7285. ; 26:11, s. 1100-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo-oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactisBl-04. The binding protein BlAXBP, which is associated with an ATP-binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad specificity for arabinosyl-decorated and undecorated xylo-oligosaccharides, with preference for tri- and tetra-saccharides. Crystal structures of BlAXBP in complex with four different ligands revealed the basis for this versatility. Uniquely, the protein was able to recognize oligosaccharides in two opposite orientations, which facilitates the optimization of interactions with the various ligands. Broad substrate specificity was further enhanced by a spacious binding pocket accommodating decorations at different mainchain positions and conformational flexibility of a lid-like loop. Phylogenetic and genetic analyses show that BlAXBP is highly conserved within Bifidobacterium, but is lacking in other gut microbiota members. These data indicate niche adaptation within Bifidobacterium and highlight the metabolic syntrophy (cross-feeding) among the gut microbiota.
  •  
9.
  • Haddad Momeni, Majid, et al. (författare)
  • A novel starch-binding laccase from the wheat pathogen Zymoseptoria tritici highlights the functional diversity of ascomycete laccases
  • 2019
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Laccases are multicopper oxidases, which are assigned into auxiliary activity family 1 (AA1) in the CAZy database. These enzymes, catalyzing the oxidation of phenolic and nonphenolic substrates coupled to reduction of O2 to H2O, are increasingly attractive as eco-friendly oxidation biocatalysts. Basidiomycota laccases are well characterized due to their potential in de-lignification of lignocellulose. By contrast, insight into the biochemical diversity of Ascomycota counterparts from saprophytes and plant pathogens is scarce. Results: Here, we report the properties of the laccase from the major wheat pathogen Zymoseptoria tritici (ZtrLac1A), distinguished from common plant fungal pathogens by an apoplastic infection strategy. We demonstrate that ZtrLac1A is appended to a functional starch-binding module and displays an activity signature disfavoring relatively apolar phenolic redox mediators as compared to the related biochemically characterized laccases. By contrast, the redox potential of ZtrLac1A (370 mV vs. SHE) is similar to ascomycetes counterparts. The atypical specificity is consistent with distinctive sequence substitutions and insertions in loops flanking the T1 site and the enzyme C-terminus compared to characterized laccases. Conclusions: ZtrLac1A is the first reported modular laccase appended to a functional starch-specific carbohydrate binding module of family 20 (CBM20). The distinct specificity profile of ZtrLac1A correlates to structural differences in the active site region compared to previously described ascomycetes homologues. These differences are also highlighted by the clustering of the sequence of ZtrLac1A in a distinct clade populated predominantly by plant pathogens in the phylogenetic tree of AA1 laccases. The possible role of these laccases in vivo merits further investigations. These findings expand our toolbox of laccases for green oxidation and highlight the binding functionality of CBM-appended laccases as versatile immobilization tags.
  •  
10.
  • Hansen, Dennis K., et al. (författare)
  • Engineering Bifidobacterium longum Endo-α-N-acetylgalactosaminidase for Neu5Acα2-3Galβ1-3GalNAc reactivity on Fetuin
  • 2022
  • Ingår i: Archives of Biochemistry and Biophysics. - : Elsevier BV. - 0003-9861. ; 725
  • Tidskriftsartikel (refereegranskat)abstract
    • Endo-α-N-acetylgalactosaminidase from Bifidobacterium longum (EngBF) belongs to the glycoside hydrolase family GH101 and has a strict preference towards the mucin type glycan, Galβ1-3GalNAc, which is O-linked to serine or threonine residues on glycopeptides and -proteins. While other enzymes of the GH101 family exhibit a wider substrate spectrum, no GH101 member has until recently been reported to process the α2-3 sialidated mucin glycan, Neu5Acα2-3Galβ1-3GalNAc. However, work published by others (ACS Chem Biol 2021, 16, 2004–2015) during the preparation of the present manuscript demonstrated that the enzymes from several bacteria are able to hydrolyze this glycan from the fluorophore, methylumbelliferyl. Based on molecular docking using the EngBF homolog, EngSP from Streptococcus pneumoniae, substitution of active site amino acid residues with the potential to allow for accommodation of Neu5Acα2-3Galβ1-3GalNAc were identified. Based on this analysis, the mutant EngBF variants W750A, Q894A, K1199A, E1294A and D1295A were prepared and tested, for activity towards the Neu5Acα2-3Galβ1-3GalNAc O-linked glycan present on bovine fetuin. Among the mutant EngBF variants listed above, only E1294A was shown to release Neu5Acα2-3Galβ1-3GalNAc from fetuin, which subsequently was also demonstrated for the substitutions: E1294 M, E1294H and E1294K. In addition, the kcat/KM of the EngBF variants for cleavage of the Neu5Acα2-3Galβ1-3GalNAc glycan increased between 5 and 70 times from pH 4.5 to pH 6.0.
  •  
11.
  •  
12.
  • Jensen, Mathias, et al. (författare)
  • Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood
  • Ingår i: Nature Microbiology. - 2058-5276.
  • Tidskriftsartikel (refereegranskat)abstract
    • Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.
  •  
13.
  • Madsen, Jan Busk, et al. (författare)
  • Structural and Mechanical Properties of Thin Films of Bovine Submaxillary Mucin (BSM) vs. Porcine Gastric Mucin (PGM) on a Hydrophobic Surface in Aqueous Solutions
  • 2016
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 32:38, s. 9687-9696
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural and mechanical properties of thin films generated from two types of mucins, namely, bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in aqueous environment were investigated with several bulk and surface analytical techniques. Both mucins generated hydrated films on hydrophobic polydimethylsiloxane (PDMS) surfaces from spontaneous adsorption arising from their amphiphilic characteristic. However, BSM formed more elastic films than PGM at neutral pH condition. This structural difference was manifested from the initial film formation processes to the responses to shear stresses applied to the films. Acidification of environmental pH led to strengthening the elastic character of BSM films with increased adsorbed mass, whereas an opposite trend was observed for PGM films. We propose that this contrast originates from that negatively charged motifs are present for both the central and terminal regions of BSM molecule, whereas a similar magnitude of negative charges is localized at the termini of PGM molecule. Given that hydrophobic motifs acting as an anchor are also localized in the terminal region, electrostatic repulsion between anchoring units of PGM molecules on a nonpolar PDMS surface leads to weakening of the mechanical integrity of the films.
  •  
14.
  •  
15.
  • Nordberg Karlsson, Eva, et al. (författare)
  • Rhodothermus marinus: a thermophilic bacterium producing dimeric and hexameric citrate synthase isoenzymes.
  • 2002
  • Ingår i: Extremophiles. - : Springer Science and Business Media LLC. - 1433-4909 .- 1431-0651. ; 6:1, s. 51-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Two separate citrate synthases from the extremely thermophilic bacterium Rhodothermus marinus have been identified and purified. One of the enzymes is a hexameric protein and is the first thermostable, hexameric citrate synthase to be isolated. The other is a dimeric enzyme, which is also thermostable but possesses both citrate synthase and 2-methyl citrate synthase activities. 2-Methyl citrate synthase uses propionyl-coenzyme A as one of its substrates and in Escherichia coli, for example, it has been implicated in the metabolism of propionate. However, no growth of R. marinus was observed using minimal medium with propionate as the sole carbon source, and both hexameric and dimeric enzymes were produced irrespective of whether propionate was included in the growth medium. The data are discussed with respect to the evolutionary relationships between the known hexameric and dimeric citrate synthases and 2-methyl citrate synthase.
  •  
16.
  • Nordberg Karlsson, Eva, et al. (författare)
  • The modular xylanase Xyn10A from Rhodothermus marinus is cell-attached, and its C-terminal domain has several putative homologues among cell-attached proteins within the phylum Bacteroidetes
  • 2004
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968 .- 0378-1097. ; 241:2, s. 233-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Until recently, the function of the fifth domain of the thermostable modular xylanase Xyn10A from Rhodothermus marinus was unresolved. A putative homologue to this domain was however identified in a mannanase (Man26A) from the same microorganism which raised questions regarding a common function. An extensive search of all accessible data-bases as well as the partially sequenced genomes of R. marinus and Cytophaga hutchinsonii showed that homologues of this domain were encoded by multiple genes in microorganisms in the phylum Bacteroidetes. Moreover, the domain occurred invariably at the C-termini of proteins that were predominantly extra-cellular/cell attached. A primary structure motif of three conserved regions including structurally important glycines and a proline was also identified suggesting a conserved 3D fold. This bioinformatic evidence suggested a possible role of this domain in mediating cell attachment. To confirm this theory, R. marinus was grown, and activity assays showed that the major part of the xylanase activity was connected to whole cells. Moreover, immunocytochemical detection using a Xyn10A-specific antibody proved presence of Xyn10A on the R. marinus cell surface. In the light of this, a revision of experimental data present on both Xyn10A and Man26A was performed, and the results all indicate a cell-anchoring role of the domain, suggesting that this domain represents a novel type of module that mediates cell attachment in proteins originating from members of the phylum Bacteroidetes.
  •  
17.
  • Shuoker, Bashar, et al. (författare)
  • Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The mucolytic human gut microbiota specialist Akkermansia muciniphila is proposed to boost mucin-secretion by the host, thereby being a key player in mucus turnover. Mucin glycan utilization requires the removal of protective caps, notably fucose and sialic acid, but the enzymatic details of this process remain largely unknown. Here, we describe the specificities of ten A. muciniphila glycoside hydrolases, which collectively remove all known sialyl and fucosyl mucin caps including those on double-sulfated epitopes. Structural analyses revealed an unprecedented fucosidase modular arrangement and explained the sialyl T-antigen specificity of a sialidase of a previously unknown family. Cell-attached sialidases and fucosidases displayed mucin-binding and their inhibition abolished growth of A. muciniphila on mucin. Remarkably, neither the sialic acid nor fucose contributed to A. muciniphila growth, but instead promoted butyrate production by co-cultured Clostridia. This study brings unprecedented mechanistic insight into the initiation of mucin O-glycan degradation by A. muciniphila and nutrient sharing between mucus-associated bacteria.
  •  
18.
  • Simpson, PJ, et al. (författare)
  • The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase
  • 2002
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 41:18, s. 5712-5719
  • Tidskriftsartikel (refereegranskat)abstract
    • The solution structure is presented for the second family 4 carbohydrate binding module (CBM4-2) of xylanase 10A from the thermophilic bacterium Rhodothermus marinus. CBM4-2, which binds xylan tightly, has a beta-sandwich structure formed by I I strands, and contains a prominent cleft. From NMR titrations, it is shown that the cleft is the binding site for xylan, and that the main amino acids interacting with xylan are Asn31, Tyr69, Glu72, Phe110, Arg115, and His146. Key liganding residues are Tyr69 and Phe110, which form stacking interactions with the sugar. It is suggested that file loops Oil which the rings are displayed can alter their conformation on substrate binding, which may have functional importance. Comparison both with other family 4 cellulose binding modules and with the structurally similar family 22 xylan binding module shows that the key aromatic residues are in similar positions, and that the bottom of the cleft is much more hydrophobic in the cellulose binding module,, than the xylan binding proteins. It is concluded that substrate specificity is determined by a combination of ring Orientation and the nature of the residues lining the bottom of the binding cleft.
  •  
19.
  • Teze, David, et al. (författare)
  • The catalytic acid-base in GH109 resides in a conserved GGHGG loop and allows for comparable α-retaining and β-inverting activity in an N-acetylgalactosaminidase from Akkermansia muciniphila
  • 2019
  • Ingår i: ChemRxiv. - : American Chemical Society (ACS).
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The study describes the first glycoside hydrolase that exhibits comparable levels of activity on α- and β-linked saccharide substrates. This enzyme, assigned into GH109, is encoded by the genome of the human gut symbiont Akkermansia muciniphila that is a model primary degrader of the heavily O-glycosylated mucin glycoprotein that coats the epithelial enterocytes.The elusive catalytic acid/base catalyst in GH109 enzymes is identified as a histidine that is presented by a flexible loop that positions it for catalysis on both α- and β-substrates. This dual activity may be an evolutionary adaptation to extend the range of substrates targeted by a single non-canonical NAD+-dependant GH.
  •  
20.
  • Teze, David, et al. (författare)
  • The Catalytic Acid-Base in GH109 Resides in a Conserved GGHGG Loop and Allows for Comparable α-Retaining and β-Inverting Activity in an N-Acetylgalactosaminidase from Akkermansia muciniphila
  • 2020
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 10:6, s. 3809-3819
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymes active on glycosidic bonds are defined according to the stereochemistry of both substrates and products of the reactions they catalyze. The CAZy classification further assigns these enzymes into sequence-based families sharing a common stereochemistry for substrates (either α- or β-) and products (i.e., inverting or retaining mechanism). Here we describe the N-acetylgalactosaminidases AmGH109A and AmGH109B (i.e., GH109: glycoside hydrolase family 109) from the human gut symbiont Akkermansia muciniphila. Notably, AmGH109A displays α-retaining and β-inverting N-acetylgalactosaminidase activities with comparable efficiencies on natural disaccharides. This dual specificity could provide an advantage in targeting a broader range of host-derived glycans. We rationalize this discovery through bioinformatics, structural, mutational, and computational studies, unveiling a histidine residing in a conserved GGHGG motif as the elusive catalytic acid-base of the GH109 family.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20
Typ av publikation
tidskriftsartikel (18)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Abou-Hachem, Maher (17)
Nordberg Karlsson, E ... (10)
Holst, Olle (6)
Svensson, Birte (5)
Fredslund, Folmer (5)
Simpson, Peter J (3)
visa fler...
Williamson, Michael ... (3)
Slotboom, Dirk Jan (3)
Ejby, Morten (3)
Hachem, Maher Abou (3)
Linse, Sara (2)
Jamieson, Stuart J (2)
Gilbert, Harry J (2)
Olsson, Fredrik (2)
Vujicic-Zagar, Andre ... (2)
Gorton, Lo (1)
Meier, Sebastian (1)
Holgersson, Jan (1)
Sellers, Peter (1)
Bolam, David N (1)
Bartonek-Roxå, Eva (1)
Raghothama, Srinivas ... (1)
Williamson, M P (1)
Crennell, S J (1)
Hreggvidsson, G O (1)
Kristjansson, J K (1)
Winther, Jakob R (1)
Jin, Chunsheng (1)
Karlsson, Niclas G., ... (1)
Stålbrand, Henrik (1)
Hreggvidsson, Gudmun ... (1)
Karlsson, Eva Nordbe ... (1)
Ortiz, Roberto (1)
Olsson, Martin L (1)
Hult, Annika (1)
Fex-Svenningsen, Åsa (1)
Thormann, Esben (1)
Sotres, Javier (1)
Arnebrant, Thomas (1)
Bollella, Paolo (1)
Morrill, Johan (1)
Jensen, Mathias (1)
Haddad Momeni, Majid (1)
Kulcinskaja, Evelina (1)
Liu, Jining (1)
Henriksen, Jonas Ros ... (1)
Ramchuran, Santosh (1)
Andersen, Joakim Mar ... (1)
Andersen, Thomas Lar ... (1)
Willemoes, Martin (1)
visa färre...
Lärosäte
Lunds universitet (19)
Göteborgs universitet (1)
Malmö universitet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (8)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy